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Abstract

Current hypotheses suggest that speech segmentation—the initial division and grouping of

the speech stream into candidate phrases, syllables, and phonemes for further linguistic

processing—is executed by a hierarchy of oscillators in auditory cortex. Theta (�3-12 Hz)

rhythms play a key role by phase-locking to recurring acoustic features marking syllable

boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency

can dip below cortical theta frequencies (down to�1 Hz), requires “flexible” theta oscillators

whose underlying neuronal mechanisms remain unknown. Using biophysical computational

models, we found that the flexibility of phase-locking in neural oscillators depended on the

types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexi-

bly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subse-

quent buildup of outward current sufficient to delay further spiking until the next input. The

greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic cur-

rents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-

locking enabled improved entrainment to speech input, optimal at mid-vocalic channels,

which in turn supported syllabic-timescale segmentation through identification of vocalic

nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-

restricted and -flexible phase-locking in neural oscillators, respectively. Their differential

deployment may enable neural oscillators to play diverse roles, from reliable internal clock-

ing to adaptive segmentation of quasi-regular sensory inputs like speech.

Author summary

Oscillatory activity in auditory cortex is believed to play an important role in auditory and

speech processing. One suggested function of these rhythms is to divide the speech stream
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into candidate phonemes, syllables, words, and phrases, to be matched with learned lin-

guistic templates. This requires brain rhythms to flexibly synchronize with regular acous-

tic features of the speech stream. How neuronal circuits implement this task remains

unknown. In this study, we explored the contribution of inhibitory currents to flexible

phase-locking in neuronal theta oscillators, believed to perform initial syllabic segmenta-

tion. We found that a combination of specific intrinsic inhibitory currents at multiple

timescales, present in a large class of cortical neurons, enabled exceptionally flexible

phase-locking, which could be used to precisely segment speech by identifying vowels at

mid-syllable. This suggests that the cells exhibiting these currents are a key component in

the brain’s auditory and speech processing architecture.

1 Introduction

Conventional models of speech processing [1–3] suggest that decoding proceeds by matching

chunks of speech of different durations with stored linguistic memory patterns or templates.

Recent oscillation-based models have postulated that this template-matching is facilitated by a

preliminary segmentation step [4–8], which determines candidate speech segments for tem-

plate matching, in the process tracking speech speed and allowing the adjustment (within lim-

its) of sampling and segmentation rates [9, 10]. Segmentation plays a key role in explaining a

range of counterintuitive psychophysical data that challenge conventional models of speech

perception [8, 11–13], and conceptual hypotheses [6, 7, 14–18] suggest cortical rhythms

entrain to regular acoustic features of the speech stream [19–22] to effect this preliminary

grouping of auditory input.

Speech is a multiscale phenomenon, but both the amplitude modulation of continuous

speech and the motor physiology of the speech apparatus are dominated by syllabic timescales

—i.e., δ/θ frequencies (�1-9 Hz) [23–27]. This syllabic timescale information is critical for

speech comprehension [11, 12, 26, 28–31], as is speech-brain entrainment at δ/θ frequencies

[32–38], which may play a causal role in speech perception [39–42]. Cortical θ rhythms—espe-

cially prominent in the spontaneous activity of primate auditory cortex [43]—seem to perform

an essential function in syllable segmentation [11–13, 37], and seminal phenomenological [11]

and computational [44–47] models have proposed a framework in which putative syllables seg-

mented by θ oscillators drive speech sampling and encoding by γ (�30-60 Hz) oscillatory cir-

cuits. The fact that oscillator-based syllable boundary detection performs better than classical

algorithms [45, 46] argues for the role of endogenous rhythmicity—as opposed to merely

event-related responses to rhythmic inputs—in speech segmentation and perception.

However, there are issues with existing models. In vitro results show that the dynamics of

cortical, as opposed to hippocampal [48], θ oscillators depend on intrinsic currents at least as

much as (and arguably more than) synaptic currents [49, 50]. Yet existing models of oscillatory

syllable segmentation assume θ rhythms are paced by synaptic inhibition [45, 47], and employ

methodologies—integrate-and-fire neurons [45] or one-dimensional oscillators [47]—incapa-

ble of capturing the dynamics of intrinsic currents. This is important because the variability of

syllable lengths between syllables, speakers, and languages, as well as across linguistic contexts,

demands “flexibility”—the ability to phase-lock, cycle-by-cycle, to quasi-rhythmic inputs with

a broad range of instantaneous frequencies [6, 12], including those below an oscillator’s intrin-

sic frequency—of any cortical θ oscillator tasked with syllabic segmentation. In contrast to this

functional constraint, (synaptic) inhibition-based rhythms have been shown to exhibit inflexi-
bility in phase-locking, especially to input frequencies lower than their intrinsic frequency [51,
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52]. Furthermore, the pattern of spiking exhibited by a flexible θ rhythm—which we show

depends markedly on the intrinsic currents it exhibits—has important implications for down-

stream speech processing, being hypothesized to determine how and at what speed β- (�15-30

Hz) and γ-rhythmic cortical circuits sample and predict acoustic information [47, 53]. And

while much is known about phase-locking in neural oscillators [54–58], the existing literature

sheds little light on these issues: few studies have examined the physiologically relevant “strong

forcing regime”, in which input pulses are strong enough to elicit spiking [59]; little work has

explored how oscillator parameters influence phase-locking to inputs much slower or faster

than an oscillator’s intrinsic frequency [60]; and few published studies explore oscillators

exhibiting intrinsic outward currents on multiple timescales [61].

In addition, syllable boundaries lack reliable acoustic markers, and the consonantal clusters

that mark linguistic syllable boundaries have higher information density than the high energy

and long-duration vowels at their center. This has led to the suggestion that reliable speech-

brain entrainment may reverse the syllabic convention, relying on the high energy vocalic

nuclei at the center of each syllable to mark segmental boundaries [16] and enable both robust

determination of these boundaries and dependable sampling of the consonantal evidence that

informs segment identity. These reversed “theta-syllables” are hypothesized to be the candidate

cortical segments distinguished and passed downstream for further processing [16] by audi-

tory cortical θ rhythms, but whether θ rhythms differentially entrain to different speech chan-

nels (associated with the acoustics of consonants and vowels) remains unexamined, as does

the impact of such differential entrainment on syllabic timescale speech segmentation.

Motivated by these issues, we explored whether and how the biophysical mechanisms giv-

ing rise to cortical θ oscillations affect their ability to flexibly phase-lock to inputs containing

frequencies slower than their intrinsic frequency. We tested the phase-locking capabilities of

biophysical computational models of neural θ oscillators, parameterized to spike intrinsically

at 7 Hz, and containing all feasible combinations of: (i) θ-timescale subthreshold oscillations

(STOs) resulting from an intrinsic θ-timescale hyperpolarizing current (as observed in θ-

rhythmic layer 5 pyramids [50, 62], and whose presence is denoted by “M” in the name of the

model); (ii) an intrinsic “super-slow” (δ-timescale) hyperpolarizing current (also observed in
vitro [50], and present in models with an “S”); and (iii) θ-timescale synaptic inhibition, as pre-

viously modeled [45] (present in models with an “I”). We drove these oscillators with synthetic

periodic and quasi-periodic inputs, as well as speech inputs derived from the TIMIT corpus

[63]. To determine whether and how these oscillators’ spiking activity could contribute to

meaningful syllabic-timescale segmentation, we used speech-driven model spiking to derive

putative segmental boundaries, and compared these boundaries’ temporal and phonemic dis-

tribution to syllabic midpoints obtained from phonemic transcriptions.

Models exhibiting the combination of STOs and super-slow rhythms observed in vitro
(models MS and MIS) showed markedly more flexible phase-locking to synthetic inputs than

primarily inhibition-paced models (models I, MI, and IS), and yielded segmental boundaries

closer to syllabic midpoints, even when phase-locking to speech was hampered by a higher

overall level of inhibition (model MIS). Exploring the activation of these three inhibitory cur-

rents immediately prior to spiking revealed that flexible phase-locking was driven by a novel

complex interaction between θ-timescale STOs and super-slow K currents. This interaction

enabled a buildup of outward (inhibitory) current during input pulses, sufficiently long-lasting

to silence spiking during the period between successive inputs, even when this period lasted

for many θ cycles, that was absent from oscillators paced by synaptic inhibition. All our models

phase-locked most strongly to mid-vocalic channels and produced segmental boundaries pre-

dominately during vocalic phonemes, supporting the notion that θ-rhythmic syllable segmen-

tation may make use of θ-syllables rather than conventional, linguistically defined ones.
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2 Results

2.1 Modeling cortical θ oscillators

To investigate how frequency flexibility in phase-locking depends on the biophysics and

dynamics of inhibitory currents, we employed Hodgkin-Huxley type computational models of

cortical θ oscillators (Fig 1). In these models, θ rhythmicity was paced by either or both of two

mechanisms: synaptic inhibition with a fast rise time and a slow decay time as in the hippocam-

pus [48] and previous models of syllable segmentation [45]; and θ-frequency sub-threshold

oscillations (STOs) resulting from the interaction of a pair of intrinsic currents activated at sub-

threshold membrane potentials—a depolarizing persistent sodium current and a hyperpolariz-

ing and slowly activating m-current [49]. A super-slow potassium current introduced a δ
timescale into the dynamics of some models and helped to recreate dynamics observed in vitro
[50]. Thus, in addition to spiking and leak currents, our models included up to three types of

outward—i.e. hyperpolarizing and thus spike suppressing, and here termed inhibitory—cur-

rents: an m-current or slow potassium current (Im) with a voltage-dependent time constant of

activation of�10-45 ms; recurrent synaptic inhibition (Iinh) with a decay time of 60 ms; and a

super-slow K current (IKSS
) with (calcium-dependent) rise and decay times of�100 and�500

ms, respectively. The presence of these three hyperpolarizing currents was varied over six mod-

els—M, I, MI, MS, IS, and MIS—whose names indicate the presence of each current: M for the

m-current, I for synaptic inhibition, and S for the super-slow K current (Fig 1).

We began by qualitatively matching in vitro recordings from layer 5 θ-resonant pyramidal

cells [50] (Fig 2). As their resting membrane potential is raised over a few mV, these RS cells

exhibit a characteristic transition from tonic δ-rhythmic spiking to tonic θ-rhythmic spiking

through so-called mixed-mode oscillations (MMOs, here doublets of spikes spaced a θ period

apart occurring at a δ frequency) [50]. In vitro data suggests that this pattern of spiking is inde-

pendent of recurrent synaptic inhibition, arising instead from intrinsic inhibitory currents. To

replicate this behavior, we constructed a Hodgkin-Huxley neuron model paced by both Im and

IKSS
(Figs 1F and 2A). While in vitro, these layer 5 θ-rhythmic pyramidal cells receive δ-rhyth-

mic EPSPs, this rhythmic excitation is not required in our model, which exhibited MMOs in

response to tonic input (Fig 2D).

We then constructed five additional models based on model MS (Fig 1). To compare the

performance of this model to inhibition-based oscillators, we obtained model IS by replacing

Im with feedback synaptic inhibition Iinh from a SOM-like interneuron (Fig 1D), adjusting the

leak current and the conductance of synaptic inhibition to get a frequency-current (FI) curve

having a rheobase and inflection point similar to that of model MS (Fig 1D). In the remaining

models, only the leak current conductance was changed, to enable 7 Hz tonic spiking at

roughly similar values of Iapp; except for the presence or absence of the three inhibitory cur-

rents, all other conductances were identical to those in models MS and IS (see Methods). Two

models without IKSS
(model M and model I, Fig 1A and 1C) were constructed to explore this

current’s contribution to model phase-locking. Two more models were constructed with both

Im and Iinh to explore the interactions of these currents (Fig 1B and 1E). (Models with neither

Im nor Iinh lacked robust 7 Hz spiking). For all simulations, we chose and fixed Iapp so that all

models exhibited intrinsic rhythmicity at the same frequency, 7 Hz (Fig 1, small red circles),

allowing us to directly compare the frequency range of phase-locking between models.

2.2 Phase-locking to strong forcing by simulated inputs

We tested the entrainment of these model oscillators using simulated inputs strong enough to

cause spiking with each input “pulse”.
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Fig 1. Model θ oscillators. For each model (A-F), schematics (left) show the currents present, color-coded according

to the timescale of inhibition (δ in green, θ in purple). FI curves (right) show the transition of spiking rhythmicity

through δ and θ frequencies as Iapp increases (δ in green, θ in purple, and MMOs in gold); the red circle indicates the

point on the FI curve at which Iapp was fixed, to give a 7 Hz firing rate.

https://doi.org/10.1371/journal.pcbi.1008783.g001
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Fig 2. Model MS reproduces in vitro data. (A) Diagram of model MS. Arrows indicate directions of currents (i.e.,

inward or outward). (B) θ timescale STOs arise from interactions between m- and persistent sodium currents in a

model without spiking or Ca-dependent currents (only gm and gNaP
nonzero). (C) δ timescale activity-dependent

hyperpolarization arises from a super-slow K current. (D) Comparison between in vitro (adapted from [50]) and

model data (vertical bar 50 μV, horizontal bar 0.5 ms).

https://doi.org/10.1371/journal.pcbi.1008783.g002
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2.2.1 Rhythmic inputs. To begin mapping the frequency range of phase-locking in our

models, we measured model phase-locking to regular rhythmic inputs, modeled as smoothed

square-wave current injections to the RS cells of all three models. The frequencies of these

inputs ranged from 0.25 to 23 Hz, and their duty cycles were held constant at 1/4 of the input

period (see Methods), to mimic the bursts of excitation produced by deep intrinsic bursting

(IB) cells projecting to deep regular spiking (RS) cells [50]. For inputs at all frequencies, the

total (integrated) input over 30 s was normalized, and multiplied by a gain varied from 0 to 4.

Entrainment was measured as the phase-locking value (PLV) of RS cell spiking to the input

rhythm phase (see Methods, Section 4.3).

The results of these simulations are shown in Fig 3, with models ordered by increasing fre-

quency flexibility of phase-locking, as measured by the lower frequency limit of appreciable

phase-locking. The most flexible model (MS) was able to phase lock to input frequencies as

low as 1.5 Hz even when input strength was relatively low, while the least flexible model (M)

was unable to phase-lock to input frequencies below 7 Hz. For high enough input strength, all

models were able to phase-lock adequately to inputs faster than 7 Hz, up to and including the

fastest frequency we tested (23 Hz). However, much of this phase-locking occurred with less

than one spike per input cycle (see white contours, Fig 3). Notably, models MI and MIS exhib-

ited one-to-one phase-locking to periodic inputs at input strengths twice as high as other mod-

els. Simulations showed that this was due to a higher overall level of inhibition, as the range of

input strengths over which one-to-one phase-locking was observed increased with the conduc-

tances of both Im and Iinh (S1 Fig).

2.2.2 Quasi-rhythmic inputs. Next, we tested whether the frequency selectivity of phase-

locking exhibited for periodic inputs would carry over to quasi-rhythmic inputs, by exploring

how model θ oscillators phase-locked to trains of input pulses in which pulse duration, inter-

pulse duration, and pulse waveform varied from pulse to pulse. The latter were chosen (uni-

formly) randomly from ranges of pulse “frequencies”, “duty cycles”, pulse shape parameters,

and onset times (see Methods, Eq (3)). To create a gradient of sets of (random) inputs with dif-

ferent degrees of regularity, we systematically varied the intervals from which input parameters

were chosen (see Methods, Section 4.3.2); we use “bandwidth” here as a shorthand for this

multi-dimensional gradient in input regularity. Input pulse trains with a “bandwidth” of 1 Hz

were designed to be similar to the 7 Hz periodic pulse trains from Section 2.2.1.

For these “narrowband”, highly regular inputs, all six models showed a high degree of

phase-locking (Fig 4). In contrast, phase-locking to “broadband” inputs was high only for the

models that exhibited broader frequency ranges of phase-locking to regular rhythmic inputs.

At high input strengths, model MS in particular showed a high level of phase-locking that was

nearly independent of input regularity (Fig 4). Notably, model MIS mirrored the ability of

model MS to phase-lock to broadband inputs at high input intensity, while showing frequency

selective phase-locking at low input intensity. Indeed, model MIS phase-locked to weak, nar-

rowband quasi-rhythmic inputs better than any other model, perhaps due to its large region of

one-to-one phase-locking (Fig 4).

2.3 Speech entrainment and segmentation

2.3.1 Phase-locking to speech inputs. We then tested whether frequency flexibility in

response to rhythmic and quasi-rhythmic inputs would translate to an advantage in phase-

locking to real speech inputs selected from the TIMIT corpus [63]. We also tested how phase-

locking to the speech amplitude envelope might differ between auditory frequency bands,

examining the response of each model to 16 different auditory channels, ranging in frequency

from 0.1 to 3.3 kHz, extracted by a model of the cochlea and subcortical nuclei responsible for
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Fig 3. Phase-Locking as a Function of Periodic Input Frequency & Strength. False-color images show the (spike-

rate adjusted) phase-locking value (PLV, see Section 4.3) of spiking to input waveform. Vertical magenta lines

indicating intrinsic spiking frequency. Solid white contour indicates boundary of phase-locking with one spike per

cycle; dotted white contour indicates boundary of phase-locking with 0.9 spikes per cycle. Bands in false-color images

of PLV are related to the number of spikes generated per input cycle: the highest PLV occurs when an oscillator

produces one spike per input cycle, and PLV decreases slightly (from band to band) as both the strength of the input

and the number of spikes per input cycle increases. Schematics of each model appear above and to the left; sample

traces of each model appear above and to the right (voltage traces in black, input profile in gray, two seconds shown,

input frequency 2.5 Hz, total input −3.4 nA/s, as indicated by cyan dot on the false-color image). Total input per

second was calculated by integrating input over the entire simulation.

https://doi.org/10.1371/journal.pcbi.1008783.g003
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auditory processing [64] from 20 different sentences selected blindly from the TIMIT corpus.

We varied the input strength of these speech stimuli with a multiplicative gain that varied

between 0 and 2, and assessed the PLV of RS cell spiking to auditory channel phase (Fig 5). All

models exhibited a linear increase in PLV with input gain, and the strongest phase-locking to

the mid-vocalic channels (�0.206-0.411 kHz, with peak phase-locking to 0.357 kHz; p< 10−10,

S2 Fig). To compare the models’ performance without the heterogeneous contribution of sub-

optimal channels and gains, we ran further simulations with 1000 sentences using only the

highest level of multiplicative gain (2) and the 0.233 kHz channel (shown to be optimal among

a larger number of channels run in the course of our segmentation simulations, see Section

2.3.2 below). For these simulations, comparisons between models showed that the strength of

phase-locking was consistent with the models’ ability to phase-lock flexibly to periodic and

varied pulse inputs, with the notable exception that models MIS and MI exhibited the weakest

performance (S2 Fig). We hypothesized this was again due to their high level of inhibition.

2.3.2 Speech segmentation by phase-locked cortical θ oscillators. We next sought to

assess whether phase-locking to speech inputs could contribute to functionally relevant speech

segmentation, and whether the validity of this segmentation might differ between auditory fre-

quency bands. To do so, we divided the auditory frequency range into 8 sub-bands consisting

of 16 channels each, and drove 16 copies of each of our six models with speech input from

each sub-band. We used a simple sum-and-threshold mechanism, intended to approximate

the integration of the 16 model oscillators’ spiking by a shared postsynaptic target, to translate

model activity into syllabic-timescale segmental boundaries (see Methods, Section 4.4.1). We

then compared these model-derived segmental boundaries to transcription-derived bound-

aries, extracted from phonemic transcriptions of the TIMIT corpus (see Methods, Section

4.4.2). Since all our models exhibited the highest levels of phase-locking to the mid-vocalic

channels, and since the high energy phase for these channels occurs between syllabic bound-

aries, we compared model-derived segmental boundaries to the midpoints of transcription-

derived syllables, computing a normalized point-process metric DVP,50 [65] that penalized

Fig 4. Phase-locking to quasi-rhythmic inputs. Plots show the (spike-rate adjusted) phase-locking value of spiking to input waveform, for inputs of

varying input strength as well as varying bandwidth and regularity (see Section 4.3.2). All inputs have a center frequency of 7 Hz. Schematics of each

model appear above. Sample traces from each model are shown in black, in response to inputs shown in gray, having a bandwidth of 10.65 Hz and an

input gain of 1.1; 1.1 second total is shown.

https://doi.org/10.1371/journal.pcbi.1008783.g004
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model boundaries shifted by more than 50 ms from a syllabic midpoint, as well as “extra”

model boundaries and “missed” syllable midpoints (see Methods, Section 4.4.3). Because syl-

labic midpoints are not necessarily linguistically meaningful, the functional utility of model-

derived boundaries may not depend on whether they occur exactly at (or within 50 ms of)

mid-syllable. Hypothesizing that model-derived boundaries might function simply to identify

Fig 5. Phase-locking to speech inputs. False-color plots (left) show the mean (spike-rate adjusted) PLV of spiking to

speech input waveforms, for different auditory channels (x-axis) as well as varying input strengths (y-axis). Gray-scale

plots (right) show the spiking response of each model to a selection of 8 auditory channels for a single example

sentence. The amplitude of each auditory channel is shown in gray-scale; the top plot shows these amplitudes without

any model response. The spiking in response to each channel is overlaid as a raster plot, with a black vertical bar

indicating each spike. Schematics of each model appear to the upper left.

https://doi.org/10.1371/journal.pcbi.1008783.g005
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particular phonemes (i.e., vowels), we also examined the phonemic distribution of model-

derived boundaries.

The derivation of boundaries from model spiking depended on two parameters—a decay

timescale ws used to sum spikes over time, and a threshold level rthresh used to determine

boundary times. In general, the values of the parameters ws and rthresh dramatically affected

segmentation performance (S3 Fig). Intuitively, these parameters may be thought of as analo-

gous to synaptic timescale and efficacy, for example representing maximal NMDA and AMPA

conductances, respectively. The ranking of models’ segmentation performance depended on

the choice of these parameters (S3 Fig), suggesting that a downstream “boundary detector”

could “learn” to detect syllable boundaries from the output of the model, by adjusting these

parameters.

We thus individually “optimized” each model’s performance over a modest set of ws and

rthresh values, finding the ws and rthresh values for each model that produced the minimum

mean DVP,50 (for any gain and channel, see Methods, Section 4.4.4). Comparing DVP,50 across

these “optimized” data sets (S4 Fig) revealed that segmentation performance roughly mirrored

entrainment performance, with model MS, the mid-vocalic sub-band (center frequency 0.296

kHz), and the highest gain (2) producing the lowest mean DVP,50.

To more rigorously compare model segmentation performance, we ran simulations with

1000 sentences for only the mid-vocalic channel at the highest gain, and once again optimized

ws and rthresh independently for each model (S4 Fig). The resulting ranking across models fol-

lowed phase-locking flexibility with the exception of model M, which performed as well as

model MIS. This tie was surprising, demonstrating the possibility of accurate syllable segmen-

tation even in the absence of high levels of phase-locking to speech inputs. All models, with the

exception of model MI, produced a boundary phoneme distribution with a proportion of vow-

els as high or higher than the proportion of vowels occurring at mid-syllable (Fig 6).

2.4 Mechanisms of phase-locking

2.4.1 Role of post-input spiking delay. Given that both the most selective and the most

flexible oscillator were paced by the m-current, we sought to understand how the dynamics of

outward currents contributed to the observed gradient from selective to flexible phase-locking.

We hypothesized that phase-locking to input pulse trains in our models depended on the dura-

tion of the delay until the next spontaneous spike following a single input pulse. Our rationale

was that each input pulse leads to a burst of spiking, which in turn activates the outward cur-

rents that pace the models’ intrinsic rhythmicity. These inhibitory currents hyperpolarize the

models, causing the cessation of spiking for at least a θ period, and in some cases much longer.

If the pause in spiking is sufficiently long to delay further spiking until the next input arrives,

phase-locking is achieved, given that the next input pulse will also cause spiking (as a conse-

quence of being in the strong forcing regime). In other words, if D is the delay (in s) between

the onset of the input pulse and the first post-input spike, then the lower frequency limit f� of

phase-locking satisfies

1=f � � D) f � � 1=D: ð1Þ

To test this hypothesis, we measured the delay of model spiking in response to single spike-

triggered input pulses, identical to single pulses from the periodic inputs discussed in Section

2.2.1, with durations corresponding to periodic input frequencies of 7 Hz or less, and varied

input strengths. The fact that these pulses were triggered by spontaneous rhythmic spiking

allowed a comparison between intrinsic spiking and spiking delay post-input (Fig 7A), which

showed a correspondence between flexible phase-locking and the duration of spiking delay.
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We also used spiking delay and Eq (1) to estimate the regions of phase-locking for each model

oscillator. In agreement with our hypothesis, the delay-estimated PLV closely matched the

profiles of frequency flexibility in phase-locking measured in Section 2.2.1 (Fig 7B).

2.4.2 Dynamics of inhibitory currents. To understand how the dynamics of intrinsic and

synaptic currents determined the length of the post-input pause in spiking, we examined the

gating variables of the three outward currents simulated in our models during both spontane-

ous rhythmicity and following forcing with a single input pulse (Fig 8). Plotting the relation-

ships between these currents during the time step immediately prior to spiking (Fig 9) offered

Fig 6. Speech segmentation. (A) MeanDVP,50 for different auditory sub-bands (x-axis) and varying input strengths (y-axis), for the pair of values taken

from ws = {25, 30, . . ., 75} and rthresh = {1/3, .4, .45. . ., .6,2/3} that minimized DVP,50 for 40 randomly chosen sentences (see Section 4.4.4). Schematics of

each model appear to the upper left. (B) The proportion of model-derived boundaries intersecting each phoneme class (x-axis), for the mid-vocalic sub-

band (center freq.�0.3 kHz) and varying input strengths (y-axis). For comparison, the bottom row shows the phoneme distribution of syllable

midpoints. Values of ws and rthresh are the same as in (A). (C) & (D) Example sentences, model responses, and transcription- and model-derived syllable

boundaries. For each model, for the sub-band and input strength with the lowest mean DVP,50, the sentences with the lowest (C) and highest (D) DVP,50

are shown. Each set of two plots shows the speech input (top panel, gray), syllabic boundaries (red dashed lines), and syllable midpoints (red solid lines);

as well as the response of the model (bottom, gray) and the model boundaries (green lines).

https://doi.org/10.1371/journal.pcbi.1008783.g006
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insights into the observed gradient of phase-locking frequency flexibility. Below, we describe

the dynamics of these outward currents, from simple to complex.

Synaptic inhibition Model I spiked whenever the synaptic inhibitory current Iinh (Fig 8,

purple) or, equivalently, its gating variable, was sufficiently low. This gating variable decayed

exponentially from the time of the most recent SOM cell spike; it did not depend on the level

of excitation of the RS cell, and thus did not build up during the input pulse. However, post-

input spiking delays did occur because RS and SOM cells spiked for the duration of the input

pulse, repeatedly resetting the synaptic inhibitory “clock”—the time until Iinh had decayed

enough for a spontaneous spike to occur. As soon as spiking stopped (at the end of the input

Fig 7. Delay of spiking in response to single pulse determines phase-locking to slow inputs. (A) Voltage traces are plotted for simulations both with

(solid lines) and without (dotted lines) an input pulse lasting 50 ms. Red bar indicates the timing of the input pulse; red star indicates the first post-input

spike. (B) The phase-locking value is estimated from the response to a single input pulse using Eq (1). Frequency was calculated as 1/(4�(pulse

duration)), where pulse duration is in seconds. Input per pulse was calculated by integrating pulse magnitude. The magenta line indicates 7 Hz.

https://doi.org/10.1371/journal.pcbi.1008783.g007
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pulse or shortly afterwards—our model SOM interneurons were highly excitable and often

exhibited noise-induced spiking after the input pulse), the level of inhibition began to decay,

and the next spike occurred one 7 Hz period after the end of the input pulse. For periodic

input pulses 1/4 the period of the input rhythm, this suggested that the lower frequency limit f�

Fig 8. Buildup of outward currents in response to input pulses. Activation variables (color) plotted for simulations both with (dotted

lines) and without (solid lines) an input pulse lasting 50 ms. Red bar indicates the timing of the input pulse; red star indicates the time of

the first post-input spike.

https://doi.org/10.1371/journal.pcbi.1008783.g008
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of phase-locking for model I was determined roughly by the equation

D ¼
1

4

1

f �

� �

þ
1

7
�

1

f �
) f � �

21

4
¼ 5:25;

which corresponded to the limit observed for model I in Figs 3 and 7.

m-Current In contrast, model M did not spike when the m-current gating variable reached

its nadir, but during the rising phase of its rhythm (Fig 8). Since the m-current activates slowly,

at this phase the upward trajectory in the membrane potential—a delayed effect of the m-cur-

rent trough—was not yet interrupted by the hyperpolarizing influence of m-current activation.

When the cell received an input pulse, the m-current (blue) built up over the course of the

input pulse, but since it is a hyperpolarizing current activated by depolarization whose time

constant is longest at�-26 mV and shorter at de- or hyperpolarized membrane potentials, this

buildup resulted in the m-current rapidly shutting itself off following the input pulse. This

rapid drop resulted in a lower trough, and, subsequently, a higher peak value of the m-cur-

rent’s gating variable (because the persistent sodium current had more time to depolarize the

membrane potential before the m-current was activated enough to hyperpolarize it), changing

the frequency of subsequent STOs. It didn’t, however, affect the model’s phase-locking in the

strong forcing regime; the fast falling phase of the m-current following the pulse kept the post-

input delay small (Fig 8). This “elastic” dynamics offers an explanation for model M’s inflexi-

bility: the buildup of m-current during an input pulse leads to a fast hyperpolarization of the

membrane potential, which, in turn, causes rapid deactivation of the m-current and subse-

quent rapid “rebound” of the membrane potential to depolarized levels, preserving the time of

the next spike.

Super-slow K current In models with a super-slow K current, this current, like synaptic

inhibition, decayed to a nadir before each spike of the intrinsic rhythm. Unlike synaptic

Fig 9. Linear vs. Synergistic interactions of inhibitory currents. Plots of the pre-spike gating variables in models IS and MS. (A) The pre-spike

activation levels of Iinh and IKSS
in model IS have a negative linear relationship. (Regression line calculated excluding points with Iinh activation> 0.1.)

(B) The pre-spike activation levels of Im and IKSS
in model MS do not exhibit a linear relationship. (C) Plotting the activation level of Im against its first

difference reveals that pre-spike activation levels are clustered along a single branch of the oscillator’s trajectory. (Light gray curves represent trajectories

with an input pulse; dark gray curves represent trajectories without an input pulse).

https://doi.org/10.1371/journal.pcbi.1008783.g009
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inhibition, IKSS
activation built up dramatically during an input pulse (Fig 8, green), and

decayed slowly, increasing the latency of the first spike following the input pulse substantially

(Fig 7). This slow-building outward current interacted differently, however, with synaptic and

intrinsic θ-timescale currents. In model IS, both Iinh and IKSS
decayed monotonically following

an input pulse, until the total level of hyperpolarization was low enough to permit another

spike. We hypothesized that IKSS
and Iinh interacted additively to produce hyperpolarization

and a pause in RS cell spiking. In other words, the delay until the next spike was determined

by the time it took for a sum of the two currents’ gating variables (weighted by their conduc-

tances and the driving force of potassium) to drop to a particular level. The fact that we expect

this weighted sum of the gating variables to be nearly the same (having value, say, a�) in the

time t� before each spike suggests that the two gating variables are negatively linearly related at

spike times:

gSOM!RSsðt�ÞðVðt�Þ � EKÞ þ gKSS
qðt�ÞðVðt�Þ � EKÞ ’ a�

) qðt�Þ ’ �
gSOM!RS

gKSS

sðt�Þ þ
a�

gKSS
ðVðt�Þ � EKÞ

:

Plotting the activation levels of these two currents in the timestep before each spike against

each other confirmed this hypothesis (excluding forced spikes and a handful of outliers, Fig

9A).

The interaction between Im and IKSS
was more complex, as seen in model MS. The pre-

spike activation levels of these two currents were not linearly related (Fig 9B). When IKSS
built

up, it dramatically suppressed the level of the m-current gating variable, biasing the competi-

tion between Im and INaP
and reducing STO amplitude, and the IKSS

activation had to decay to

levels much lower than “baseline” before the oscillator would spike again. Indeed, spiking

appeared to require m-current activation to return above “baseline”, and also to be in the rising

phase of its oscillatory dynamics. The dependence of spiking on the phase of the m-current

activation could be seen by plotting the “phase plane” trajectories of the oscillator—plotting

the m activation against its first difference immediately prior to each spike—revealing a branch

of the oscillator’s periodic trajectory along which pre-spike activation levels were clustered

(Fig 9C). Plotting the second difference against the first revealed similar periodic dynamics

(S5(A) Fig).

The models containing both synaptic inhibition and m-current exhibited similar dynamics

to model MS, with a dependence of spiking on the phase of the rhythm in Im activation being

the clearest pattern observable in the pre-spike activation variables (S5(A) and S5(C) Fig). This

suggests that the delay following the input pulse in these models also reflects an influence of θ-

timescale STOs, which may exhibit more complex interactions with Iinh in model MI, similar

qualitatively if not quantitatively to their interactions with IKSS
in models MS and MIS.

3 Discussion

Our results link the biophysics of cortical oscillators to speech segmentation via flexible phase-

locking, suggesting that the intrinsic inhibitory currents observed in cortical θ oscillators [49,

50] may enable these oscillators to entrain robustly to θ-timescale fluctuations in the speech

amplitude envelope, and that this entrainment may provide a substrate for enhanced speech

segmentation that reliably identifies mid-syllabic vocalic nuclei. We trace the capacity of corti-

cal θ oscillators for flexible phase-locking to synergistic interactions between their intrinsic

currents, and demonstrate that similar oscillators lacking either of these intrinsic currents

show markedly less frequency flexibility in phase-locking, regardless of the presence of θ-
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timescale synaptic inhibition. These findings suggest that synaptic and intrinsic inhibition

may tune neural oscillators to exhibit different levels of phase-locking flexibility, allowing

them to play diverse roles—from reliable internal clocks to flexible parsers of sensory input—

that have consequences for neural dynamics, speech perception, and brain function.

3.1 Mechanisms of phase-locking

For models containing a variety of intrinsic and synaptic currents, spiking delay following a

single input pulse was an important determinant of the lower frequency limit of phase-locking

in the strong-forcing regime (Fig 7). A super-slow current, IKSS
, aided the ability to phase-lock

to slow frequencies in our models, by building up over a slow timescale in response to burst

spiking during a long and strong input pulse. The presence of the super-slow K current

increased the frequency range of phase-locking, with every model containing IKSS
able to

phase-lock to slower periodic inputs than any model without IKSS
(Fig 3). The fixed delay time

of synaptic inhibition seemed to stabilize the frequency range of phase-locking, while the volt-

age-dependent and “elastic” dynamics of the m-current seemed to do the opposite. Specifically,

the four models containing Iinh exhibited an intermediate frequency range of phase-locking,

while both the narrowest and the broadest frequency ranges of phase-locking occurred in the

four model θ oscillators containing Im; and the very narrowest and broadest ranges occurred

in the two models containing Im and lacking Iinh (Fig 3).

Our investigations showed that the flexible phase-locking in models MS and MIS resulted

from a synergistic interaction between slow and super-slow K currents, demonstrated here—

to our knowledge—for the first time. We conjecture that this synergy depends on the sub-

threshold oscillations (STOs) engendered by the slow K current (the m-current) in our models,

as was suggested by an analysis of the pre-spike activation levels of the inhibitory currents in

models IS and MS. In model IS, there were no STOs, and the interaction between θ-timescale

inhibition (which was synaptic) and IKSS
was additive, so that spikes occurred whenever the

(weighted) sum of these gating variables dropped low enough (Fig 9A). In models MIS and

MS, where STOs resulted from interactions between the m-current and the persistent sodium

current, spiking depended not only on the level of activation of the m-current, but also on the

phase of the endogenous oscillation in m-current activation (Fig 9C).

For all models, the frequency flexibility of phase-locking to periodic inputs translated to the

ability to phase-lock to quasi-rhythmic (Fig 4) and speech (Fig 5) inputs. While it is reasonable

to hypothesize that this is the result of the mechanism of phase-locking in the regime of strong

forcing, it is important to note that imperfect phase-locking in our models resulted not only

from “extra” spikes in the absence of input (as predicted by this hypothesis), but also from

“missed” spikes in the presence of input (Fig 4). A dynamical understanding of these “missed”

spikes may depend on the properties of our oscillators in the weak-forcing regime.

Phase-locking of neural oscillators under weak forcing has been studied extensively [54–

58]. In this regime, a neural oscillator stays close to a limit cycle during and after forcing, and

as a result the phase of the oscillator is well-defined throughout forcing. Furthermore, the

change in phase induced by an input is small (less than a full cycle), can be calculated, and can

be plotted as a function of the phase at which the input is applied, resulting in a phase-response

curve (PRC). Our results pertain to a dynamical regime in which PRC theory does not apply,

since our forcing is strong and long enough that our oscillators complete multiple cycles dur-

ing the input pulse, and as a result the phase at the end of forcing is not guaranteed to be a

function of the phase at which forcing began. Furthermore, in oscillators which contain IKSS
,

the dynamics of this slow current add an additional dimension, which makes it impossible to

describe the state of these oscillators in terms of a simple phase variable. Not only the phase of
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the oscillator, but also its amplitude (which is impacted by the activation of IKSS
), determine its

dynamics.

Previous work has illuminated many of the dynamical properties of the θ-timescale m-

current. The addition of an m-current (or any slow resonating current, such as an h-current

or other slow non-inactivating K current) changes a neuron from a Type I to a Type II oscil-

lator [66, 67]. The generation of membrane potential resonance (and subthreshold oscilla-

tions) by resonating currents is well-studied [49, 68, 69], and recently it has been shown that

the θ-timescale properties of the M-current allow an E-I network subject to θ forcing to pre-

cisely coordinate with external forcing on a γ timescale [61]. While STOs play an important

role in the behaviors of our model oscillators, subthreshold resonance does not automatically

imply suprathreshold resonance or precise response spiking [70]. Thus, our results are not

predictable (either a priori or a posteriori) from known effects of the m-current on neuronal

dynamics.

Larger (synaptic) inhibition-paced networks have been studied both computationally and

experimentally [52, 71–74], and can exhibit properties distinct from our single (RS) cell inhibi-

tion-paced models: computational modeling has shown that the addition of E-E and I-I con-

nectivity in E-I networks can yield frequency flexibility through potentiation of these recurrent

connections [72, 74]; and experimental results show that amplitude and instantaneous fre-

quency are related in hippocampal networks, since firing by a larger proportion of excitatory

pyramidal cells recruits a larger population of inhibitory interneurons [73], a phenomenon

which may enable more frequency flexibility in phase-locking. This raises the question of why

the brain would select phase-locking flexibility in single cells vs. networks. One possible answer

is energetic efficiency. If flexibility in an inhibition-paced oscillatory network depends on

recruiting large numbers of inhibitory interneurons, it may be more efficient to utilize a small

number of oscillators, each capable (on its own) of entrainment to quasi-rhythmic inputs con-

taining a large range of instantaneous frequencies.

3.2 Functional implications for neuronal entrainment to auditory and

speech stimuli

Our focus on the θ timescale is motivated by results underscoring the prominence of theta

rhythms in the spontaneous and stimulus-driven activity of primate auditory cortex [43, 75–

77] and by evidence for the (causal [39–42]) role of δ/θ frequency speech-brain entrainment in

speech perception [32–39, 42]. Our results suggest that the types of inhibitory currents pacing

cortical θ oscillators with an intrinsic frequency of 7 Hz determine these oscillators’ ability to

phase-lock to the (subcortically processed [64]) amplitude envelopes of continuous speech.

While an oscillator with an intrinsic frequency of 3 Hz might do an equally good job of phase-

locking to strong inputs with frequencies between 3 and 9 Hz, this does not seem to be the

strategy employed by the auditory cortex: the frequencies of (low-frequency) oscillations in

primate auditory cortex are�1.5 and�7 Hz, not 3 Hz [43]; existing experimental [43, 78] and

computational [79] evidence suggests that cortical δ oscillators are unlikely to be driven at θ
frequencies even by strong inputs; and MEG studies show that across individuals, speech com-

prehension is high when cortical frequencies are the same as, or higher than, speech envelope

frequencies, and becomes poorer as this relationship reverses [80].

Another important question raised by our results (and by one of our reviewers) is the fol-

lowing: If flexible entrainment to a (quasi-)periodic input depends on the lengths of the delays

induced by the input, why go to the trouble of using an oscillator at all, rather than a cell

responding only to sufficiently strong inputs? The major difference between oscillators and

non-oscillatory circuits driven by rhythmic inputs is what happens when the inputs cease (or
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are masked by noise): while a non-oscillatory circuit lapses into quiescence, an oscillator con-

tinues spiking at its endogenous frequency. Thus, oscillatory mechanisms can track the tempo-

ral structure of speech through interruptions and omissions in the speech signal [16]. This

capability is crucial to the adjustment of speech processing to the speech rate, a phenomenon

in which brain oscillations are strongly implicated. While (limited) speeding or slowing of

entire utterances does not affect their intelligibility, altering context speech rate can change the

perception of unaltered target words, even making them disappear [81–86]. In recent MEG

experiments, brain oscillations entrained to the rhythm of contextual speech persisted for sev-

eral cycles after a speech rate change [86], with this sustained rhythmic activity associated with

altered perception of vowel duration and word identity following the rate change [86]. Multi-

ple hypothetical mechanisms have been proposed to account for these effects: the syllabic rate

(as encoded by the frequency of an entrained θ rhythm) may determine the sampling rate of

phonemic fine structure (as effected by γ rhythmic circuits) [6, 53]; predictive processing of

speech may use segment duration relative to context speech speed as evidence to evaluate mul-

tiple candidate speech interpretations [47, 87]; and oscillatory entrainment to the syllabic rate

may time relevant calculations, enabling the optimal balance of speed and accuracy in the pass-

ing of linguistic information up the processing hierarchy before the arrival of new input—so-

called “chunk-and-pass” processing [88].

Recent experiments shed light on the limits of adaptation to (uniform) speech compression,

showing that while cortical speech-brain phase entrainment persisted for syllabic rates as high

as 13 Hz (a speed at which speech was not intelligible), β-rhythmic activity was abnormal in

response to this unintelligible compressed speech [89]. This work suggests that the upper syl-

labic rate limit on speech intelligibility arises not from defective phase-locking, but from inade-

quate time for mnemonic or other downstream processes between syllables [89]. This agrees

with our finding that the upper frequency boundary on phase-locking extends well above the

upper syllabic rate boundary on speech intelligibility (�9 Hz), and is largely determined by

input strength. Nonetheless, it is noteworthy that task-related auditory cortical entrainment

operates most reliably over the 1-9 Hz (syllabic) ranges [75]. Further exploration of how

speech compression affects speech entrainment by neuronal oscillators is called for.

Out of our models, MS came closest to spiking selectively at the peaks of the speech ampli-

tude envelope, yet it did not perform perfectly. This was to be expected for a signal as broad-

band and irregular as the amplitude envelope of speech, which presents challenges to both

entrainment and its measurement (see Section 4.3.3). As we’ve mentioned, defects in phase-

locking were also due to both “missed” cycles and “extra” spikes (Fig 5), whose frequency of

occurrence was traded off as tonic excitation to model MS was varied: lower levels of tonic

excitation led to more precise phase-locking (i.e., fewer extra spikes) but more missed cycles,

while higher levels of tonic excitation led to less precise phase-locking but a lower probability

of missed cycles (S6 Fig).

3.3 Functional implications for speech segmentation

Multiple theories suggest a functional role for cortical θ oscillations in segmenting auditory

and speech input at the syllabic timescale [6, 11–13, 16, 39, 42, 77, 90–92]. To explore the con-

sequences for syllabic segmentation of the different levels of speech entrainment observed in

our oscillators, we implemented a simple method to extract putative segmental boundaries

from the spiking of multiple (unconnected) copies of our models. Our results serve to demon-

strate that the accuracy with which segmental boundaries can be extracted from the spiking of

speech-entrained cortical oscillators depends on the particular biophysics of those oscillators.

They suggest that the information in the mid-vocalic channels provides an advantage for
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entrainment to speech and for syllabic-timescale segmentation. Finally, they open the door to

many new questions about the neuronal bases of speech processing.

Our work points to frequency flexibility, which appears to enable segmentation accuracy

even at low levels of entrainment to the speech signal (as can be seen by contrasting the seg-

mentation performance of models MIS and MI), as one of the factors that can impact segmen-

tation accuracy. However, it is clear that other factors also contribute. One likely factor is

excitability, a “minor theme” that contributed second-order effects to the behaviors of models

MI, MIS, and MS (S1, S2, S4 and S6 Figs). While we tuned our models to exhibit the same (7

Hz) frequency of tonic spiking in the absence of (dynamic) input, and attempted to qualita-

tively match their F-I curves, our models exhibited clear differences in the number of spikes

evoked by inputs of the same strength (Figs 5 and 7). It is likely that this in turn impacted the

sum-and-threshold mechanism used to extract syllable boundaries. A highly excitable oscilla-

tor may respond to speech input with a surfeit of spiking from which accurate syllable bound-

aries can be carved by the choice of ws and rthresh; such a mechanism may account for the

unexpectedly accurate segmentation performance of model M. The issue of excitability arises

again when inquiring into the advantages mid-vocalic channels offer for speech entrainment

and segmentation, as these channels differ not only in their frequency content but also in hav-

ing higher amplitude than other channels. We have chosen not to normalize speech input

beyond the transformations implemented by a model of subcortical auditory processing, but

investigating how different types of normalization affect speech entrainment and segmentation

could illuminate whether mid-vocalic channels’ frequency, amplitude, or both are responsible

for the heightened functionality they drive.

There remains much to explore about how segmental boundaries may be derived from the

spiking of populations of cortical oscillators. While our implementation was extremely sim-

plistic, omitting heterogeneity in parameters or synaptic or electrical connectivity between

oscillators, “optimized” model-derived boundaries arose from a relatively complex integration

of the rich temporal dynamics of population activity (Fig 6). This contrasts with the regular

and highly synchronous spike volleys characterizing previous models of oscillatory syllable

segmentation, in which all θ oscillators received the same channel-averaged speech input [45].

In our implementation, a boundary is signaled when the activity of the oscillator network

passes a given threshold, in agreement with recent results showing that neurons in middle

STG, a region of auditory cortex implicated in syllable and word recognition, respond to

acoustic onset edges (i.e., peaks in the rate of change of the speech amplitude envelope) [93,

94]. This may explain why segmentation failures occurred when the speech amplitude enve-

lope remained high through an extended time period that included multiple syllabic bound-

aries (Fig 6D).

One way around this is to combine information across, as well as within, auditory sub-

bands. Our work supports the hypothesis that identification of vocalic nuclei, rather than con-

sonantal clusters, is associated with more precise syllabic-timescale segmentation, but it

doesn’t preclude the use of information about the timing of consonantal clusters to aid seg-

mentation. Interestingly, different auditory cortical regions entrained to different phases of

rhythmic (1.6 Hz) stimuli, with 11-15 kHz regions firing during high-amplitude phases and all

other regions firing in antiphase, and this alternating response pattern was suggested to relate

to the alternation of vowels and consonants in speech [95]. We suggest that a deeper under-

standing of the dynamic repertoire afforded by the simple model presented here may provide

a foundation for future investigations of more complex (and realistic) networks.

Previous work showed that a synaptic inhibition-paced θ oscillator was able to predict sylla-

ble boundaries “on-line” at least as accurately as state-of-the-art offline syllable detection algo-

rithms [45]. While we have not compared our models directly to these syllable detection
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algorithms, we explored the performance of synaptic inhibition-paced θ oscillators similar to

those modeled in previous work. In our hands, models paced even in part by synaptic inhibi-

tion performed uniformly worse than comparable models paced by intrinsic currents alone at

syllabic-timescale segmentation. However, there exist several differences between previous

and current implementations—including input (channel averaged and filtered vs. frequency

specific), model complexity (leaky integrate-and-fire vs. Hodgkin-Huxley), temporal dynamics

of synaptic inhibition (a longer rise time in earlier models), and parameter optimization—all

of which may lead to differences in segmentation performance.

This earlier work positioned syllable segmentation and speech recognition by oscillatory

networks within the landscape of syllable detection algorithms arising from the fields of lin-

guistics, engineering, and artificial intelligence [45]. While the current work has focused more

on how the biophysical implementations of neuronal oscillators impact speech entrainment

and segmentation, an understanding of how differences in segmentation performance and

location affect speech recognition is an important direction for future work. It remains unclear

whether the explicit representation of segmental boundaries contributes to the effects of speech

rate and oscillatory phase on syllable and word recognition [77, 81–86, 90], or to the proposed

underlying mechanisms that implicate speech segmentation at the neuronal level [6, 47, 53, 87,

88]. Indeed, whether speech recognition in general requires explicit segmentation or only the

entrainment of cortical activity to the speech rhythm remains obscure. Cortical θ oscillators

are embedded in a stimulus-entrainable cortical rhythmic hierarchy [43, 92, 95–97], receiving

inputs from deep IB cells embedded in δ-rhythmic circuits [43, 50, 62, 97], and connected via

reciprocal excitation to superficial RS cells embedded in β- and γ-rhythmic circuits [50, 79]. In

the influential TEMPO framework, the θ oscillator is hypothesized to be driven by δ circuits,

and to drive γ circuits, with a linkage between θ and γ frequency adjusting the sampling rate of

auditory input to the syllabic rate [6, 53]. It has been hypothesized that cortically-identified syl-

labic boundaries may reset the activity of γ-rhythmic circuits responsible for sampling and

processing incoming syllables, a reset necessary for accurate syllable recognition [6, 44, 47, 53].

By indicating the completion of the previous syllabic segment, they may also trigger the activity

of circuits responsible for updating the linguistic interpretations of previous speech [53]. Not

only this reset cue, but also θ-rhythmic drive to γ-rhythmic circuits, is necessary for accurate

syllable decoding within this framework [45]. Recent work with leaky-integrate-and-fire mod-

els demonstrates that top-down spectro-temporal predictions can be integrated with theta-

gamma coupling, with the latter enabling the temporal alignment of the former to acoustic

input [47].

Using the output of our models as an input to syllable recognition circuitry—perhaps via γ-

rhythmic circuits [44, 45, 47]—would enable exploration of whether the differences in segmen-

tation accuracy we uncover are functionally relevant for speech recognition. Comparing sylla-

ble recognition when these circuits are driven by model-derived segmental boundaries vs.

model spiking may shed light on the necessity of explicit segmental boundary representation

for syllable recognition. Such research would also provide an opportunity to test claims that

“theta syllables” provide more information for syllabic decoding than conventional syllables

[16]. Our results support the hypothesis that cortical θ oscillators align with speech segments

bracketed by vocalic nuclei—so-called “theta syllables”—as opposed to conventional syllables,

which defy attempts at a consistent acoustic characterization, but are (usually) bracketed by

consonantal clusters [16]. These “theta-syllables” are suggested to have information-theoretic

advantages over conventional linguistic syllables: the vocalic nuclei of speech have relatively

large amplitudes and durations, making them prominent in noise and reliably identifiable

[19]; and windows whose edges align with vocalic nuclei center the diphones that contain the

majority of the information for speech decoding, ensuring this information is sampled with
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high fidelity. These claims, if they prove to have functional relevance, may illuminate how

speech-brain entrainment aids speech comprehension in noisy or otherwise challenging envi-

ronments [98–100]. Connecting the complex and rich dynamics of networks of biophysically

detailed neuronal oscillators to plausible speech recognition circuitry may uncover novel func-

tional and mechanistic factors contributing to speech processing and its dysfunctions [101–

105].

3.4 Versatility in cortical processing through flexible and restricted

entrainment

More broadly, there is evidence that cortical θ oscillators in multiple brain regions, entrained

to distinct features of auditory and speech inputs, may implement a variety of functions in

speech processing. Different regions of human superior temporal gyrus (STG) respond differ-

entially to speech acoustics: posterior STG responds to the onset of speech from silence; middle

STG responds to acoustic onset edges; and anterior STG responds to ongoing speech [93, 94].

Similarly, bilaterally occuring δ/θ speech-brain entrainment may subserve hemispherically dis-

tinct but timescale-specific functions, with right-hemispheric phase entrainment [97] encod-

ing acoustic, phonological, and prosodic information [33, 97, 99, 106, 107], and left-

hemispheric amplitude entrainment [97] encoding higher-level speech structure [38, 108–110]

and top-down predictions [111–113]. Frequency flexibility may shed light on how these multi-

ple θ oscillations are distinguished, collated, and combined. One tempting hypothesis is that

the gradient from flexible to restricted phase-locking corresponds to a gradient from stimulus-

entrained to endogenous brain rhythms, with oscillators closer to the sensory periphery exhib-

iting more flexibility and reverting to intrinsic rhythmicity in the absence of sensory input,

enabling them to continue to couple with central oscillators that exhibit less phase-locking

flexibility. It is suggestive that the conductance of the m-current, which is key to flexible phase-

locking in our models, is altered by acetylcholine, a neuromodulator believed to affect, gener-

ally speaking, the balance of dominance between modes of internally and externally generated

information [62, 114–116].

Indeed, the potential for flexible entrainment does not seem to be ubiquitous in the brain.

Hippocampal θ rhythm, for example, is robustly periodic, exhibiting relatively small frequency

changes with navigation speed [117]. It is suggestive that the mechanisms of hippocampal θ
and the neocortical θ rhythmicity discussed in this paper are very different: while the former is

dominated by synaptic inhibition, resulting from an interaction of synaptic inhibition and the

h-current in oriens lacunosum moleculare interneurons [48], the latter is only modified by it

[50]. Our results suggest that mechanisms like that of hippocampal θ, far too inflexible to per-

form the segmentation tasks necessary for speech comprehension, are instead optimized for a

different functional role. One possibility is that imposing a more rigid temporal structure on

population activity may help to sort “signal” from “noise”—i.e., imposing a strict frequency

and phase criterion that inputs must meet to be processed, functioning as a type of internal

clock. Another possibility is that more rigidly patterned oscillations result from a tight rela-

tionship to motor sampling routines which operate over an inherently more constrained fre-

quency range, as, for example, whisking, sniffing, and running are related to hippocampal θ
[118, 119].

Along these lines, it is intriguing that model MIS exhibits both frequency selectivity in

phase-locking at low input strengths, and frequency flexibility in phase-locking at high input

strengths (Fig 4). Physiologically, input gain can depend on a variety of factors, including

attention, stimulus novelty and salience, and whether the input is within- or cross-modality. A

mechanism that allows input gain to determine the degree of phase-locking frequency
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flexibility could enable the differential processing of inputs based on these attributes. It is

tempting to speculate that such differential entrainment may play a role in both the low levels

of speech entrainment of model MIS, and in the model’s ability to carry out accurate segmen-

tation in spite of it. Perhaps more trenchantly, the phase-locking properties of our models are

themselves modulable, allowing the same neurons to entrain differently to rhythmic inputs

depending on the neuromodulatory context.

Although from one perspective model MIS is the most physiologically realistic of our mod-

els, as neurons in deep cortical layers are likely to exhibit all three outward currents studied in

this paper [50], the minimal impact of synaptic inhibition on these large pyramidal cells sug-

gests that model MS is a functionally accurate representation of the majority (by number) of

RS cells in layer 5 [62]. It thus represents the main source of θ rhythmicity in primary neocor-

tex [62], and a major source of cortico-cortical afferents driving “downstream” processing

[120, 121]. Its properties may have strong implications for the biophysical mechanisms used

by the brain to adaptively segment and process complex auditory stimuli evolving on multiple

timescales, including speech.

4 Methods

All simulations were run on the MATLAB-based programming platform DynaSim [122], a

framework specifically designed by our lab for efficiently prototyping, running, and analyzing

simulations of large systems of coupled ordinary differential equations, enabling in particular

evaluation of their dynamics over large regions of parameter space. DynaSim is open-source

and all models will be made publicly available using this platform.

4.1 Model equations

Our models consisted of at most two cells, a regular spiking (RS) pyramidal cell and an inhibi-

tory interneuron with a timescale of inhibition like that observed in somatostatin-positive

interneurons (SOM). Each cell was modeled as a single compartment with Hodgkin-Huxley

dynamics. In our RS model, the membrane currents consisted of fast sodium (INa), delayed-

rectifier potassium (IKDR
), leak (Ileak), slow potassium or m- (Im), and persistent sodium (INaP

)

currents taken from a model of a guinea-pig cortical neuron [49], and calcium (ICa) and super-

slow potassium (IKSS
, calcium-activated potassium in this case) currents with dynamics from a

hippocampal model [123]. The voltage V(t) was given by the equation

C
dV
dt
¼ Iapp � INa � IKDR

� Ileak � Im � INaP � ICa � IKSS
� Iinh

where the capacitance C = 2.7 reflected the large size of deep-layer cortical pyramidal cells, and

Iapp, the applied current, was given by

IappðtÞ ¼ gapp
t

ttrans
wft�ttransgðtÞ þ wft>ttransgðtÞ

� �

þ pnoiseWðtÞ
� �

where χS(t) is the function that is 1 on set S and 0 otherwise, the transition time τtrans = 500

ms, the noise proportion pnoise = 0.25, and W(t) a white noise process. (The applied current

ramps up from zero during the first 500 ms to minimize the transients that result from a step

current). For SOM cells, the membrane currents consisted of fast sodium (INa,SOM), delayed-

rectifier potassium (IKDR,SOM), and leak (Ileak,SOM) currents [124]. The voltage V(t) was given
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by the equation

CSOM
dV
dt
¼ Iapp;SOM � INa;SOM � IKDR;SOM

� Ileak;SOM � Iexc

where CSOM = 0.9 and Iapp,SOM, the applied current, is constant in time. The form of each cur-

rent is given in Table 1; equilibrium voltages are given in Table 2; and conductance values for

all six models that are introduced in Results: Modeling cortical θ oscillators (see Fig 1) are given

in Table 3.

The dynamics of activation variable x (ranging over h, mKDR
, n, mNaP

, s, and q in Table 1)

were given either in terms of its steady-state value x1 and time constant τx by the equation

dx
dt
¼
x1 � x
tx

;

or in terms of its forward and backward rate functions, αx and βx, by the equation

dx
dt
¼ ð1 � xÞax � xbx:

Only the expressions for mNa differed slightly:

mNaðVÞ ¼ am=ðam þ bmÞ; mNa;SOMðVÞ ¼ ½1þ exp ðð� V � 38Þ=10Þ�
� 1
:

Steady-state values, time constants, and forward and backward rate functions are given in

Table 4. For numerical stability, the backwards and forwards rate constants for q and s were

Table 1. Currents.

INa & INa,SOM gNam3
Na
hðV � ENaÞ

IKDR
&IKDR ;SOM gKDR

m4
KDR
ðV � EKÞ

Ileak & Ileak,SOM gleak(V − Eleak)

Im gm n(V − EK)

INaP
gNaP

mNaP
ðV � ENaP

Þ

ICa gCa s2(V − ECa)

IKSS
gKSS

qðV � EKÞ

Iinh & Iexc gpre!post spre!post(Vpost − Epre!post)

https://doi.org/10.1371/journal.pcbi.1008783.t001

Table 2. Equilibrium voltages.

RS FS

ENa 40 50

EK -80 -95

Eleak -65 -70

ENaP
50 –

ECa 120 –

ERS!SOM 0

ESOM!RS -95

https://doi.org/10.1371/journal.pcbi.1008783.t002
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converted to steady-state values and time constants before integration, using the equations

x1 ¼ axtx; tx ¼ ðax þ bxÞ
� 1
:

The dynamics of the synaptic activation variable s were given by the equation

ds
dt
¼ �

s
tD
þ

1 � s
tR

1þ tanh
Vpre

10

� �� �

;

with time constants τR = 0.25 ms, τD,RS!SOM = 2.5 ms, and τD,SOM!RS = 50 ms. The conduc-

tance gRS! SOM was selected to preserve a one-to-one spiking ratio between RS and SOM cells.

4.2 F-I curves

For these curves, we varied the level of tonic applied current Iapp over the range from 0 to 200

Hz, in steps of 1 Hz. We measured the spiking rate for the last 5 seconds of a 6 second simula-

tion, omitting the transient response in the first second. The presence of δ and θ rhythmicity

or MMOs was assessed using inter-spike interval histograms, and thus differs from the

(arrhythmic) spike rate.

Table 3. Maximal conductances.

Model M MI I IS MIS MS

gNa 135 135 135 135 135 135

gKDR
54 54 54 54 54 54

gleak 0.31 0.27 0.78 0.78 0.27 0.27

gm 1.4472 1.4472 0 0 1.4472 1.4472

gNaP
0.4307 0.4307 0.4307 0.4307 0.4307 0.4307

gCa 0.54 0.54 0.54 0.54 0.54 0.54

gKSS
0 0 0 0.1512 0.1512 0.1512

gapp -7.1 -6.5 -7.6 -10.5 -9.8 -9.2

gNa,SOM 0 100 100 100 100 0

gKDR,SOM 0 80 80 80 80 0

gleak,SOM 0 0.1 0.1 0.1 0.1 0

Iapp,SOM 0 0.95 0.95 0.95 0.95 0

gRS!SOM 0 0.075 0.075 0.075 0.075 0

gSOM!RS 0 0.15 0.15 0.15 0.15 0

https://doi.org/10.1371/journal.pcbi.1008783.t003

Table 4. Activation variable dynamics.

h αh(V) = 0.07 exp (−(V + 30)/20) βh(V) = (exp (−V/10) + 1)−1

mNa am Vð Þ ¼ � Vþ16

10ðexpð� ðVþ16Þ=10Þ� 1Þ
βm(V) = 4 exp (−(V + 41)/18)

mKDR
am Vð Þ ¼ � 0:01 Vþ20

expð� ðVþ20Þ=10Þ� 1
βm(V) = 0.125 exp (−(V + 30)/80)

n n1(V) = [1 + exp (−(V + 35)/10)]−1
tn Vð Þ ¼

1000=ð3:3�3ð34� 22Þ=10Þ

exp Vþ35
40ð Þþexp � ðVþ35Þ

20ð Þ

mNaP m1(V) = [1 + exp (−(V + 40)/5)]−1 τm = 5

s αs(V) = 1.6 (1 + exp (−0.072(V + 65))) bs Vð Þ ¼ 0:02 Vþ51:1

exp Vþ51:1
5ð Þ� 1

q αq(CCa) = min (0.1CCa, 1) βq = 0.002

hSOM h1(V) = [1 + exp ((V + 58.3)/6.7)]−1 τh(V) = 0.225 + 1.125 [1 + exp((V + 37)/15)]−1

mKDR,SOM m1(V) = [1 + exp ((−V−27)/11.5)]−1 τm(V) = 0.25 + 4.35 [1 + exp (−|V + 10|/10)]−1.

https://doi.org/10.1371/journal.pcbi.1008783.t004
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4.3 Phase-locking to rhythmic, quasi-rhythmic, and speech inputs

In addition to the tonic applied current Iapp, to measure phase-locking to rhythmic, quasi-

rhythmic, and speech inputs, we introduced time-varying applied currents. These consisted of

either periodic pulses (IPP), variable-duration pulse trains with varied inter-pulse intervals

(IVP), or speech inputs (Ispeech).

The (spike rate adjusted) phase-locking value (PLV, [125]) of the oscillator to these inputs

was calculated with the expressions

PLV ¼ nsjMRVj
2
� 1

� �
= ns � 1ð Þ; MRV ¼

1

ns

Xns

i¼1

exp
ffiffiffiffiffiffiffi
� 1
p

�I t
s
i

� �� �
;

where MRV stands for mean resultant vector, ns is the number of spikes, tsi is the time of the ith

spike, and ϕI(t) is the instantaneous phase of input I at frequency ω.

4.3.1 Rhythmic inputs. Periodic pulse inputs were given by the expression

IPPðtÞ ¼ gPPSiwfjt� t�i j<¼wðs� 1Þ=2sgðtÞ � exp ð� ðst=wÞ2Þ; ð2Þ

where t�i ¼ 2poi for i = 1,2,. . . is the set of times at which pulses occur, ω is the frequency,

w = 1000d/ω is the pulse width given the duty cycle d 2 (0,1), � is the convolution operator,

and s determines how square the pulse is, with s = 1 being roughly normal and higher s being

more square. For our simulations, we took d = 1/4 and s = 25, and ω ranged over the set {0.25,

0.5, 1, 1.5, . . ., 22.5, 23}. Input pulses were normalized so that the total (integrated) input was 1

pA/s, and were then multiplied by a conductance varying from 0 to 4 in steps of 0.1.

For IPP, the instantaneous phase ϕI(t) was obtained as the angle of the complex time series

resulting from the convolution of IPP with a complex Morlet wavelet having the same fre-

quency as the input and a length of 7 cycles.

4.3.2 Quasi-rhythmic inputs. Variable-duration pulse trains were given by the expres-

sion

IVPðtÞ ¼ gVPSiwfjt� t�i � oi j<¼wi
ðsi � 1Þ

2si
g
ðtÞ � exp �

sit
wi

� �2
 !

; ð3Þ

where

t�i ¼ Si
j¼1

1000=oj;

the frequencies foig
n
1

are chosen uniformly from [flow,fhigh], the pulse width is given by wi =

1000di/ωi, the duty cycles fdig
n
1

are chosen uniformly from [dlow,dhigh], the shape parameters

fsig
n
1

are chosen uniformly from [slow,shigh], and the offsets foig
n
1

are chosen uniformly from

[olow,ohigh]. For our simulations, these parameters are given in Table 5.

Table 5. Varied pulse input (IVP) parameters (see Methods: Phase-locking to rhythmic and quasi-rhythmic inputs: Inputs for details).

Input Bandwidth (= fhigh−flow) flow fhigh dlow dhigh slow shigh olow ohigh

1 6.5 7.5 0.25 0.3 10 40 0 0.05

1.65 6.175 7.825 0.2375 0.325 10 41 0 0.1

2.3 5.85 8.15 0.225 0.35 9 41 0 0.15

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

13.35 0.325 13.675 0.0125 0.775 1 50 0 1

https://doi.org/10.1371/journal.pcbi.1008783.t005

PLOS COMPUTATIONAL BIOLOGY Differential contributions of inhibitory currents to speech segmentation via phase-locking

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008783 April 14, 2021 26 / 37

https://doi.org/10.1371/journal.pcbi.1008783.t005
https://doi.org/10.1371/journal.pcbi.1008783


Since IVP was composed of pulses and interpulse periods of varying duration, it was not

“oscillation-like” enough to employ standard wavelet and Hilbert transforms to obtain accu-

rate estimates of its instantaneous phase. Instead, the following procedure was used to obtain

the instantaneous phase of IVP. First, the times that χVP went from zero to greater than zero

ð aif g
n
i¼1
Þ and from greater than zero to zero ð bif g

n
i¼1
Þ were obtained. Second, we specified the

phase of IVP on these points via the function �
0

I ðtÞ, a piecewise constant function satisfying

d
dt
�

0

I ðtÞ ¼
Xn

i¼1

3p

2
daiðtÞ þ

p

2
dbiðtÞ

� �

;

where δ is the Dirac delta function. Finally, we determined ϕI(t) from �
0

I ðtÞ via linear interpo-

lation, i.e. by setting ϕI(t) to be the piecewise linear (strictly increasing) function satisfying

�Ið0Þ ¼ 0; �IðaiÞ ¼ �
0

I ðaiÞ; �IðbiÞ ¼ �
0

I ðbiÞ:

The resulting function ϕI(t) advances by π/2 over the support of each input pulse (the sup-

port is the interval of time over which the input pulse is nonzero), and advances by 3π/2 over

the time interval between the supports of consecutive pulses.

4.3.3 Speech inputs. Speech inputs were comprised of 20 blindly selected sentences from

the TIMIT corpus of read speech [63], which contains broadband recordings of 630 speakers

of eight major dialects of American English, each reading ten phonetically rich sentences. The

16 kHz speech waveform file for each sentence was processed through a model of subcortical

auditory processing [64], which decomposed the input into 128 channels containing informa-

tion from distinct frequency bands, reproducing the cochlear filterbank, and applied a series of

nonlinear filters reflecting the computations taking place in subcortical nuclei to each channel.

We selected 16 of these channels—having center frequencies of 0.1, 0.13, 0.16, 0.21, 0.26, 0.33,

0.41 0.55, 0.65, 0.82, 1.04, 1.31, 1.65, 2.07, 2.61, and 3.29 kHz—for presentation to our compu-

tational models. We varied the multiplicative gain of the resulting waveforms from 0 to 2 in

steps of 0.1 to obtain inputs at a variety of strengths. Speech onset occurred after one second of

simulation.

Like varied pulse inputs, speech inputs were not “oscillation-like” enough to estimate their

instantaneous phase using standard wavelet and Hilbert transforms. Thus, we used the follow-

ing procedure to extract the instantaneous phase of Ispeech. First, we calculated the power spec-

trum of the auditory cortical input channel derived from the speech waveform, using the

Thompson multitaper method. Second, we identified peaks in the power spectrum that were

at least 2 Hz apart, and used the 2nd, 3rd, and 4th largest peaks in the power spectrum to identify

the frequencies of the main oscillatory modes in the θ frequency band (the largest peak in the

power spectrum was in the δ frequency band for the sentences we used). Then, we convolved

the auditory input with Morlet wavelets at these three frequencies and summed the resulting

complex time series, to obtain a close approximation of the θ-frequency oscillations in the

input. Finally, we took the angle of this complex time series at each point in time to be the

instantaneous phase of the input at that channel.

While the distribution of the (spike rate adjusted) PLV was not normal even after log trans-

formation, the ANOVA is robust to violation of non-normality, so we compared PLV across

models, sub-bands, gains, and sentences by running a 4-way ANOVA, with gain as a continu-

ous variable. All effects were significant, and post-hoc tests for sub-bands were run to identify

the optimal sub-band across models (S2 Fig). We then compared PLV values from simulations

conducted with inputs from 1000 sentences at this gain and sub-band, by running a 2-way

ANOVA with sentence and model as grouping variables; post-hoc model comparisons are

shown in S2 Fig.
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4.4 Speech segmentation

To determine whether the activity of our models could contribute to accurate speech segmen-

tation, we used a sum-and-threshold method to derive putative syllabic boundaries from the

activity of each model. We then compared these model-derived boundaries to syllable bound-

aries derived from the phonemic transcriptions of each sentence, and determined how fre-

quently model-derived boundaries occurred for each phoneme class.

4.4.1 Model-derived syllable boundaries. To determine model-derived syllable bound-

aries, we first divided the auditory frequency range into 8 sub-bands consisting of 16 (adjacent)

channels each. For each sub-band and each model, the output from these 16 channels was

used to drive the RS cells in 16 identical but unconnected versions of the model, with a multi-

plicative gain that varied from 0 to 2 in steps of 0.2. To approximate the effect these RS cells

might have on a shared postsynaptic neuron, their time series of spiking activity, given by

siðtÞf g
16

1
, were convolved with an exponential kernel having decay time ws/5, summed over

cells, and smoothed with a gaussian kernel with σ = 25/4 ms:

PðtÞ ¼
X16

i¼1

siðtÞ � exp �
5t
ws

� �� �

�
1

s
ffiffiffiffiffiffi
2p
p exp �

1

2

t
s

� �2
 !

:

The maximum of this “postsynaptic” time series during the second prior to speech input

was then used to determine a threshold

p� ¼ rthreshmaxfPðtÞjt <¼ 1000msg

and the ordered set of times fm�i g at which P(t) crossed p� from below were extracted as candi-

date syllable boundaries. Starting with i = 2, any candidate boundary m�i that followed the pre-

vious candidate boundary m�i� 1
with a delay less than a refractory period of 25 ms was removed

from fm�i g to yield a set of model-derived syllable boundaries m ¼ fmig
nm
1

.

4.2.2 Transcription-derived syllable boundaries. Phoneme identity and boundaries

have been labelled by phoneticians in every sentence of the TIMIT corpus. We used the Tsylb2

program [126] that automatically syllabifies phonetic transcriptions [127] to merge these

sequences of phonemes into sequences of syllables according to English grammar rules, and

thus determine the (transcription-derived) syllable boundary times ft�i g
ns
1

for each sentence.

The syllable midpoints were the set t ¼ ftig
nt
1

obtained by averaging successive pairs of syllable

boundaries,

ti ¼ ðt
�

i þ t
�

iþ1
Þ=2; i ¼ 1; . . . ; ns � 1≕nt:

4.4.3 Comparing model- and phoneme-derived syllable boundaries. To compare the

sets m and t for each sentence, we used a recursively-computed point-process metric [65]. This

metric is defined by

dVP;tðm; tÞ ¼ min
fm¼s1 ;s2 ;...;sl¼tg

Sl
1
Cðsi; siþ1Þ;

where τ is a defining timescale, and m, t, and each si ¼ fsi
1
; . . . ; sinig are series of boundary

times, with si and si+1 differing by at most one boundary (which can be altered, added, or

removed). The “cost” of each “move” in the chain of (series of) boundary times s1, s2,. . ., s1 is
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given by

Cðsi; siþ1Þ ¼

jsil � s
iþ1
m j=t; max� j ¼ 1; . . . ; ni

k ¼ 1; . . . ; niþ1

� jsij � s
iþ1
k j < t;

1; otherwise:

8
<

:

In other words, the cost of moving one boundary by a distance less than τ is less than 1, while

the costs of shifting a boundary by τ or more, adding a boundary, and removing a boundary

are all 1. It is helpful to note that

lim
t!1

dVP;tðm; tÞ ¼ jnm � ntj; lim
t!0

dVP;tðm; tÞ ¼ nm þ nt:

Since dVP,τ(m,t) as defined above scales with max(nm,nt), we normalized this distance by

the number of moves that cost less than 1, and the n log-transform it, defining

DVP;t m; tð Þ ¼ log VP;tðm; tÞ
#fŝijCðŝi� 1; ŝiÞ < 1g

� �

;

where the sequence fm ¼ ŝ1; . . . ; ŝ l ¼ tg realizes the minimum defining DVP,τ(m,t). Thus,

DVP,τ(m,t)< 0 if each boundary in m corresponds to a distinct boundary in t shifted by less

than or equal to τ, and all other things being equal, this normalized distance penalizes both

missed and extra model-derived syllable boundaries. We used a timescale of τ = 50 ms.

4.4.4 Comparing segmentation across models. To “optimize” the thresholding process

for each model, we chose the pair of values from the sets ws = {25, 30, . . ., 75} and rthresh = {1/3,

.4, .45, . . ., .6, 2/3} that minimized the minimum (over input channels and gains) of the mean

of DVP,50 for 40 randomly chosen sentences. We then analyzed the distribution of DVP,50 at

these model-specific “optimal” values of ws and rthresh. The distribution of DVP,50 for each

model was determined by the Kolmogorov-Smirnov test to be normal, so we compared DVP,50

across models, sub-bands, gains, and sentences by running a 4-way ANOVA. All effects were

significant, and post-hoc tests for sub-bands and gains were run to identify the optimal gain

and sub-band across models (S4 Fig). We then compared DVP,50 values from simulations with

inputs at this gain and sub-band extracted from 1000 sentences. After again “optimizing” ws
and rthresh for each model, we ran a 2-way ANOVA with sentence and model as grouping vari-

ables; post-hoc tests are shown in S4 Fig.

4.4.5 Phoneme distributions of model boundaries. To determine the phoneme distribu-

tions of model boundaries, we used the phonemic transcriptions from the TIMIT corpus. The

time of each model-derived boundary was compared to the set of onset and offset times of

phonemes to determine the identity of the phoneme at boundary occurrence. For each simula-

tion, we constructed a histogram over all phonemes in the TIMIT corpus; we then combined

the histograms across simulations, and multiplied them by a matrix whose rows were indicator

functions for 7 different phoneme classes—stops, affricates, fricatives, nasals, semivowels and

glides, vowels, and other, a category which included pauses. We performed the same proce-

dure for the set of mid-syllable times for each sentence we used in the corpus to obtain the

phoneme distribution at mid-syllable.

4.5 Spike-triggered input pulses

To explore the buildup of outward current and delay of subsequent spiking induced by strong

forcing, we probed each model with a single spike-triggered pulse. These pulses were triggered

by the first spike after a transient interval of 2000 ms, had a pulse duration of 50 ms, and had a

PLOS COMPUTATIONAL BIOLOGY Differential contributions of inhibitory currents to speech segmentation via phase-locking

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008783 April 14, 2021 29 / 37

https://doi.org/10.1371/journal.pcbi.1008783


form given by the summand in Eq (2) with w = 50 and s = 25 (i was 1 and ti was the time of the

triggering spike).

Supporting information

S1 Fig. Dependence of one-to-one phase locking on inhibitory conductance. We multiplied

the conductances gm and ginh in model MIS by factors of 1

3
, 1

2
, 3

4
, 1, and 5

4
, and then computed

plots of PLV for different input frequencies and strengths, as in Fig 3. The bright yellow band

in each figure, representing the region of one-to-one phase-locking, depends on the size of gm

and ginh; both increase from left to right.

(EPS)

S2 Fig. Statistical tests of PLV. PLV depended linearly on input gain (left), as shown by a plot

of the joint density of input gain and PLV, along with the regression line of PLV onto input

gain (white, p< 10−10). In an ANOVA with gain treated as a continuous regressor, the group

effect for channels was highly significant (middle, p< 10−10); lines connect channels that are

not significantly different in post-hoc tests at level α =.05. In a separate ANOVA for results

from simulations with input from 1000 sentences at only the optimal gain and channel, post-

hoc tests showed significant differences between all models at level α =.05.

(EPS)

S3 Fig. Segmentation performance depends on threshold. False-color plots show the mean

DVP,50 for different auditory sub-bands (x-axis) as well as varying input strengths (y-axis) for

all six models, with model-derived boundaries determined by the parameters ws = 75 and

rthresh = 1/3 (left), rthresh = 0.45 (middle left), rthresh = 0.55 (middle right), and rthresh = 2/3. The

model exhibiting the best segmentation performance shifts with the value of rthresh.

(EPS)

S4 Fig. Statistical tests of DVP,50. In an ANOVA treating input gain (left), sub-band center

frequency (middle), and model as categorical variables, all effects were highly significant

(p< 10−10). Lines connect channels that are not significantly different in post-hoc tests at level

α =.05. In a separate ANOVA for results from simulations with input from 1000 sentences at

only the optimal gain and channel, post-hoc tests clustered the models in four groups at level α
=.05 (right).

(EPS)

S5 Fig. Dynamics of inhibitory currents in models MIS and MI. Plots of the pre-spike gating

variables in models MS, MIS, and MI. Top row, plotting the second difference in m-current

activation level of against its first difference reveals that pre-spike activation levels are clustered

along a single branch of the oscillator’s trajectory. Middle row, plots of the relationships

between the pre-spike activation levels of Iinh, Im, and IKSS
in model MIS, revealing a depen-

dence on the phase of oscillations in m-current activation. Bottom, plots of the relationships

between the pre-spike activation levels of Iinh and Im in model MI, again revealing a depen-

dence on the phase of oscillations in m-current activation. (For all plots, light gray curves rep-

resent trajectories with an input pulse; dark gray curves represent trajectories without an input

pulse).

(EPS)

S6 Fig. Varying tonic input to model MS. We altered the tonic input strength gapp to model

MS, and gave periodic pulse inputs of strength gPP = 1 at varying frequencies. For lower levels

of tonic input, phase-locking is closer to one-to-one for low frequency inputs, but many high

frequency input cycles are “missed”; for higher levels of tonic input, phase-locking is one-to-
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one for high frequency inputs, but many-to-one for low frequency inputs.

(EPS)
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