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An improved Ghost-YOLOv5s detection algorithm is proposed in this paper to solve the problems of high computational load and
undesirable recognition rate in the traditional detection methods of pavement diseases. Ghost modules and C3Ghost are in-
troduced into the YOLOv5s network to reduce the FLOPs (floating-point operations) in the feature channel fusion process.
Mosaic data augmentation is also added to improve the feature expression performance. A public road disease dataset is
reconstructed to verify the performance of the proposed method. +e proposed model is trained and deployed to NVIDIA Jetson
Nano for the experiment, and the results show that the average accuracy of the proposed model reaches 88.17%, increased by
4.01%, and the model FPS (frames per second) reaches 12.51, increased by 184% compared with the existing YOLOv5s. Case
studies show that the proposed method satisfies the practical application requirements of pavement disease detection.

1. Introduction

+e detection of pavement disease is an essential part of
traffic road maintenance. Improving the accuracy of disease
identification and speeding up detection has always been an
important research topic in this field. Nature disasters and
car accidents damage asphalt pavements. If the damaged
roads cannot be found and maintained in time, the service
life of the asphalt pavements will be shortened, which will
even cause traffic accidents. Early road inspections were
mainly manual inspections. People collected pavement
disease information through photo sampling and tool
measurement [1, 2]. However, with the rapid development of
road construction, it is difficult to satisfy the detection re-
quirements of urban roads.

To improve the efficiency of detecting pavement diseases,
some researchers proposed the automatic pavement de-
tection method based on computer vision technology.
Foucher et al. proposed a road marking recognition method,
extracted marking elements before identifying connected
components, then extracted them by threshold segmenta-
tion and binarization, and marked elements and compared

with templates to predict road signs. +e dataset used in this
experiment is 280 images of 1920∗1080 urban environment
road scenes. +e proposed method can recognize pedestrian
crossings and arrow directions [3]. However, the proposed
method relies on manually acquired target features and lacks
deep feature information, resulting in a low target recog-
nition rate and poor robustness in complex and changeable
conditions [4, 5].

Pavement disease detection technology based on auto-
matic 3D imaging has recently emerged. Li et al. developed a
method based on deep learning and binocular stereo vision.
In this paper, the camera is fixed on horizontal support at the
vehicle’s rear. +e genetic algorithm DenseNet was used to
classify pavement diseases, and binocular stereo vision and
point cloud processing were used for 3D reconstruction [6].
+e results show high accuracy of depth and area. However,
the rear camera is prone to collide with other cars during the
detection, which is dangerous.

In recent years, pavement disease detection based on
deep learning provides a piece of more convenient infor-
mation for the public security and transportation bureau
[7–9]. Although target detection technology has made
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adequate progress, the performance of pavement disease
detection degrades in occluded conditions. When the target
has been occluded, the target’s appearance information is
lost, which makes the CNN (convolutional neural network)
more likely to drift and eventually lose the target [10–12]. Xia
et al. proposed an improved Kernel correlation filter algo-
rithm to solve this problem. +e paper used the optimized
kernel correlation filter and color histogram model to make
up for the disadvantage of each other. At the same time, the
paper proposed adaptive joint weights to adjust the weight
proportion of the two models [13]. +e results on the OTB-
2013 dataset can express that the algorithm can reduce
occlusion interference in the object tracking process.

In the tracking algorithm, in order to solve the boundary
effect problem caused by using cyclic shift to get training
samples [14–16], Zhang et al. designed a multiple feature
fusion methods, fused handcrafted features and deep features
by adaptive weights, and selected dimensions of channel,
temporal, and spatial to perform the grouping features, to
enhance the relevance between the features and the corre-
lation filter [17]. +is paper conducts extensive experiments
on OTB-2013, OTB-2015, TC128, UAV123, and VOT2016.
+e results show that this algorithm performed better than
other prevailing trackers in precision and success rate.

In the object detection task, the occlusion situation and
super-resolution reconstruction need to be solved [18, 19].
Image super-resolution reconstruction aims to reconstruct a
high-resolution image with rich details from low-resolution
images, usually used to detect small objects with low-res-
olution images. Chen et al. proposed an image super-res-
olution reconstruction method by using an attention
mechanism with a feature map. +e proposed method ex-
tracts useful features from low-resolution images, combines
multiple extracted information with the feature map at-
tention mechanism, and restores more details by adaptively
adjusting the channel. +e results showed that the PSNR
(peak signal to noise ratio) and SSIM (Structural Similarity
Index) of the images obtained by the proposed method had
been improved [20].

Recently, Huawei’s Noah’s Ark Lab proposed a new type
of end-to-end neural network architecture called GhostNet,
which was included in CVPR2020 [21]. +is paper proposed
a Ghost module to generate more feature maps from cheap
operations, which can replace the conventional convolution
operation, thereby reducing the FLOPs of the network.
Experimental results show that the proposed Ghost module
can reduce the computational cost of general convolutional
layers while maintaining similar recognition performance.

A lightweight detection network for embedded devices
based on YOLOv5s is developed to achieve higher detection
speed and accuracy.+emain contributions of this paper are
as follows:

(1) Given the numerous parameters and floating-point
operations in the YOLOv5s model, a method of
replacing the traditional convolutional layer of
YOLOv5s with the Ghost module is proposed, and
noise and mosaic data enhancement are added to
improve the generalization ability of the model.

(2) +is paper reconstructs an urban pavement disease
detection dataset, including five disease types of
manhole covers, cracks, road markings, potholes,
and grid cracks under different interference envi-
ronments, a total of more than 8,400 pieces.

(3) compared with other methods to improve the
model structure. +e comparison experiment
includes YOLOv3, the improved YOLOv3,
YOLOv5s with the new 104×104 feature layer, and
the model of replacing the YOLOv5s backbone
network with ShuffleNetv2 and MobileNetv3.
Finally, Jetson Nano is used as the deploy carrier,
simulating the mobile terminal’s target detection
task in intelligent driving and displaying the
detection results of various models, providing
new ideas for the edge computing method of road
damage detection.

+e rest of this paper is organized as follows. Section 2
presents the principle of YOLOv5, the Ghost module, the
developed YOLOv5 model, and image enhancement. Sec-
tion 3 discusses the model training process and the ex-
perimental results tested on the embedded device. Section 4
concludes the presented work.

2. Methodology

2.1. YOLOv5. +e detection speed is very important for road
disease detection in intelligent driving, and the one-stage
network can output the anchor box and probability of the
category in a short time detection process, such as YOLO
series are suitable for the task of pavement detection. +e
main process of the YOLO series model for pavement
disease detection is shown in Figure 1.

In this paper, we take the YOLOv5 series as the research
object. According to the depth of the network and the width
of the feature map, the YOLOv5 series can be classified into
four types from large to small: YOLOv5x, YOLOv5l,
YOLOv5m, and YOLOv5s. YOLOv5s has the fastest pro-
cessing speed; therefore, in this paper YOLOv5s is selected
for benchmark to minimize the FLOPs and the number of
parameters.

As shown in Figure 2, the YOLOv5s network consists of
focus, Conv, C3, SPP(spatial pyramid pooling), and other
modules. Conv is the basic convolution unit of the YOLOv5
network. It performs two-dimensional convolution, regu-
larization, and activation operations on the input. C3
module consists of several modules of bottleneck residual
structure. +e input of the residual structure module goes
through two convolution layers and then carries out an add
operation with the value to fuse feature information without
increasing the network depth.

+e structure of the focus layer is added to the backbone
to enhance the learning ability of the CNN. As shown in
Figure 3, the main operation of the focus layer is image
slicing. It splits a high-resolution image into multiple low-
resolution images, equivalent to sampling every other col-
umn, and splices into a higher dimension.

2 Computational Intelligence and Neuroscience



2.2. Ghost Module. In the traditional CNN, rich and even
redundant feature maps are usually included to ensure a

comprehensive understanding of the input data. As is shown
in Figure 4, the feature map is taken out by the first con-
volution layer, the map in the left box is a feature map
obtained by the convolution operation, and the right box is a
ghost convolution. It can be found that one feature map can
be obtained by transforming another feature map with a
cheap operation. +erefore, we believe that in the neural
network detection of pavement diseases, not all feature maps
need to be obtained by convolution operations, and “Ghost
feature maps” can be generated to replace some feature maps
by cheap operation.

We replaced the original traditional convolution and
traditional convolution operations in C3Ghost and Ghost-
Bottleneck. +e Ghost module is an innovative module
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Figure 1: YOLO series detecting process.
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Figure 2: YOLOv5s structure. It consists of four parts: input, backbone, neck, and prediction.
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Figure 3: Image slicing operation.
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proposed in GhostNet. It can effectively obtain more feature
maps with fewer parameters and calculation amounts.
Unlike other target detection processes, in pavement disease
detection, the feature information after convolution is
grayscale information, leading to the generation of many
repeated feature maps. It also greatly increases FLOPs.

+e current proposed network models often consist of
many convolution operations. Figure 5(a) shows the input and
output results of the convolution layer. Even a 1×1 convolution
layer would occupy considerable memory and FLOPs. We
proposed that the Ghost module replaces the convolutional
layer to solve this problem, as shown in Figure 5(b). +e
network generates feature maps by less traditional convolution

layers and uses generated feature maps to generate new similar
featuremaps by liner operations. Finally, the information in the
two sets of feature maps is combined as output information. In
short, Ghost convolution is divided into three steps: traditional
convolution, liner operation, and feature map stitching.

2.3. Improvement of YOLOv5s Network Architecture Design.
A lightweight pavement disease detection network based on
YOLOv5s for Jetson Nano is proposed to achieve car de-
tection accuracy and speed. We named it Ghost-YOLOv5s.
Figure 6 shows the schematic diagram of the Ghost-
YOLOv5s structure. Each solid rectangle represents a layer.

Traditional convolution Ghost convolution

Figure 4: Output feature map comparison.
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Figure 5: An illustration of the convolutional layer and the Ghost module for outputting the same number of feature maps.Φ represents the
liner operation. (a) +e convolutional layer. (b) +e Ghost module.
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Each number represents this layer’s length, width, and the
dimension of the feature map output.

Besides, we verified the advantages of the Ghost module
with the following data. Assume input data X ∈ Rc×h×w,
where c, h, w are the number of input channels, the height,
and width of the data, respectively, and the operation of an
arbitrary convolution layer for generating n feature maps
can be formulated as follows:

Y � X ∗ f + b, (1)

where ∗ is the convolution operation; b is the
bias; Y ∈ Rn×h′×w′ is the output feature maps; n, h′, w′ are the
number of output channels, the height, and width of the
output data, respectively; f ∈ Rc×k×k×n is the convolution
filter in this layer; and k × k is the kernel size of convolution
filter f. +erefore, the required number of FLOPs can be
calculated as n∙h′∙w′∙c∙k∙k (the bias term is omitted for
simplicity), which is often over 105 with the number of filters
n and the channel number c as 256. According to equation
(1), the operation of the Ghost module for generating m

feature maps can be formulated as follows:

Y′ � X ∗ f′, (2)

where f′ ∈ Rc×k×k×m is the filters (m≤ n), and to keep the
spatial size(h′andw′) of the output maps consistent, the
filter size, stride, and padding are the same as those in the
contradiction convolution. +en, the feature map of each
channel of Y′ ∈ Rm×h′×w′ uses the φi operation to generate
several Ghost maps. We assume that the channel number of
the feature map is m, the number of transformations is s, and
the number of new feature maps finally obtained is n � m∙s.
+ere are one identity mapping and m∙(s − 1) � n/s∙(s − 1)

linear operations, and the average kernel size per linear
operation is d × d.

Above this, the speed-up ratio of replacing the tradi-
tional convolution with the Ghost module is as follows:

r �
n∙h′∙w′∙c∙k∙k

n/s∙h′∙w′∙c∙k∙k + (s − 1)∙n/s∙h′∙w′∙d∙d

�
c∙k∙k

1/s∙c∙k∙k + s − 1/s∙d∙d
≈

s∙c
s + c − 1

≈ s,

(3)

where the value of d is close to the value of k; similarly, the
compression ratio can be calculated as follows:

rc �
n∙c∙k∙k

n/s∙c∙k∙k + (s − 1)∙n/s∙d∙d

�
c∙k∙k

1/s∙c∙k∙k + s − 1/s∙d∙d
≈

s∙c
s + c − 1

≈ s.

(4)

According to equation (4), it can be concluded that the
FLOPs of the ordinary convolution are approximately s

times of the Ghost module, and the calculation of network
parameters is also close to s. +e depth and width multiple is
used to control the depth and width of the YOLOv5 network,
which are 0.33 and 0.5, respectively. +e Ghost Module, as
the convolutional layer of the whole network, can achieve
faster detection speed while maintaining depth to meet the
requirements required to run on Jetson Nano.

+e specific structures of Ghost module, GhostBottle-
neck, and C3Ghost are designed as shown in Figure 7. +e
flowchart of Ghost module is shown in Figure 7(a), and the
GhostBottleneck consists of several Ghost modules and
several liner operations, as shown in Figure 7(d), and the
C3Ghost is used to replace the bottleneck module in the C3
module. +e new structure can reduce computational costs
and compress the network size.

2.4. Model Accuracy Improvement. In this paper, the Ghost
Module can reduce model parameters and FLOPs, and data
augmentation is used to improve the detection accuracy of
Ghost-YOLOv5s. In this study, we use a self-made dataset,
and its basic sample is from urban roads (labeled) in Jiangsu
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320,320,12
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Figure 6: Ghost-YOLOv5s network structure.
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Province. +ere are 8470 images in total, corresponding to
6830 label files. LabelMe was used to draw polygons for
pavement diseases. After that, the XML file, including the
road disease’s position information, is generated through the
python program. +e training set contains 6353 images, and

the validation set contains 2117 images. It contains five
categories: abnormal manholes, cracks, faded markings, net
cracks, and potholes. Figure 8 shows normal sampling
images affected by Gaussian noise, salt and pepper noise,
excessive illumination, and weak light.
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Concat

Liner Operation

h×w×c1

h×w×c2/2 h×w×c2/2

h×w×c2/2

h×w×c2

(a)

Ghost Module

Ghost Module

add

h×w×c2/2

h×w×c1

h×w×c1

h×w×c2

h×w×c2

(b)

Ghost Module

Ghost Module

add

Liner Operation

h×w×c1

h×w×c1

h×w×c2/2

h×w×c2/2

h×w×c2

h×w×c2

(c)

TraditionConv
(1×1×c2/2)

N×
GhostBottleneck

Concat

h×w×c1

h×w×c2/2 h×w×c2/2

h×w×c2/2

h×w×c2

h×w×c2

TraditionConv
(1×1×c2/2)

TraditionConv
(1×1×c2)

(d)

Figure 7: GhostBottleneck and C3Ghost. (a) Ghost module. (b) GhostBottleneck (stride� 1). (c) GhostBottleneck (stride� 2). (d) C3Ghost.

Figure 8: Partial sampling pictures.
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2.5. Mosaic Data Augmentation. As shown in Figure 9, the
mosaic operation randomly selects four images and com-
bines them with random cropping and stitching. +e ad-
vantage of the mosaic is that all target features of the original
images are preserved, and the information of local targets in
the dataset is enriched through random stitching and
cropping.

3. Experimental Procedure

3.1. Training Process. In this paper, the training process of
the proposed model is run under the PyTorch framework
and Linux operating system. +e GPU is NVIDIA GeForce
RTX2080Ti, and the CPU is Intel Xeon E5-2620v4. +e
software environment is CUDA 11, CUDNN 7.6, and Py-
thon 3.8.

+e frozen training method is used for model training to
accelerate the convergence of the network. +e training
iteration is summarized 250 times, and the model is saved
once to select the optimal model. 50% of the model weights
are frozen for the first 100 times, and the initial learning rate
of training is 0.001. After unfreezing the model, reduce the
learning rate to 10% so that the network converges faster and
reduces the computational burden. +e specific process is
shown in Table 1.

Figure 10 is the change chart of each indicator during the
training of Ghost-YOLOv5s proposed in this paper.
Figure 10(a) is the process that the three loss functions tend
to converge gradually after iterations. +e dataset has five
pavement disease types, and the loss value of the category is
close to 0 after 100 iterations. Figure 10(b) is the training
curve of the recall rate, Figure 10(c) is the variation curve of

Figure 9: Mosaic data augmentation.
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the model precision rate, and Figure 10(d) is the curve of the
average precision of the model.

From Figures 10(a)-10(c), the recall rate of the model is
stable at 92.771%, the precision is stable at 97.213%, and the

mean average precision is stable at 96.005%. From the
performance test results of each data in Figure 8, it can be
concluded that the proposed Ghost-YOLOv5s network
model is ideal in the training phase.

Table 1: Training process.

Algorithm 1. training of Ghost-YOLOv5s
Input: Training set D � (x(n), y(n))N, validation set V, learning rate α, momentum m, regularization factor λ, number of network layers L,
number of neurons Ml, 1≤ l≤L, and model training parameters N1, N2 . . . Nn (e.g., N1 � 10, N2 � 30).
(1) Initialize the network parameters using Gaussian.
(2) Randomly sort the samples of the training set;
//Train the Ghost-YOLOv5s Network

(3) for epoch ∈ e do
(4) for n ∈ batch do
(5) Pick samples (x(n), y(n)) from the training set D;
(6) Feedforward computes the layer input z(l) and activation value a(l) for each layer until the next layer.
(7) Backpropagation calculates the error δ(l) for each layer.

//Calculate the derivative of each layer
(8) ∀l, zL(y(n), y(n))/zw(l) � δ(l)(a(l− 1))T;
(9) ∀l, zL(y(n), y(n))/zb(l) � δ(l);

//Update parameters
(10) W(l)←w(l) − α(δ(l)(a(l− 1))T + λW(l));
(11) b(l)←b(l) − αδ(l);
(12) end for
(13) end for
Output: the final converged whole model.
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Figure 10: (a) Loss change process curve of Ghost-YOLOv5s. (b) Recall change process curve of Ghost-YOLOv5s. (c) Precision change
process curve of Ghost-YOLOv5s. (d) mAP change process curve of Ghost-YOLOv5s.
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3.2. Embedded Device Experiment. After the model training
is completed, the model is embedded into Jetson Nano,
which includes multiple hardware processing units such as
GPU and a supporting tool development environment.
Figure 11 simulates the real-time detection process in the
car, 1 is the detection result displayed in real time, and 2 is
the human-computer interaction interface, which includes
three operating modes:

(1) Detecting pictures: detecting the city road pictures at
the specified location in the system and saving the
detection results in the system folder.

(2) Detection video: detect the video of the road when
the vehicle is running and save the detection results.

(3) Real-time detection: perform real-time detection on
the road in front of the vehicle and save the detection
results in the specified folder. 3 is the NVIDIA Jetson
Nano, which simulates the onboard processor, and 4
is the input device, which is used for debugging the
program.

+e backbone network of YOLOv5s is replaced with the
ShuffleNetv2 andMobileNetv3 network models to show that
the proposed model has better detection performance and is
more suitable for embedded devices. Compared with the
rapidity in time, the target recognition performance is
compared with the predicted target’s recall rate, recognition
rate, and average precision. In addition, to verify the higher
detection performance of the newly proposed YOLOv5s
model, YOLOv3 and improved YOLOv3 models are added,
and all models use the same training set and test set to
conduct comparative experiments.YOLOv5s is the smallest
version of YOLOv5, which requires less computation and is

beneficial to the operation of embedded devices. As can be
seen from Table 2, compared with YOLOv3, YOLOv5s has
improved performance in terms of parameter quantity,
floating-point operations, preprocessing speed, and infer-
ence speed. +e model Ghost-YOLOv5s proposed in this
paper has a preprocessing time of 2.6milliseconds, an in-
ference time of 72milliseconds per image, and an FPS of
12.51 frames per second (NMS is the postprocessing
method), and the detection speed is faster than othermodels.
+e amount of parameters is 2.104M, and the number of
floating-point operations is 2.2G. Compared with the
prototype, the number of parameters is reduced by 4.796M,
the number of floating-point operations is reduced by
14.3 G, and the number of frames processed per second is
2.84 times that of the prototype. After Ghost-YOLOv5s
converts the convolution operation into a linear operation, it
reduces the parameters by 4.8M and the memory access
amount, making the inference speed on the CPU 28% faster.

Figure 12 is a part of the test results tested on the Jetson
Nano, including potholes, cracks, net, abnormal manholes,
and faded markings. In Figure 12, the blue target box in-
dicates that the manhole cover is uneven, the red target box
indicates that the mark is faded, the green target box in-
dicates the pothole, the purple target box indicates the grid
crack, and the yellow target box indicates the crack. +e
prediction type and value are displayed on the target box,
and the value represents the confidence of the prediction
type.+e test results show that the algorithm can distinguish
five types of diseases, and there is no missed or false de-
tection under multiobjective.

+e recognition test results of the model are shown in
Table 3. +e YOLOv3+Four scale layers add a 104×104

1

4

3

2

Figure 11: Jetson Nano test chart. 1. Test results; 2. Running interface; 3. Jetson Nano; 4. External keyboard.

Table 2: Comparison of different model performance metrics.

Model Pre-T (ms) Inference (ms) NMS (ms) FPS Parameter (M) FLOPs (G)
YOLOv3 4.0 311 388 3.2 40.585 24.5
YOLOv3 + Four scale 4.0 331 388 3.0 55.792 33.7
YOLOv5s 2.7 223 301 4.4 6.900 16.5
YOLOv5s +Ghostbackbone 2.7 128 301 7.7 4.866 9.5
YOLOv5s + ShuffleNetv2 2.7 109 248 9.0 0.811 1.6
YOLOv5s +MobileNetv3 2.7 92 231 10.6 1.417 0.8
Our Ghost-YOLOv5s 2.6 72 301 12.5 2.104 2.2
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feature layer based on the YOLOv3 structure, and the av-
erage precision is increased by 1.13% while the number of
floating-point operations increases 9.2G, which does not
meet the speed requirements of this paper’s pavement

disease detection system. +e mosaic data enhancement
method can improve mAP by about 0.55% without affecting
the detection speed. Replacing the backbone network of
YOLOv5s with GhostNet increases the average precision by

(a) (b) (c) (d)

(e)

Figure 12: Detect results. (a) Net. (b) Manhole. (c) Marking. (d) Crack. (e) Pothole.

Table 3: Comparison of different model performance metrics.

Model Recall/% Accuracy/% mAP/%
YOLOv3 51.43 82.16 73.93
YOLOv3 + Four scale layers 52.86 83.74 75.06 (73.93 + 1.13)
YOLOv5s 72.31 92.31 84.77
ShuffleNetv2 69.92 82.57 77.48
MobileNetv3 71.62 81.45 79.35
YOLOv5s +Mosaic 72.42 92.94 85.32 (84.77 + 0.55)
YOLOv5s +Ghost_backbone 73.35 92.79 85.93 (84.77 + 1.16)
YOLOv5s +Ghost_backbone +Mosaic 73.38 93.17 86.44 (84.77 + 1.67)
YOLOv5s + ShuffleNetv2 73.27 92.58 85.30 (84.77 + 0.53)
YOLOv5s + ShuffleNetv2 +Mosaic 73.44 93.21 85.71 (84.77 + 0.94)
YOLOv5s +Mobilenetv3 74.08 93.01 85.88 (84.77 + 1.11)
YOLOv5s +Mobilenetv3 +Mosaic 74.56 93.41 86.29 (84.77 + 1.52)
Our Ghost-YOLOv5s 76.39 95.18 87.69 (84.77 + 2.92)
Our Ghost-YOLOv5s +Mosaic 76.97 95.56 88.17 (84.77 + 3.40)
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1.16%. Experiments are conducted on the proposed methods
of SOTA, ShuffleNetv2, and MobileNetv3 to illustrate the
performance advantage of the proposed method. +e mAP
of the Ghost-YOLOv5s proposed in this paper is 10.69%
higher than ShuffleNetv2 and 8.82% higher than
MobileNetv3.

Compared with replacing the backbone network with
ShuffleNetv2 and MobileNetv3, its average precision in-
creases by 0.63% and 0.05%, respectively. Similarly, when
replacing the backbone network and all convolutional layers
in the network with Ghost convolutional layers, the average
precision is 2.92% higher than that of the YOLOv5s pro-
totype. Compared with the improved YOLOv5s model,
whose backbone network is ShuffleNetv2 and MobileNetv3,
the FPS of the model proposed in this paper is higher, and
the mAP is also improved by 2.39% and 1.81%.

Since the urban road image itself is dominated by gray
pixel values, it is more likely to generate redundant infor-
mation and lack target feature information after the output
of the convolution layer. +e linear operation of the Ghost
convolution layer can not only avoid the elimination of
effective information, but it can also increase the feature
information and improve the model’s generalization.

Compared with the YOLOv5s algorithm, the improve-
ment proposed in this paper not only reduces the model size
and computation but also improves the average precision,
which improves the cost performance of the model and is
suitable for processors with insufficient computing power.

4. Conclusion

+is paper proposes an improved YOLOv5s pavement
disease detection algorithm, and a real-world urban pave-
ment disease dataset is created, which addresses the chal-
lenges of applying YOLOv5 in object detection. +e main
conclusions are as follows:

(1) +e traditional convolution layer is replaced with the
Ghost module, which reduces the number of float-
ing-point operations and memory access of the
model and speeds up the model inference.

(2) +e detection performance of the YOLOv5 is im-
proved by mosaic data enhancement and adding
noise.

(3) Experiments are carried out on Jetson Nano to
simulate the use of embedded devices for pavement
disease detection on urban roads. +e proposed
algorithm compresses the number of parameters and
improves the inference efficiency while maintaining
the detection performance compared with the tra-
ditional lightweight network.

+e experimental results show that the proposed algo-
rithm has lower computation and higher detection accuracy
and satisfies the practical application requirements of
pavement disease detection. +e proposed method has
strong applicability and achieves excellent detection per-
formance on Jetson Nano, reducing the platform storage and
computation requirements and having higher detection

performance than existingmodels. Future work will focus on
improving the accuracy of crack detection and refining the
presented algorithm and methodologies in real applications.
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