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Periodontal disease (PD) is a chronic, progressive polymicrobial disease that induces a
strong host immune response. Culture-independent methods, such as next-generation
sequencing (NGS) of bacteria 16S amplicon and shotgun metagenomic libraries, have
greatly expanded our understanding of PD biodiversity, identified novel PD microbial
associations, and shown that PD biodiversity increases with pocket depth. NGS
studies have also found PD communities to be highly host-specific in terms of both
biodiversity and the response of microbial communities to periodontal treatment. As
with most microbiome work, the majority of PD microbiome studies use standard
data normalization procedures that do not account for the compositional nature of
NGS microbiome data. Here, we apply recently developed compositional data analysis
(CoDA) approaches and software tools to reanalyze multiomics (16S, metagenomics,
and metabolomics) data generated from previously published periodontal disease
studies. CoDA methods, such as centered log-ratio (clr) transformation, compensate for
the compositional nature of these data, which can not only remove spurious correlations
but also allows for the identification of novel associations between microbial features and
disease conditions. We validated many of the studies’ original findings, but also identified
new features associated with periodontal disease, including the genera Schwartzia
and Aerococcus and the cytokine C-reactive protein (CRP). Furthermore, our network
analysis revealed a lower connectivity among taxa in deeper periodontal pockets,
potentially indicative of a more “random” microbiome. Our findings illustrate the utility
of CoDA techniques in multiomics compositional data analysis of the oral microbiome.

Keywords: periodontal disease, CLR, compositional data analysis, microbiome, oral microbiome, C-reactive
protein

INTRODUCTION

Periodontal disease (PD) manifests as bacterial biofilms (plaque) that lead to gum inflammation,
recession, and, in later stages, degradation of the bone and tooth loss. Despite the prevalence of the
disease, which affects over 45% of United States adults, the precise role of the oral microbiome
in the progression of PD remains elusive (Eke et al., 2012). Prior to the development of next-
generation sequencing (NGS) technologies, a cluster of three species deemed the “red complex,”
consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, was found
to be associated with the PD clinical factors gum pocket depth and bleeding (Socransky et al., 1998).
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While some individual species of the oral microbiome
contributing to PD, such as the members of the red complex,
have been studied extensively (Lamont and Jenkinson, 1998), the
presence of these specific species is not enough to explain the
occurrence of PD (Ximénez-Fyvie et al., 2000). NGS technologies
have revealed greater diversity of the oral microbiome and a
complex relationship between microbiome composition and
periodontal disease states, including an association between
increasing microbial diversity and pocket depth (Kroes et al.,
1999; Paster et al., 2001; Faveri et al., 2008; Griffen et al., 2012).
Analysis of periodontal disease metagenomes has also revealed
a novel bacterium strongly associated with the red complex
and periodontal disease (Torres et al., 2019). Furthermore,
high inter-patient diversity of the oral microbiome complicates
deciphering the relationship between periodontal treatments or
changes in disease state on the associated microbiome (Kumar
et al., 2006; Schwarzberg et al., 2014; Califf et al., 2017).

While NGS technologies illuminate a great deal of information
about the oral microbiome, most microbiome analyses ignore the
compositional structure of NGS microbiome data, which presents
problems in statistical and biological interpretation. Microbiome
data are compositional for two main reasons. First, sequencing
only captures a proportion of the microbes in a sample, so the
counts of taxa in each sample are relative rather than absolute.
As the measurement of one taxon increases, the measurement
of another taxon must decrease regardless of whether its
absolute abundance is actually lower. Second, as the count total
obtained in a run of NGS sequencing is capped by sequencing
depth limitations, each sample size is different, rendering
the counts of taxa between samples incomparable. Common
normalization methods for microbiome data, such as rarefaction,
transcripts per million, and library size normalizations, attempt
to make samples with different library sizes comparable, but
generate proportional data still constrained by its relative nature
(Gloor et al., 2017). Metabolomics, another data type that is
commonly used in conjunction with microbiome analysis, is also
relative in nature and therefore compositional. Furthermore, the
integration of multiomics data, or different “omics” datasets like
proteomics, metabolomics, and metagenomics, from the same
sample is challenging due to the different scales with which these
data are measured.

Most statistical tests assume that the sample data exist in
real space, where Euclidian geometry and distance formulas
can be used to describe the distance between points. However,
compositional data exist in a space known as the simplex where
dimensions are arbitrary and values are subject to spurious
correlations (Aitchison, 1982; Gloor et al., 2017). Compositional
data analysis (CoDA) approaches have been developed to deal
with these constraints of compositional data. One method
gaining traction is the centered log-ratio (clr) transformation,
which recasts relative count data with respect to the sample’s
geometric mean and creates scale-invariant data in Euclidian
space where the use of multivariate statistical methods is
valid (Gloor et al., 2017; Quinn et al., 2018). We recently
showed that analyzing clr-transformed compositional datasets
can reveal novel relationships, allow better discrimination
between variables, and facilitate the integration of multiomics

16S, internal transcribed spacer (ITS), and metabolomic datasets
(Sisk-Hackworth and Kelley, 2020).

In this work, we applied CoDA approaches, namely, clr
transformation prior to standard methods such as non-metric
multidimensional scaling (NMDS) ordination, Spearman’s
correlation, multiomics structure correlation, beta dispersion,
random forest, and network analysis, as well as the log-ratio
balance method used in the R package selbal (Rivera-Pinto et al.,
2018), to 16S, metagenomic, cytokine, and metabolomic datasets
from prior studies of patients with periodontal disease before
and after treatments. By reanalyzing these data with a CoDA
approach, we integrated these multiomics datasets to reveal
patterns and correlations between the disease state, microbes,
metabolites, and cytokines, in addition to the relationships
between community structure and disease state not identified
with standard normalization methods.

MATERIALS AND METHODS

Study Descriptions
This study incorporated data from two separate studies.
The standard periodontal treatment (PT) study consisted of
patients with periodontal disease and investigated the biofilms
of periodontal pockets through 16S sequences, metagenomic
sequences, and serum cytokine levels before and after standard
periodontal treatments (Schwarzberg et al., 2014; Delange et al.,
2018; Vijay Kumar et al., 2018). A total of 21 males and 38 females
with an average age of 29 years were recruited from an American
Indian/Alaska Native population in Southern California for the
PT study. Eight patients had mild periodontitis (pocket depth less
than 3 mm), 40 had moderate periodontitis (3–6 mm), and 11
had severe periodontitis (pocket depth over 6 mm). The second
study measured pocket metabolites, 16S sequences, metagenomic
sequences, and the serum cytokine levels of patients before and
after treatments with 0.25% sodium hypochlorite (SHT) (Califf
et al., 2017). For this study, 19 males and 15 females with
an average age of 41 years were recruited among patients of
the Ostrow School of Dentistry at the University of Southern
California. In the SHT study, periodontal pocket depths ranged
from 3 to 12 mm, while pocket depths in the PT ranged from 1.3
to 3.8 mm. The disease classes for the SHT study were separated
into class “A” (pocket depth up to 6 mm), class “B” (pocket
depth between 6 and 8 mm), and class “C” (pocket depth over
8 mm). Further details on the patient populations can be found
in Schwarzberg et al. (2014) and Delange et al. (2018) for the PT
study and in Califf et al. (2017) for the SHT study.

PT Study Data
The original PT data contained 76 samples of 247 16S
operational taxonomic units (OTUs), 144 samples of six cytokine
inflammatory markers, and 23 samples of 3,830 bacterial
metagenomic OTUs. The 16S ribosomal RNA (rRNA) sequences
and the mapping file from in this study are accessible at: http://
dx.doi.org/10.6084/m9.figshare.855613 and http://dx.doi.org/10.
6084/m9.figshare.855612.
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The serum cytokine data, raw reads from the 16S rRNA
sequences, and metagenomic OTUs, classified by Kraken, were
published previously (Delange et al., 2018; Vijay Kumar et al.,
2018; Torres et al., 2019). Details on the study population,
sampling, disease classification, and cytokine identification can
be found in previously published papers (Schwarzberg et al., 2014;
Delange et al., 2018; Vijay Kumar et al., 2018; Torres et al., 2019).

SHT Study Data
The SHT study contained 286 samples of 773 16S OTUs, 215
samples of 914 tandem mass spectrometry (MS/MS) features,
and 24 samples of 3,770 bacterial metagenomic features. The 16S
rRNA sequences used in this study were accessed through the
European Nucleotide Archive under project PRJEB19122 (Califf
et al., 2017). Metabolite data from tandem mass spectrometry
were downloaded from the online MassIVE repository of the
GNPS database under MassIVE ID number MSV000078894.
Metagenomic sequence libraries, generated from 24 subgingival
samples from the SHT study patients and classified via Kraken,
were obtained from Dr. Pedro Torres (Torres et al., 2019).

16S Sequence Analysis
16S sequencing data were analyzed using QIIME 2020.2 (Bolyen
et al., 2019). Sequences were clustered into 100% identity using
v-search OTU clustering (Rognes et al., 2016). Taxonomy was
assigned to sequences using the RDP Classifier (Wang et al.,
2007) retrained on Greengenes 13_5 (McDonald et al., 2012)
via QIIME 2.

Data Reduction and Transformation
Due to computational constraints, the numbers of features in
the original sequencing and metabolomic datasets were reduced
for selbal analysis (see below). The same reduced datasets were
then used for the rest of the analyses. Genera of the 16S bacterial
taxa present in greater than 10% of the samples, the 181 most
abundant metagenomic taxa counts, and the 65 most abundant
metabolites were selected for correlation analysis. For both PT
and SHT studies, samples with a NA value for pocket depth in
the mapping file were removed from all analyses. For the PT data,
only samples with an overall response of improved or worsened
were kept for all the analyses, determined by whether pocket
depth decreased or increased, respectively (Schwarzberg et al.,
2014). For the SHT data, only subgingival samples with disease
class “A” or “C” were used on all analyses, as class “B” contained
too few samples. Disease status was classified by maximum pocket
depth (“A” = up to 6 mm, “B” = 6–8 mm, and “C” = over 8 mm)
(Califf et al., 2017). For both the PT and SHT studies, OTUs
were summed by genus for each sample in each of the 16S and
metagenomic datasets. Zero replacement was performed with
the pseudo-counts method from the R package zCompositions
(Palarea-Albaladejo and Martín-Fernández, 2015) version 1.3.3.
clr transformation was performed separately on all datasets (not
on combined “multiomics” datasets). The clr transformation
was computed for each sample j: each feature in that sample
was divided by the geometric mean of all the feature counts

in the sample, then the natural log of that ratio was taken
(Aitchison, 1982).

clr
(
Xj

)
=

[
ln

(
X1j

g(Xj)

)
, · · ·, ln(

XDj

g(Xj)
)

]
where Xj is the list of features in a sample, g(Xj) is the geometric
mean of the features in sample Xj, X1j is the first feature in a
sample, and XDj is the last feature in a sample of D values. To
guide the reader, we have provided a diagram of the various
datasets and analyses used in this study (Figure 1).

NMDS Ordination Plots
clr-transformed values were used to generate the NMDS
ordination plots with the R package vegan version 2.5.6 using
Euclidean distances (Oksanen et al., 2019). The NMDS plots
were created in R using ggplot2 version 3.2.1c (Wickham,
2016) and the samples were colored and shaped by periodontal
treatment, overall response, and disease class. Permutational
multivariate analysis of variance (PERMANOVA) was performed
for each condition (periodontal treatment, overall response,
and disease class) in every dataset (16S bacteria, cytokine,
metabolites, and bacterial metagenomics) using the R package
vegan with 9,999 permutations, with the p values corrected for
multiple comparisons using the Benjamini–Hochberg method.
The multivariate PERMANOVA test determines whether the
centroid of a sample set is equal among the specified categories
(e.g., periodontal treatment and disease class). The centroid was
estimated using the between-sample Euclidean distances.

Beta Dispersion
Beta dispersion, which measures the distance of each sample
in a category from the centroid of that category, was estimated
with the R package vegan using between-sample Euclidian
distances. The beta dispersion test is a multivariate test used to
determine whether the dispersion of samples is equivalent among
categories. The p values were adjusted using the Benjamini–
Hochberg method.

Spearman’s Correlations
Spearman’s correlations were computed using the R package
psych v1.0.67 (Revelle, 2020). For each periodontal treatment,
overall response, and disease class, we computed the correlations
between genera from four different combined multiomics
datasets: (1) 16S bacteria and cytokine (PT); (2) 16S bacteria,
cytokine, and bacterial metagenomics (PT); (3) bacteria and
metabolite (SHT); and (4) bacteria, metabolite, and bacterial
metagenomics (SHT). The p values were adjusted with the
Bonferroni correction.

Multiomics Integration
We integrated the same datasets as in the Spearman’s correlations
using the DIABLO framework, a method for multiomics
classification and integration, in the mixOmics R package version
6.10.8c (Rohart et al., 2017). We assessed the correlation structure
at the component level for each of the three conditions on
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FIGURE 1 | Schematic of the analyses performed on the centered log-ratio (clr)-transformed periodontal treatment (PT) and sodium hypochlorite (SHT) data. Only
untransformed data were inputted into selbal, and clr-transformed data were used to calculate Spearman’s correlations, non-metric multidimensional scaling
(NMDS), and DIABLO analyses.

their respective dataset: periodontal treatment, overall response,
and disease class.

Microbial Balances
We identified differentially abundant taxa, metabolites,
and cytokines using the R package selbal version 0.1, a
compositional data analysis method that detects microbial
signatures between different sample types by identifying
the smallest number of differentially abundant taxa that is
predictive of sample condition. Raw measurements of cytokines,
metabolites, 16S, and metagenomic taxa summed by genus
were inputted to selbal, as it performs zero handling and
transformation within the package. Although selbal was
designed with microbial balances in mind, the method is valid
for finding balances of other data types, such as metabolite
and cytokine data. Furthermore, selbal only finds balances
for dichotomous and continuous response variables, so we
performed this analysis only for the variables periodontal
treatment (dichotomous), disease class (dichotomous), and
pocket depth (continuous).

Random Forest
A random forest classifier was implemented in Python using
the scikit-learn package (Pedregosa et al., 2012) to identify
cytokines, metabolites, and 16S genera that discriminate between
pocket depth (PT) and disease class (SHT). The metrics used
to analyze the random forest classifier include accuracy, out-
of-bag (OOB) score, mean accuracy, and area under the curve
of the receiver of components (AUC-ROC). For the PT data,
the pocket depth boundary used to distinguish high and
low pocket depths was 2.6 mm. For the SHT study, only
disease classes “A” and “C” were used as disease class “B”
had few samples.

Network Analysis
Using the R package psych, we calculated Pearson’s correlations
for each of the following datasets: 16S OTU, combined 16S
OTU–cytokine for the PT study, and 16S for the SHT study.
Correlations with a magnitude of | 0.55| or greater were
kept; all other values were changed to zero. Using the psych
package, p values were calculated for each pairwise Pearson’s
correlation. The correlation matrix and the p value matrix
were then filtered to contain only significant correlations (those
with a Bonferroni-corrected p value below 0.05). The resulting
adjacency matrix was transformed into an igraph object using
a function from the SpiecEasi library (Kurtz et al., 2015). Using
igraph v.1.2.5 package (Csardi and Nepusz, 2006), a network
was constructed from the adjacency matrix using the OTUs
as nodes and the Pearson’s correlation values as edge weights.
Networks were constructed with nodes scaled according to the
eigen centrality.

For each network, we calculated the number of nodes,
edges, as well as the diameter and transitivity. Nodes represent
individual genera or cytokines and edges are lines representing
relationships between genera or cytokines. The diameter of a
network is the shortest distance between the furthest apart
nodes in a network. Transitivity, ranging from 0 to 1, measures
the average connectedness of a network, with higher values
signifying that a high proportion of nodes are connected to
surrounding nodes, which indicates the presence of tightly
connected clusters of nodes. To identify taxa that occupy
important structures of the network, the R package igraph was
used to calculate the eigenvector centrality (eigen centrality)
and betweenness centrality. Eigen centrality identifies which
highly connected nodes are connected to other highly connected
nodes; these highly connected nodes therefore form most
of the architecture that orders the network. Betweenness
centrality represents the frequency that a node is traversed
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FIGURE 2 | Non-metric multidimensional scaling (NMDS) ordination plots showing clustering of the samples. For the periodontal treatment (PT) study (A–F),
columns correspond to dataset type: 16S, cytokines, and metagenomics are columns 1, 2, and 3, respectively (n = 60, 104, and 22). The top row (A–C) is colored
by periodontal treatment and the second row (D–F) colored by overall response. For the sodium hypochlorite (SHT) study (G–I), columns correspond to dataset
type: 16S, metabolomics, and metagenomics are columns 1, 2, and 3, respectively (n = 209, 153, and 24). Plots are colored by disease class.

when the shortest paths in a network are calculated; high
betweenness centrality indicates nodes that facilitate correlations
between other nodes.

RESULTS

Beta Diversity
We used NMDS ordination to determine the clustering of
samples by condition (periodontal treatment, overall response,
disease class, and pocket depth) for microbes, cytokines, and
metabolites for the PT and SHT study datasets. For the
16S, cytokine, and metagenomic datasets from the PT study,
we did not observe clustering of samples by periodontal
treatment or overall response (Figure 2) or pocket depth
(Supplementary Figure 1). The most distinct separation was
seen in the metabolites for disease class in the SHT study, where
most of the samples in disease class “A” clustered together and
the samples in class “C” split into two groups (Figure 2H); a

similar pattern was observed in the metabolites for pocket depth
(Supplementary Figure 2). PERMANOVA indicated a difference
between periodontal treatment groups for the 16S and cytokine
datasets in the PT study (p −adj = 0.0234 for both comparisons;
Table 1) and for the 16S and metabolite datasets in the SHT study
(p −adj = 0.0.0012 and 0.006, respectively; Table 1). Analysis of
beta dispersion showed no differences between the periodontal
treatment or overall response groups in the PT study or by disease
class in the SHT class (Supplementary Figure 3).

Spearman’s Correlations
clr transformation reduces spurious correlations in
compositional data, such as microbiome and metabolome
data, and allows the application of statistical methods such as
Spearman’s correlation (Quinn and Erb, 2019). We applied
Spearman’s correlation to analyze the relationships between
the multiomics datasets from both the PT and SHT studies.
Most correlations between the combined multiomics datasets
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TABLE 1 | PERMANOVA results (9,999 permutations) for centered log-ratio
(clr)-transformed periodontal treatment (PT) 16S, cytokine, and metagenomic
datasets and sodium hypochlorite (SHT) 16S, metabolite, and
metagenomic datasets.

Dataset Variable R2 p p − adja

PT study

16S Periodontal treatment 0.0343 0.0053 0.0234

Overall response 0.0129 0.7848 0.7848

Cytokine Periodontal treatment 0.0343 0.0078 0.0234

Overall response 0.0175 0.1152 0.1683

Metagenomic Periodontal treatment 0.0687 0.1403 0.1683

Overall response 0.0972 0.0293 0.0586

SHT study

16S Disease class 0.032 0.0004 0.001

Metabolite Disease class 0.028 0.0040 0.006

Metagenomic Disease class 0.044 0.5482 0.548

aBenjamini–Hochberg corrected for multiple comparisons.

were within the same datasets (e.g., bacteria to bacteria), while
few between-omics correlations (e.g., bacteria to cytokines)
were detected. For the PT datasets, no significant (p < 0.05)
bacteria–cytokine correlations were observed, except in the
posttreatment samples that had worsened. In these samples,
Prevotella was strongly correlated (R2 = 0.808) with interleukin
(IL)-1 (Supplementary Figure 4).

In the SHT study, we observed many significant correlations
among bacteria and metabolites when the datasets for samples
of disease classes “A” and “C” were combined; Acinetobacter,
Rubrivivax, and Treponema were positively correlated with six
metabolites, while Desulfovibrio, Paludibacter, Peptococcus, TG5,
and Treponema were negatively correlated with six different
metabolites (Supplementary Figure 5A). In samples that were
only disease class “A,” Olsenella and Atopobium were positively
correlated with two metabolites, while Treponema was negatively
correlated with one metabolite (Supplementary Figure 5B). No
bacterial–metabolite correlations were observed in samples that
were only disease class “C.”

Multiomics Integration
Using DIABLO, we found that the correlation structure between
the 16S and cytokine datasets in the PT study was better when the
overall response (improved or worsened) variable was included
than when the time (pre vs. post) variable was incorporated
(Figures 3A,C). When metagenomic data were included in
the multiomics correlation (excluding samples that did not get
the metagenome sequenced), the correlation structure did not
change dramatically, but there was greater discrimination of
samples by overall response (Figures 3B,D). For the SHT study,
the metabolite and 16S combined datasets strongly distinguished
between disease class, but the correlation structure was low
(Figure 3E). When metagenomic data were included in the
multiomics correlation (excluding samples that did not get
the metagenome sequenced), the correlation structure greatly
increased, but this may be an artifact of the severely reduced
sample size (Figure 3F).

We generated Circos plots showing the correlations between
the “omics” datasets using the DIABLO correlation structure. In
the PT study, IL-6/IL-10 were strongly negatively correlated with
Treponema and Schwartzia (Figure 4A). In the SHT study, TG5
and Treponema were strongly correlated with many unidentified
metabolites (Figure 4B).

Microbial Balances
Using selbal, we analyzed the differentially abundant genera,
cytokines, and metabolites between different conditions.
In the PT study, selbal identified many bacterial genera
predictive of pretreatment samples, Desulfobulbus, Bulleidia,
and Hylemonella, while Abiotrophia and Haemophilus were
more predictive of posttreatment samples (Table 2 and
Supplementary Figure 6A). For cytokines, selbal identified
IL-6 as the most predictive of pretreatment samples and
IL-6/IL-10 as the most predictive of posttreatment samples
(Table 2 and Supplementary Figure 5B). From the metagenomic
dataset, selbal identified that Prevotella predicted pretreatment
and Haemophilus predicted posttreatment samples (Table 2
and Supplementary Figure 5C). In distinguishing overall
response among the datasets, selbal identified Desulfobulbus,
IL-6, and Burkholderia as more predictive in samples that
improved and Peptococcus, C-reactive protein (CRP), and
Coryebacterium as more predictive in samples that worsened
(Table 2 and Supplementary Figures 6D–F). We then analyzed
pre- and posttreatment balances for samples that improved and
samples that worsened. In pretreatment samples that ended up
improving, Campylobacter, Bulleidia, Treponema, IL-10, and
Actinomyces were more relatively abundant, while in improved
samples posttreatment Peptococcus, IL-1I(ˆ2), and Rothia were
relatively abundant (Table 2 and Supplementary Figures 7A–C).
In pretreatment samples that later worsened, TG5, CRP, and
Veillonella were more relatively abundant, while in posttreatment
samples that had worsened, Fusobacterium, IL-6/IL-10, and
Haemophilus were more relatively abundant (Table 2 and
Supplementary Figures 7D–F).

We also used selbal to explore which features’ relative
abundance changed with the sum of all pocket depths. Within
the improved samples, selbal identified Selenomonas and IL-10
as more associated with shallow pocket depths and Filifactor,
IL-1I(ˆ2), and Porphyromonas as more associated with deeper
pocket depths (Table 2 and Supplementary Figures 8A–C).
Within the worsened samples, Filifactor, CRP, and Veillonella
were associated with shallow pocket depths, while Paludibacter,
IL-6/IL-10, and Bacillus were associated with deeper pocket
depths (Table 2 and Supplementary Figures 8D–F).

We also used selbal to determine the metabolite and
microbial balances in the SHT study 16S and metagenomic
datasets for disease class and pocket depth. Both 16S
and metagenomic microbial balances identified the
genus Tanerella as more predictive for disease class
“A” and Fusobacterium as more predictive of disease
class “C” (Table 3 and Supplementary Figures 9A,C).
Metabolite balances were clearly identified, but the specific
metabolites in the balance remain unknown (Table 3 and
Supplementary Figures 8B,E,H). In disease class “A” samples,
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FIGURE 3 | Correlation structure between datasets as determined by the mixOmics DIABLO framework colored by pre- vs. posttreatment for the periodontal
treatment (PT) study (A) bacterial 16S and cytokine datasets and (B) bacterial 16S, cytokine, and metagenomic datasets and also colored by whether the disease
improved or worsened for (C) the bacterial 16S and cytokine datasets and (D) the bacterial 16S, cytokine, and metagenomic datasets. For the sodium hypochlorite
(SHT) study, samples were colored by disease class for (E) the bacterial 16S and metabolic datasets and (F) the bacterial 16S, metabolites, and metagenomic
datasets. Values indicate the between-dataset correlation structure. Ellipses indicate discrimination by the multiomics components between samples by condition.

selbal identified Desulfobulbus and Rothia as more predictive
of shallower pocket depths and SHD-231 and Fusobacterium
as more predictive of deeper pocket depth (Table 3 and
Supplementary Figures 9D,F). For the samples in disease class

“C,” shallow pocket depth was more associated with Lactobacillus
and Parabacteroides, while deeper pocket depth was more
associated with Desulfovibrio and Bacteroides (Table 3 and
Supplementary Figures 9G,I).
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FIGURE 4 | Circos plots show 16S and other features with inter-omics links indicating positive or negative correlations with an R2 greater than 0.5 between (A) the
periodontal treatment (PT) study for the improved and worsened samples with the strongest correlation (0.6) for IL-6/IL-10 positively correlated with Schwartzia and
Treponema and (B) the sodium hypochlorite (SHT) study for correlations with an R2 greater than 0.7 for disease classes “A” and “C.” Bold labels were the strongest
correlations.

TABLE 2 | Summary of the microbial and metabolic balances generated from the periodontal treatment (PT) datasets.

Dataset Variable Denominator Numerator AUC-ROC

16S Periodontal treatment Desulfobulbus, Bulleidia, Hylemonella Abiotrophia, Haemophilus 0.85

Overall response Desulfobulbus Peptococcus 0.76

Periodontal treatment for improved Campylobacter, Bulleidia, Treponema Haemophilus 0.83

Periodontal treatment for worsened TG5 Fusobacterium 0.76

Pocket depth for improved Selenomonas Filifactor 0.73

Pocket depth for worsened Filifactor Paludibacter 0.23

Cytokine Periodontal treatment IL-6 IL-6/IL-10 0.60

Overall response IL-6 CRP 0.66

Periodontal treatment for improved IL-10 IL-1I(ˆ2) 0.66

Periodontal treatment for worsened CRP IL-6/IL-10 0.58

Pocket depth for improved IL-10 IL-1I(ˆ2) 0.42

Pocket depth for worsened CRP IL-6/IL-10 0.06

Metagenomic Periodontal treatment Prevotella Haemophilus 0.86

Overall response Burkholderia Corynebacterium 0.90

Periodontal treatment for improved Actinomyces Rothia 1.00

Periodontal treatment for worsened Veillonella Haemophilus 1.00

Pocket depth for improved Selenomonas Porphyromonas 0.90

Pocket depth for worsened Veillonella Bacillus 0.74

AUC-ROC, area under the curve of the receiver of components.

Random Forest
The random forest machine learning classifier was trained to
determine how accurately pocket depth class and disease class
could be predicted from 16S bacteria OTUs and cytokines for the
PT study or from 16S bacteria and metabolites for the SHT study.
The most important cytokines were IL-10 and CRP (Figure 5B).
The 16S features in the SHT study most predictive of disease
class changed dramatically when metabolite data were included in
the random forest analysis; the only feature recognized as highly
important in both classifiers was Abiotrophia (Figures 5A–C).
The addition of metabolite data to the 16S data increased the
AUC-ROC scores compared with the 16S by itself in the SHT

study (Table 4). However, the inclusion of the cytokine features
did not improve the AUC-ROC scores in the PT study (Table 4).

Network Analysis
In the samples with moderate disease conditions, the
Pearson’s correlation networks had approximately twice as
many edges as those with gingivitis and a small diameter
(Table 5 and Figures 6A,B). Transitivity was not different
between disease conditions, implying that both networks have
similar levels of inter-nodal interactions. In the gingivitis
network, seven taxa formed correlations, of which four had
eigen centralities that were greater than 0.1: Pelomonas,
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TABLE 3 | Summary of the microbial and metabolic balances generated from the sodium hypochlorite (SHT) datasets.

Dataset Variable Denominator Numerator AUC-ROC

16S Disease class Capnocytophaga Porphyromonas 0.77

Pocket depth for class A Desulfobulbus SHD-231 0.04

Pocket depth for class C Lactobacillus Desulfovibrio 0.208

Metabolite Disease class 301.1035645 637.32011211, 554.3658664 0.74

Pocket depth for class A 419.270067 284.2958512 0.127

Pocket depth for class C 245.0374468 494.5759899 0.264

Metagenomic Disease class Tannerella Fusobacterium 0.88

Pocket depth for class A Bacillus Rothia, Fusobacterium 0.892

Pocket depth for class C Parabacteroides Bacteroides 0.848

AUC-ROC, area under the curve of the receiver of components.

FIGURE 5 | Results of random forest Gini importance bar plots. Periodontal treatment (PT) dataset high/low periodontal disease (PD) using (A) 16S and (B) 16S and
cytokines. Sodium hypochlorite (SHT) dataset A/C disease classes (C) 16S and (D) 16S and metabolites. Larger Gini importance indicates that features can resolve
more nodes in decision trees with more confidence.

Thermoanaerobacterium, Aeribacillus, and Ralstonia (Figure 6A
and Supplementary Table 1). The degree distribution of the
gingivitis network did not strictly follow the characteristic
shape of a power law distribution, but it did reveal high
amounts of “low connectivity” and low amounts of “high
connectivity,” while the moderate network had a degree
distribution that followed the power law trend much more
closely (Supplementary Figures 10A,B).

Networks were also constructed for samples that had either
shallow or deep pocket depths. Networks from the samples
with shallow pockets had approximately three times as many
edges as those with deep pockets (Table 5 and Figures 6C,D).
The networks from the samples with shallower pockets had
greater transitivity than those with deep pockets. No cytokines

were highly connected (high eigen centralities) within any
of the networks we constructed (Supplementary Tables 1–
4), suggesting that cytokines were not strongly correlated
with many taxa. The degree distribution for these networks
followed the typical shape of a power law distribution
(Supplementary Figures 10C,D).

For the SHT study, networks were constructed with 16S
data for the samples from class A and class C disease status.
The network structure characteristics were similar between the
two networks describing the microbiomes of patients diagnosed
with different disease classes (Table 4 and Figures 6E,F). The
taxa with the highest eigen centralities in disease class “A” were
Streptobacillus, Aerococcus, and Arthrobacter, while Aerococcus,
Massilia, and Gemella had the highest eigen centralities in
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TABLE 4 | Results of random forest analysis with single and combined multiomics.

Comparisons Accuracy OOB score Mean
accuracy

AUC-ROC

PT study

High vs. low (16S) 0.63 0.65 0.59 0.59

High vs. low
(16S + cytokine)

0.63 0.57 0.59 0.59

SHT study

A vs. C (16S) 0.72 0.69 0.73 0.6

A vs. C
(16S + metabolite)

0.76 0.71 0.74 0.7

OOB score, out-of-bag score; AUC-ROC, area under the curve of the
receiver of components.

TABLE 5 | Summary statistics of the networks generated from the periodontal
treatment (PT) datasets comparing 16S and cytokines based on disease severity
and pocket depth and the sodium hypochlorite (SHT) 16S datasets comparing
oral microbiomes with different disease classes.

Data Condition Vertices Edges Diameter Transitivity

16S Gingivitis 48 32 10 0.49

Moderate 48 69 6 0.45

16S + cytokine Gingivitis 56 42 12 0.43

Moderate 56 78 7 0.42

16S Shallow 48 62 7 0.55

Deep 48 22 6 0.20

16S + cytokine Shallow 56 70 8 0.52

Deep 56 26 6 0.18

16S Class A 86 130 8 0.50

Class C 86 124 8 0.46

class “C” (Supplementary Tables 6,7). The degree distribution
for these networks followed the typical shape of a power law
distribution (Supplementary Figures 10E,F).

DISCUSSION

Our reanalysis, and expanded analysis, of previously published
data from periodontal disease studies using CoDA techniques
improved our ability to detect patterns and correlations in
these data and provided new insights into the relationships of
organisms, cytokines, and metabolites to the disease process.
Analysis of beta-diversity using the clr-transformed datasets
detected distinct clustering not observed in the original studies.
In the SHT study, unlike the original PCoA analysis that saw no
separation of samples by disease class for any “omics” dataset
(Califf et al., 2017), we identified clustering of clr-transformed
data by both disease class and pocket depth in the NMDS
ordination plots, with disease class C and deeper pocket depth
in the left cluster and disease class A and shallower pocket depth
in the right cluster (Figure 2H and Supplementary Figure 2B).
In the PT study, we did not see clustering of the samples
by 16S, cytokine, or metagenomic datasets for any of the
classifications (periodontal treatment, overall response, or pocket
depth) in the NMDS ordination (Figure 2), which concurs with

the findings from the original study (Schwarzberg et al., 2014).
However, PERMANOVA showed differences between the pre-
and posttreatment samples and disease class in the PT and SHT
studies’ 16S data, findings not determined in the original studies
due to the high level of individual variability (Tables 1–3).

The original PT study reported significant relationships
between the combined abundance of P. gingivalis, Fusobacterium
nucleatum, T. forsythia, and T. denticola, which are periodontal
pathogens, and IL-1β (Vijay Kumar et al., 2018). However,
the only significant correlation we observed in the PT study
dataset was between IL-1 and Prevotella. IL-1 has been
associated with periodontal disease severity (Offenbacher
et al., 2007), and Prevotella includes species in the orange
complex associated with periodontal disease (Socransky
et al., 1998). For the SHT study, we observed significant
bacterial–metabolite correlations among the diseased
samples, which the original study did not investigate
(Supplementary Figures 5A,B). Among the samples in all
disease classes, Paludibacter, a bacterial genus associated with
plaque in healthy patients (Chen et al., 2018), was negatively
correlated with two metabolites (Supplementary Figure 5A).
However, selbal identified this genus as more predictive
of worsened samples with high pocket depth (Table 3
and Supplementary Figure 8D), so this genus may not
be “health-associated” as previously thought. Other genera
negatively correlated with metabolites in the samples of all
disease classes were Desulfovibrio, Peptococcus, and TG5
(Supplementary Figure 4A). Desulfovibrio species may stimulate
the immune response (Dzierżewicz et al., 2010) and have
been observed in periodontal pockets (Loubinoux et al.,
2002). Peptococcus and TG5 have been found in the oral
microbiomes of periodontitis patients (Kumar et al., 2005;
Apatzidou et al., 2017). Acinetobacter, which has been previously
associated with periodontitis samples (Souto et al., 2014),
and Rubrivivax were positively correlated with metabolites
(Supplementary Figure 5A). As Rubrivivax is not commonly
associated with periodontal disease, this genus may be a new
route of study. Treponema, a “red complex” species, was
correlated with most metabolites in the samples from all disease
classes (Supplementary Figure 5A) and was correlated with one
metabolite among the samples that were only within disease class
“A” (Supplementary Figure 4B). Also significantly correlated
with metabolites in disease class “A” samples were Olsenella
and Atopobium (Supplementary Figure 5B). In periodontitis
patients, Olsenella species have been detected in abundance
(Chávez de Paz et al., 2004) and Atopobium species have
been associated with periodontal disease (Kumar et al., 2005;
Apatzidou et al., 2017).

The DIABLO multiomics integration uncovered an additional
negative relationship between IL-6/IL-10 and Treponema and
Schwartzia in the PT study and many correlations between
Treponema and TG5 with many metabolites in the SHT study
(Figures 3A,B). Schwartzia, Treponema, and TG5 have been
associated with the biofilms of periodontal disease patients
(Socransky et al., 1998; Camelo-Castillo et al., 2015; Apatzidou
et al., 2017). Additionally, T. denticola has been shown to
degrade IL-1β and IL-6 (Miyamoto et al., 2006), and infection
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FIGURE 6 | Network visualizations. Network plots derived from the periodontal treatment (PT) study patients whose oral status was designated as (A) gingivitis, (B)
moderate, (C) shallow, or (D) deep. For the sodium hypochlorite (SHT) study, network plots for biofilms from patients with (E) class “A” or (F) class “C.” Node size
corresponds to eigen centrality. Dashed lines represent negative correlations and solid lines represent positive correlations.
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of both P. gingivalis and T. denticola synergistically stimulated
the production of IL-6 by macrophage-like cells (Tamai
et al., 2009). Little is known about the association between
Schwartzia, periodontal disease, and the immune response,
so this genus is a potential new target for investigation.
For the SHT study multiomics integration, disease class
was able to distinguish integrated 16S and metabolomic
samples (Figure 3E); disease class was also the only variable
that distinguished between samples in our NMDS analysis,
indicating that this discrimination may be largely due to
metabolite differences.

The orange complex described by Socransky et al. (1998)
as highly intercorrelated and associated with PD includes
species from the genera Prevotella and Fusobacterium, which
were both identified in our selbal analysis of microbial
balances for the PT and SHT datasets. Prevotella relative
abundance predicted pretreatment samples in the PT dataset
and Fusobacterium relative abundance predicted high pocket
depth and posttreatment samples that had worsened (Table 2
and Supplementary Figures 6C, 7D). Fusobacterium was also
predictive of disease class “C” in the SHT study (Table 3 and
Supplementary Figure 9C). This aligns well with the original PT
studies, where Fusobacterium was significantly correlated with
pocket depth and a decrease in Prevotella after treatment was
associated with improvement (Schwarzberg et al., 2014; Califf
et al., 2017). Some Desulfobulbus species likely play a role in the
development of periodontal disease (Camelo-Castillo et al., 2015;
Cross et al., 2018), and selbal identified this genus as predictive
of pretreatment samples, samples that improved, and shallow
pocket depth (Table 2 and Supplementary Figures 6A,D, 9D).
Selbal indicated that Porphyromonas, the genus that includes
a red complex species, was more predictive of deeper pockets
in the PT study and disease class “C” in the SHT study
(Tables 2 and 3 and Supplementary Figures 8C, 9A) and was
found in the original study as correlating with high pocket
depth (Califf et al., 2017). The most commonly identified
cytokine by selbal, IL-6, was found in the original study to
be significantly associated with severe periodontitis (Delange
et al., 2018), while we found that IL-6 levels were predictive
of pretreatment samples and samples that improved (Table 2
and Supplementary Figures 6B,E). Additionally, selbal identified
CRP as predictive of samples that worsened (Table 2 and
Supplementary Figure 6E), which is in contrast to the previous
study which did not find a strong association between CRP
and periodontal disease status (Delange et al., 2018). CRP
was also identified by random forest as one of the two top
important cytokines for predicting pocket depth (Figure 5B).
Random forest also identified Abiotrophia, species of which have
been isolated from dental plaques (Mikkelsen et al., 2000), as
the most stable genus in predicting disease class in the SHT
study 16S data, while in the PT study data, Peptococcus and
Porphyromonas were the most important genera in predicting
pocket depth (Figure 5).

Analysis of correlation networks can provide insights into the
complexity, stability, and function of a microbial community
(Barberán et al., 2012). The most striking disparity in overall
network connectivity occurred in the PT study. The network

analysis found that, for the PT study, networks of 16S and
cytokines for the samples with deep pockets had fewer edges
and lower transitivity (Table 5). Fewer inter-nodal connections
and a lower overall network connectedness indicate a lack of
interdependence of taxa in deeper pockets. Multiple studies have
shown that pocket depth is correlated with greater alpha diversity
and more pathogenic taxa (Christersson et al., 1992; Stoltenberg
et al., 1993; Takeshita et al., 2016). The early stages of periodontal
development involve well-known interactions between bacterial
species (Nyvad and Kilian, 1987; Diaz et al., 2006; Chalmers
et al., 2008), but as biofilms develop and become increasingly
anaerobic, more pathogenic species establish within the biofilm
(Van Winkelhoff et al., 2002; Vieira Colombo et al., 2016). The
fewer connections that we observed in deep pockets could reflect
a more random, or less stable, biofilm in the later stages of
disease. Additionally, the networks constructed from the samples
with shallow pockets had greater transitivity (Table 5), which
implies the presence of more inter-nodal interactions within the
shallow pocket networks and may be indicative of niche filtering,
where similarities rather than differences between species allow
the persistence of species in an environment (Röttjers and
Faust, 2018). Network analysis also revealed that Aerococcus
had a high eigen centrality value in the networks for disease
classes “A” and “C” (Supplementary Tables 5,6). Higher eigen
centralities indicate that nodes are critical for network stability
and may point toward keystone species (Bauer et al., 2010;
Mandakovic et al., 2018). While Aerococcus species have been
found in the biofilms of periodontitis patients (Voropaeva et al.,
2008), but as little is known about the association between
Aerococcus and periodontal disease, this may be an interesting
future avenue of study.

We should note potential effects of the study population
demographics on our data. Most participants from the PT study
had an overweight or obese body mass index, and 37% were
smokers, both of which could affect the microbiome composition
and inflammation levels measured in this study. Additionally,
the PT study participants were American Indian/Alaskan Native,
on average over a decade younger, and had a higher prevalence
of females (66 vs. 44%) than the SHT study participants, so
the differences in the results between the two studies could
be due to effects of ethnicity, aging, or sex on the oral
microbiome and inflammation. Our use of CoDA techniques,
which confirmed many of the prior studies’ results and uncovered
new findings, shows how this approach is a valuable addition
to the current methods of microbiome data analysis for
investigating oral disease. We have shown how CoDA approaches
are especially useful when integrating multiomics due to the
scale-invariance that the clr transformation confers on datasets.
The identification of CRP as predictive of pocket depth and
samples that worsened is a new finding and an important area of
further study. We also identified understudied genera potentially
important in periodontal disease (Schwartzia, Rubrivivax, and
Aerococcus). Furthermore, the ability of unknown metabolites
to discriminate between samples in selbal analyses, and the
associations we determined between metabolites and particular
taxa, highlights the need to study these compounds in the context
of periodontal disease.
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Supplementary Figure 1 | NMDS ordination plots showing clustering of PT
samples by pocket depth. Columns correspond to dataset type; 16S, Cytokine,
and Metagenomic datasets are columns one, two, and three, respectively
(n = 60, 104, and 22).

Supplementary Figure 2 | NMDS ordination plots showing clustering of SHT
samples by pocket depth. Columns correspond to dataset type; 16S, Metabolites,
and Metagenomic datasets are columns one, two, and three, respectively
(n = 209, 153, and 24).

Supplementary Figure 3 | Beta dispersion analysis by periodontal treatment,
response to treatment, and disease class. For the PT study, distance from the
centroid of beta dispersion is shown for samples pre- and post-treatment for (A)
16S bacterial, (B) metabolite, and (C) metagenomic datasets and for response to

treatment for (D) 16S bacterial, (E) metabolite, and (F) metagenomic datasets.
Larger distances indicate samples which are far from the group centroid, small
distances indicate samples which are close to the group centroid. For the SHT
study, distance from the centroid is shown for samples by disease class for (G)
16S bacterial, (H) metabolite, and (I) metagenomic datasets.

Supplementary Figure 4 | Bacterial-cytokine correlation matrix for
post-treatment, worsened samples. All spaces with color are p-adj <0.05. Blue
indicates a positive correlation; Dark orange indicates a negative correlation.

Supplementary Figure 5 | Correlation matrices between comparisons of different
SHT datasets (bacterial 16S-metabolite and bacterial 16S-metagenomic). (A)
Bacterial-metabolite correlations on a combined dataset from all disease classes;
(B) Bacterial-metabolite correlations on disease class “A.” All spaces with color
are p-adj <0.05. Blue indicates a positive correlation, Dark orange indicates a
negative correlation.

Supplementary Figure 6 | Microbial and cytokine balances for PT dataset at
different conditions computed with selbal, where numerator genera are more
relatively abundant than denominator genera for higher balance values. Balances
are shown for samples before and after periodontal treatment for (A) bacterial 16S
data, (B) cytokine, and (C) metagenomic data. Balances are shown for improved
and worsened samples of (D) bacteria 16S data, (E) cytokine, and (F)
metagenomic data.

Supplementary Figure 7 | Microbial and cytokine balances for PT dataset for
improved (A–C) and worsened (D–F) samples computed with selbal. Balances
before and after treatment are shown for samples that improved for (A) bacterial
16S data (B) cytokine, and (C) metagenomic data. Balances before and after
treatment are shown for samples that worsened for (D) bacterial 16S data, (E)
cytokine, and (F) metagenomic data.

Supplementary Figure 8 | Selbal-computed microbial and cytokine balances for
PT dataset associated with the sum of all pocket depths. Balances for improved
samples by pocket depth (response variable) are shown for (A) 16S bacterial, (B)
cytokine, and (C) metagenomic datasets. Balances for worsened samples by
pocket depth are shown for (D) 16S bacterial, (E) cytokine, and (F)
metagenomic datasets.

Supplementary Figure 9 | Selbal-computed balances for SHT dataset for
microbial and metabolite balances by different characteristics. For samples with
disease class either “A” or “C,” balances shown are for (A) 16S bacterial, (B)
metabolite, and (C) metagenomic data. Balances for samples with disease class
“A” associated with pocket depth sum are shown for (D) 16S bacterial, (E)
metabolite, and (F) metagenomic datasets. Balances for disease class “C”
samples associated with pocket depth sum are shown for (G) 16S bacterial, (H)
metabolite, and (I) metagenomic datasets.

Supplementary Figure 10 | Network degree distributions. For the PT study for
networks with OTUs and cytokines, degree distribution of inferred network from
patients who had (A) gingivitis or (B) moderate disease, (C), shallow or (D) deep
pockets. For the SHT study, degree distribution of inferred network from patients
who had class (E) “A” or (F) “C” disease.
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