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Abstract

There are now a rich variety of genomic and genotypic resources available to wheat researchers and breeders. However, the generation of
high-quality and field-relevant phenotyping data which is required to capture the complexities of gene� environment interactions remains
a major bottleneck. Historical datasets from national variety performance trials (NVPT) provide sufficient dimensions, in terms of numbers of
years and locations, to examine phenotypic trends and study gene � environment interactions. Using NVPT for winter wheat varieties
grown in the United Kingdom between 2002 and 2017, we examined temporal trends for eight traits related to yield, adaptation, and grain
quality performance. We show a non-stationary linear trend for yield, grain protein content, Hagberg Falling Number (HFN), and days to
ripening. Our data also show high environmental stability for yield, grain protein content, and specific weight in UK winter wheat varieties
and high environmental sensitivity for HFN. We also show that UK varieties released within this period cluster into four main population
groups. Using the historical NVPT data in a genome-wide association analysis, we uncovered a significant marker-trait association peak on
wheat chromosome 6A spanning the NAM-A1 gene that have been previously associated with early senescence. Together, our results
show the value of utilizing the data routinely collected during national variety evaluation process for examining breeding progress and the
genetic architecture of important traits.
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Introduction
Over the last 3 years, there has been a rapid surge in the develop-
ment of genomic resources for wheat (reviewed in Adamski et al.
2020). This includes a chromosome-scale reference assembly of
the Chinese Spring cultivar (RefSeqv1) and a pan-genome
resource comprised of chromosome and scaffold-level assem-
blies of 15 hexaploid wheat cultivars [International Wheat
Genome Sequencing Consortium (IWGSC) et al. 2018; Walkowiak
et al. 2020]. There is also a wide range of array-based (Axiom-35K,
iSelect 90K, Axiom-660K, and Axiom-820K; Wang et al. 2014;
Winfield et al. 2016; Allen et al. 2017), sequencing-based (e.g.,
DARTSeq, RADSeq) or PCR-based (e.g., KASP, TaqMan, rhAmp;
Semagn et al. 2014; Ayalew et al. 2019) SNP genotyping assays
available to wheat researchers and breeders. There have also
been efforts to resequence different wheat populations either
through reduced-representation sequencing approach like
exome-capture and sequencing (e.g., Jordan et al. 2015; Krasileva
et al. 2017; He et al. 2019) or through whole-genome resequencing
(e.g., Cheng et al. 2019; Scott et al. 2021). This preponderance of
genomics and genotypic data, which are available in open-access
repositories (e.g., EnsemblPlants, CerealsDB; Bolser et al. 2016;
Howe et al. 2020; Wilkinson et al. 2020), now makes it possible to
map traits at high-resolution (e.g., Walkowiak et al. 2020), exam-
ine population diversity at whole-genome levels or in breeding

units (haplotypes: e.g., Brinton et al. 2020; Scott et al. 2021), and
implement genome-assisted breeding schemes using marker-
assisted and/or genomic selection (e.g., Rasheed and Xia 2019;

Sweeney et al. 2019).
Despite these advances, the generation of high-quality and

field-relevant phenotyping data remains a major bottleneck.
Modern phenomics platforms have improved phenotyping

throughput and precision under controlled conditions, but these
do not always capture the environmental effects experienced un-
der real-world farming conditions (Yang et al. 2020). Given cli-
mate change projections of fluctuating radiation, heat, and

precipitation patterns in major wheat-growing areas (including
the United Kingdom; Semenov 2009; Trnka et al. 2019), breeding
for phenotypic stability and understanding complex gene � envi-

ronment interactions is of high priority.
Due to their large scale and multi-environment (years and

locations) design, historical dataset from national variety perfor-
mance trials (NVPT) provides sufficient dimensions, in terms of

years and locations to examine phenotypic trends and study
gene � environment interactions. These historical datasets are,
however, incomplete by design because of, for example, changes
in the number and specific set of varieties trialed and changes in

the field sites used from year to year. Previous studies have
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analyzed NPVT data for wheat and barley in the United Kingdom
(Silvey 1981; Mackay et al. 2011; Looseley et al. 2020) and similar
analyses of historical data have been conducted elsewhere (e.g.,
Crossa et al. 2007; Pozniak et al. 2012; Laidig et al. 2021).

In the United Kingdom, new wheat varieties undergo statutory
tests before they are registered on the National List (NL).
Registered varieties are subsequently introduced (or maintained
on) the UK Recommended List (RL) after undergoing independent
non-statutory NPVT managed by the Agriculture and
Horticulture Development Board (AHDB, formerly Home-Grown
Cereals Authority). The NL serves as variety registry while the RL
is used as a reference by farmers for variety selection. Mackay
et al. (2011) reanalyzed data from the UK NL and RL trials con-
ducted between 1948 and 2007, and found significant yield im-
provement that was mostly attributed to plant breeding. In this
study, we analyzed data from the UK RL NVPT for winter wheat
between 2002 and 2017 and used this to examine temporal trends
in eight yield, adaptation, and grain quality traits. We also dem-
onstrate the usefulness of these NVPT dataset for trait mapping
to uncover loci of breeding importance.

Materials and methods
NVPT datasets
We downloaded result files for the NVPT for winter wheat in the
United Kingdom from 2002 to 2010 and 2012 to 2017 from the
AHDB website containing harvest result for the RLs for cereals
and oilseeds (accessible at: https://ahdb.org.uk/knowledge-li
brary/recommended-lists-for-cereals-and-oilseeds-rl-harvest-
results-archive; Accessed: 2021 December 13). We focused our
study on data for eight traits including yield, adaptation and
grain quality traits. Yield and height data were collected from
treated and untreated trials. The treated trials included manage-
ment for diseases (fungicide spray) while the untreated trials did
not include disease management. Both trials were managed un-
der standard husbandry practices including the application of
plant growth regulator (PGR), herbicide, fertilizer, and pest con-
trol management as recommended by AHDB. Details of the
AHDB RL trial protocol is accessible at: https://ahdb.org.uk/ahdb-
recommended-lists-for-cereals-and-oilseeds-2016-2021
(Accessed: 2021 December 13). Before analyses, we filtered the
dataset to remove observations with unknown locations or from
locations where trials were abandoned. Varieties that were tri-
aled in a single year were also omitted. The nomenclature of vari-
eties, locations, and counties were standardized in cases where
different designation or acronyms were used for the same vari-
ety, location or county across different years. After filtering, the
distribution of the observations obtained for each of the eight tar-
get traits resembles a bell curve suggesting normal distribution
(Supplementary Figure S1).

Germplasm
Data for a total of 168 varieties were used in this study. These in-
clude 133 varieties whose phenotype information was obtained
from the AHDB website as described above. An additional 35 win-
ter wheat varieties released in the United Kingdom before 2002
were included for genotyping using the Axiom-35K array as de-
scribed below. The number of varieties used for each analysis in
this study is detailed in Supplementary Figure S2.

Statistical analyses
We used a two-stage approach to examine the linear trend of
traits from the NVPT data. First, we fitted a linear mixed model

(LMM) to the NVPT data using restricted maximum likelihood es-
timation. The model was implemented using the lme4 package in
R as:

Yijk ¼ lþ vi þ yj þ sjk þ eijk:

Yijk is the historical performance of variety i in year j at
location k. m is the overall mean performance of all varieties, vi is
the effect of variety i, yj is the effect of year j (the calendar year of
the trial harvest) and Sjk is the effect of location k within year j. eijk

is the residual variance arising from factors not accounted for in
the model including variety � year interaction. As our main inter-
est was the performance for each variety, the variety effect was
fitted as fixed factor while the year and site (nested within year)
were fitted as random factors. This is slightly different to the
strategy used by Mackay et al. (2011), which also included calen-
dar year as a fixed factor to account for the long year interval
(1948–2002) examined and changes in trial management system
across these years. We derived estimates for the varieties means
(hereafter referred to as EVM) from the LMM. Second, we used a
linear model to regress the EVM derived from the LMM above
against the year the variety was first entered into the NVPT.

For trait comparison between end-use groups, analysis of vari-
ance followed by post hoc TukeyHSD was used to evaluate and
compare significant difference in EVM of varieties belonging to
different end-use groups. The lstrend function implemented in
the R lsmeans package (Lenth 2016) was used to estimate and
compare slopes of the linear regression between groups. For slope
comparisons between the four end-use groups, the adjusted
P-value is presented based on Tukey’s method of comparison.

We used the Finlay Wilkinson (FW) regression to examine
phenotype stability (Finlay and Wilkinson 1963). The original FW
regression is not best suited for data from incomplete trial design
as the environment means used for normalizing varietal perfor-
mance are biased due to incomplete replication of varieties
across all environments. To circumvent this bias in our analysis,
we used the Bayesian method proposed by Su et al. (2006) and
implemented in the R package FW (Lian and de los Campos 2015).
Only varieties that were trialed in three or more years were used
for this analysis. The mean values for each variety in each year
were used as input. The model was fitted with the Bayesian
“gibbs” method, with 50,000 iterations and 5000 burnIn rate as
suggested for wheat analyses in the FW package paper (Lian and
de los Campos 2015). The FW coefficients are presented as bþ 1
which describes expected change in variety performance per unit
change of the environment effect (Lian and de los Campos 2015).

Genotyping, population structure, and
association analysis
A total of 139 varieties (104 varieties from the NVPT and 35
pre-2002 varieties) were genotyped using the Axiom-35K array
(Allen et al. 2017). We filtered the genotype data to include only
sites with >0.1 minor allele frequencies and no heterozygous
calls (as most loci are expected to be fixed in pure lines). The
markers were also filtered to remove loci with high linkage dis-
equilibrium (R2 > 0.8) within each 20-SNP window using PLINK
1.9 (Chang et al. 2015). This was done to remove biases arising
from high LD linkage blocks containing large numbers of markers
(such as from introgression from wild relatives). These high LD
linkage blocks can bias the contributions of such loci in popula-
tion structure analysis.

To assign physical positions to the Axiom markers, their
sequences were used as queries in BLASTn alignments against
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the IWGSC RefSeqv1.0 assembly [International Wheat Genome
Sequencing Consortium (IWGSC) et al. 2018] as described in
Brinton et al. (2020) and the best hits on each of the three wheat
homoeologous genomes (A, B, and D) were recorded. Of these, the
correct homoeologous chromosome was selected using genetic
mapping information from 13 populations (Gardiner et al. 2019)
where available for each marker. Otherwise, the highest BLASTn
score was used to select the homoeologous chromosome. In case
of conflicting genetic mapping results for the correct chromo-
some between the mapping populations, the most frequent
outcome was used.

Population structure analysis was done using discriminant
analysis of principal component (DAPC) as implemented in the
Adegenet R package (Jombart and Ahmed 2011). For this, the
number of population cluster (k) was determined by kmeans
clustering using a range of k. The k with the minimum Bayesian
Information Criterion and that minimizes overlap between
groups was selected as the optimum k. To increase the accuracy
of grouping, 50 iterations of the kmeans clustering algorithm
were run and the population group to which a variety was most
frequently assigned was selected. Also, the cross-validation
function (xvalDapc) was used to select the optimum number of
principal components to use for DAPC.

We used a KþQ LMM-based model for genome-wide associa-
tion analysis (GWAs) using the GAPIT3 R package (Wang and
Zhang 2021). K represents the kinship matrix describing the relat-
edness between the varieties and Q represents the population
grouping derived from the DAPC analysis described above. A false
discovery rate (FDR) threshold with adjusted P-value below 0.05
was used to select markers with significant association with the
trait of interest.

Results
Estimates from multi-environment trials capture
expected relationship between traits
We analyzed historical data set of the UK RL NVPT from 2002 to
2017. We focused our analyses on six traits of agronomic and eco-
nomic importance: yield, plant height, days to ripening, Hagberg
falling number (HFN; Krupnov and Krupnova 2016), grain protein
content and specific weight. For yield and plant height, we ana-
lyzed data coming from (fungicide) treated and untreated trials.
This results in a final dataset for eight traits. After quality con-
trols (described in Materials and Methods), we retained 52,152
observations for these eight traits from 133 winter wheat varie-
ties (Supplementary Table S1). These 133 varieties were pheno-
typed in at least two years across a combined 162 locations, with
a subset of 95 locations being used for evaluations in two or more

years. Table 1 details the number of varieties phenotyped for
each trait and the number of locations and year-location
combinations used. The trial locations were spread across 43
counties and unitary authorities in England, Wales, Scotland,
and Northern Ireland as shown in Figure 1.

Using a LMM that accounted for variation arising from the dif-
ferent years and locations of the trials, we derived EVM for each
variety for each trait (Supplementary Table S2). Correlation
analysis using the EVM captured expected patterns of relation-
ship between the measured traits (Figure 2). We observed signifi-
cant positive correlations between treated and untreated trials
for height and yield, although the correlation between treated/
untreated trials for height (0.94) was much stronger than for yield
(0.63). HFN and grain protein content were positively correlated
to each other, but negatively correlated to treated yield, treated
plant height and days to ripening.

Examining trait trends
We next examined the temporal pattern across the 15 years of
trials to highlight linear trends in traits due to breeding prog-
ress. For this, we regressed the EVM for each variety on its year
of first entry to the NVPT which is directly related to its year of
release. This regression likely captures temporal pattern of
breeding progress as successive releases of varieties are
expected to outperform previous releases in one or more traits.
We observed linear increase for yield between 2002 and 2017 in
both the treated and untreated trials (Figure 3, A and B). The
rate of yield increase in the untreated trial was significantly
higher than in the treated trials (rate difference ¼ 0.093
tonnes/ha/year, P< 0.0001). Conversely, grain protein content
and HFN showed small but significant decrease over time
(P< 0.001 and 0.03, respectively; Figure 3, C and D). We also
observed a significant delay in days to ripening over the same
period (P¼ 0.004, Figure 3E). Changes in plant height (treated
and untreated) and specific weight were not significant
(P¼ 0.31–0.51, Figure 3, F–H) suggesting stable trends.

UK wheat varieties are classified into four main end-use
groups as described by the UK Flour Millers (www.ukflourmillers.
org; Accessed: 2021 December 13). These include the UK Flour
Groups 1–4, hereafter referred to as UFG1–4. The UFG1 and UFG2
varieties have superior grain quality (grain protein content and
HFN) and are used for breadmaking. UFG3 varieties are often
used for biscuits and cakes, whereas UFG4 varieties usually have
high yield potential but inferior grain quality and are mainly used
for animal feed. As yield and protein content are important
measures for these end-use classifications, we examined how the
temporal trends observed for these traits varied for the different
end-use groups. Expectedly, UFG4 varieties showed higher yield

Table 1 Number of varieties, sites, and years of trials for the UK NVPT between 2002 and 2017

Trait No. of
varietiesa

Trial years per trait Mean trial year
per variety

No. of trial
locationsb

Year � location
combinations

Total
observations

Treated yield 133 15 4 158 410 13,080
Untreated yield 131 15 4 53 124 4,156
Protein content 128 15 4 99 230 7,142
Days to ripening 133 15 4 108 247 7,977
HFN 128 15 4 99 227 7,154
Specific weight 129 15 4 99 231 7,091
Treated height 108 11 4 74 171 3,905
Untreated height 107 11 4 30 75 1,647

a Not all varieties were tested for each trait, and in each year and location.
b Some locations were used in more than one year.
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while the breadmaking varieties (UFG1-2) show higher grain pro-
tein content (Figure 4, A and B). All end-use groups showed a sig-
nificant increasing yield trend across time and the rates of
increase were not significantly different between the end-use

groups (P¼ 0.263–0.885; Figure 4C). UFG2 and UFG4 varieties
showed a significant and comparable decline in grain protein
content over time (Figure 4D) while changes in protein content of
UFG1 and UFG3 varieties were non-significant (Figure 4D).

Figure 1 Distribution of 162 NVPT locations used in this study (2002 and 2017). The number of field sites within each county and unitary authority is
indicated in color.
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Yield, protein content, specific weight, but not
HFN, are stable in UK environments
Using a modified FW regression (Lian and de los Campos 2015)
for measuring genotype � environment interaction, we examined
the stability of yield and end-use quality traits across the trial

years (Figure 5, Supplementary Table S3). Only 95 varieties that
were trialed in 3 or more years were included in this analysis. FW
regression measures the stability of variety performance across
different environments by regressing individual variety trait
means on the environmental effect (Finlay and Wilkinson 1963).
FW regression coefficient close to 1 suggests average varietal sta-
bility in which variety performance is consistent with environ-
ment effect i.e., variety performs poorly in bad environments and
well in good environments. Larger values suggest below average
stability i.e., higher environmental sensitivity.

Yield was stable across years in most UK wheat varieties (re-
gression coefficients close to 1, Figure 5A). Similarly, most of the
varieties examined showed high stability in protein content and
specific weight, with bread-making varieties stably producing
grains with above median protein and specific weights
(Figure 5A). HFN, on the other hand, showed varying FW coeffi-
cients ranging from �0.28 to 6.03. More than 83% of the 95 UK
wheat varieties examined have FW coefficient > 2 for HFN sug-
gesting below-average stability. To illustrate this, Figure 5B shows
the HFN performance of three varieties with different FW coeffi-
cients: KWS_Barrel, Hyperion, and Napier. Napier which has a
FW coefficient of 1.02 consistently showed low HFN values in all
the years it was trialed. On the other hand, Hyperion with the
highest FW co-efficient (6.03), showed extreme HFN phenotypes.
That is, very low HFN value in low-HFN years and very high-HFN
value in high-HFN years suggesting high environmental sensitiv-
ity. KWS_Barrel’s with the lowest FW co-efficient (�0.28) showed
HFN phenotypes that was fairly constant irrespective of the envi-
ronments it was trialed.

Post-2002 UK wheat varieties belong to four
distinct population groups
Using the Axiom35k SNP array (Allen et al. 2017), we genotyped
139 varieties including a subset of those trialed between 2002 and
2017 (104) and additional historic UK wheat cultivars. After

Figure 2 Phenotype correlation between yield, adaptation, and grain
quality traits. EVM were derived for each variety from the NVPT
conducted between 2002 and 2017. Only significant correlations (P< 0.05)
are indicated. Positive and negative correlations are indicated with the
blue and red circles, respectively, with the size and color intensity of the
circles representing the magnitude of the correlation.

Figure 3 Temporal trait trend in UK winter wheat. Scatter plot showing changes in yield in the treated (A) and untreated trial (B), protein content (C),
HFN (D), days to ripening (E), specific weight (F), plant height in treated (G) and untreated (H) trials. Each blue dots represent an individual variety. For
each trait, the EVM for each variety is regressed against the first year of entry in the 2002–2017 trials. The solid line shows the regression line of the
linear model and is colored red if significant (P< 0.05). The shaded region defines the confidence interval. The regression equation is shown within each
plot. The EVM data used for these plots are in Supplementary Table S2.
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Figure 4 Temporal trait trend by end-use groups. (A, B) Violin plots showing distribution for yield (A) and protein content (B) for the different
end-use groups. The solid lines represent the mean of the distribution and the black letters show Tukey statistical comparison between the groups.
Groups that are statistically similar share the same letter. (C, D) Scatter plot showing changes in yield (C) and protein content (D) for each end-use
group of UK winter wheat. Each dot represents a variety while the colors of the dots represent the end-use groups (UK Flour Groups 1–4). For each
trait, the EVM for each variety is regressed against the first year of entry in the 2002–2017 trials. The solid lines are the regression line of the linear
model. The regression line equation for each group is shown. UFG1, UFG2, UFG3, and UFG4 are represented by the red, green, gray and peach dots,
lines and text, respectively.
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quality filtering (described in Materials and Methods), we selected
4039 high-quality markers dataset (Supplementary Table S4)
including 1623, 1841, and 589 markers on the A, B, and D sub-
genomes, respectively (Supplementary Table S5). Using these ge-
notypic data, we examined the population structure within the
UK wheat collection. DAPC analysis revealed four distinct popu-
lation groups (Pop1-4; Figure 6A, Supplementary Table S6). Using
Helium for pedigree visualization (Shaw et al. 2014; Helium pedi-
gree information provided as Supplementary file), we could trace
important parents for three (Pop1, 2, and 4) of the four population
groups. Pop1 contains 20 varieties, of which 16 (80%) have
Cadenza in their pedigree. This is consistent with Cadenza being
an important parent for Pop1. Pop2 comprises 26 varieties, 20
(77%) of which contain Claire in their pedigree. Pop4 includes 32
varieties, 29 (91%) of which trace their pedigree to Robigus,
suggesting Robigus as an important parent for this group
(Figure 6B). Pop3 is the largest group with 61 varieties. We could
not identify a pre-dominant variety parent for this population
group.

Using a subset of 111 varieties with both genotype and
end-use group information (Supplementary Figure S2), we
examined the association between the population groups and
end-use groups (Supplementary Figure S3). The “Claire” (Pop2)
and “Robigus” (Pop4) population groups contain mostly (98%)
UFG3 and UFG4 varieties used for biscuit/cakes and feeds, respec-
tively. While the “Cadenza” (Pop1) population group mostly (71%)
contain UFG1 and UFG2 varieties used for breadmaking.

Using NVPT data for trait mapping
We next examined if the EVM obtained from the NVPT could be
used for trait mapping through (GWAS). Only 104 varieties with
both phenotype (from the 2002 to 2017 NVPT) and genotype data
were used for GWAS. Our GWAS analysis identified a region on the
short arm of chromosome 6A with significant marker-trait

association (MTA) for days to ripening (Figure 7, A and B). The days
to ripening MTA region contain three markers, AX-94913053, AX-
94490150, and AX-94710688, located in an interval (73.6 – 86.5 Mbp)
containing the NAM-A1 gene (TraesCS6A02G108300; 77.1 Mbp) that
is associated with variation in senescence in European wheat culti-
vars (Cormier et al. 2015). Days to ripening was significantly (P <

0.0001) different between the allele groups of AX-94490150
(83.6 Mbp) which has the highest significance score (Figure 7C). The
11 varieties containing the early maturity “T” alleles of AX-
94490150 belong to the four different population groups previously
defined. Interestingly, all 11 varieties descended from Moulin (re-
leased in 1985, Supplementary Figure S4) which also has the early
maturity “T” allele (based on genotype data from CerealsDB; Allen
et al. 2017).

Discussions
Yield is an important driver of linear trends
Using historical data from UK NVPT, we examined phenotypic
trends in winter wheat varieties trialed between 2002 and 2017.
Our analysis highlights a linear increase for yield (treated and
untreated) and days to ripening, and a linear decrease in protein
content and HFN. Given that the model used to analyze this data
adjusted for variation arising from locations across years, and
that agronomic practices are largely consistent in the NVPT, this
linear trend can be attributed mostly to genetic improvement of
varieties over time. Mackay et al. (2011) similarly attributed 88%
of yield increase in cereals crops in the United Kingdom from
1982 to 2007 to genetic improvement. Yield is the most important
determinant of grain market value; as such the linear increase in
yield is consistent with concerted breeding efforts to improve
yield under UK wheat growing conditions. In addition to the over-
all yield trend, we also observed consistent and similar linear
increases in yield in all the four UK Flour Groups (UFG1–4). This

Figure 5 Phenotype stability by end-use group. Scatter plot showing stability for treated yield, protein content, specific weight and HFN for UK winter
wheat varieties across the 15 years of trials (2002–2017). The y-axis represents the Finlay Wilkinson coefficient which specifies expected change in
performance per unit change in environment (year) effect. Varieties with above median trait performance are in the shaded region. The solid line
indicates stable performance in all environments i.e., bþ 1¼1 (Lian and de los Campos 2015). Datapoints for three varieties whose HFN performance are
further illustrated in panel B are labeled. (B) Plot of HFN performance of varieties with lowest, highest and stable (�1) FW coefficient against the
estimated environment year effect. The dashed lines present a constant slope of 1.
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further highlight yield as the main breeding target for varietal de-
velopment (and adoption into the RL) irrespective of their target
end-use groups.

We observed that the rate of yield increase in untreated trials
(152 kg/ha/year) is significantly (P< 0.0001) higher than in treated
trials (59.5 kg/ha/year) across the 15-year period. Mackay et al.
(2011) similarly observed the same pattern between 1982 and
2007 and argued that this pattern is due to loss of disease resis-
tance by some varieties during the trial period examined.
Varieties typically progressively lose resistance over time (Meikle
and Scarisbrick 1994) and consequently variety performance
declines with time. This means that under untreated trial condi-
tions, newly introduced varieties with “intact” disease resistance
will outperform a portion of previously released varieties whose
disease resistance have “broken down.” This differential loss of
disease resistance will further increase the variation in variety

yield performance in untreated trials in addition to the variation
arising from non disease-related genetic factors observed in
treated trials. In other words, there is an “upward bias” in variety
effects for the yield observed in untreated trials as described by
Mackay et al. (2011).

Based on the rationale described above, it would be expected
that a sudden loss of resistance in a large proportion of varieties
due to the emergence of a more virulent pathogen race would re-
sult in a marked upward bias in variety effect estimates. This is
what we observed when we compared yield trends before and af-
ter the emergence of the yellow rust (Puccinia striiformis) “Warrior”
race in 2011 (Hubbard et al. 2015). The rate of yield increase in
untreated trials significantly (P< 0.001) increased threefold from
123 kg/ha/year before the emergence of the “Warrior” race to
372 kg/ha/year after the emergence of the “Warrior” race
(Figure 8). During the same time, the rate of yield increase was

Figure 6 Population structure of UK winter wheat varieties using DAPC analysis. (A) The representative variety for each population group (Pop) is
indicated except for Pop2 which consists of a more diverse pedigree. (B) Pedigree structure for Pop4 (“Robigus” group). The number in the inset represent
varieties: (1) Invicta (2) Lear (3) Torch (4) Twister (5) Britannia (6) Gravitas (7) Conqueror (8) Cougar (9) Viscount (10) Qplus (11) Warrior (12) Zulu (13)
Leeds (14) Panacea (15) Tuxedo (16) KWS_Target (17) Oakley (18) KWS_Croft (19) Evolution (20) Icon (21) Energise (22) Rgt_Scrummage (23) Horatio (24)
KWS_Santiago (25) Reflection (26) KWS_Gator (27) KWS_Conversion (28) KWS_Kerrin. The population groups are represented by teal (Pop1), yellow
(Pop2), purple (Pop3), and red (Pop4) circles, whereas gray circles represent varieties which were not genotyped in this study.
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significantly (P¼ 0.2697) comparable in the treated trial before
and after the emergence of the “Warrior” race (Figure 8). The use

of historical data in this study allowed us to identify this trend

and thus highlight the importance of such datasets for dissecting
the effect of important events in a national cropping history such

as change in disease epidemics.
It is also interesting to speculate that the higher rate of yield

increase observed in the untreated trials indirectly suggests that
newer varieties contain new sources of genetic resistance that

improve their performance over older varieties. This is likely not

accidental, but points to concerted efforts by breeders to intro-

duce more effective source of genetic resistance into UK wheat.

The improved genetic resistance profile of newer varieties nar-
rows the yield gap observed between the treated and untreated
trials (Figure 8). We cannot, however, rule out the fact that this
narrower yield gap might be due to lower disease pressure in re-
cent years. A more detailed genetic characterization will be
needed to accurately describe the genetic resistance profile of UK
wheat varieties.

Concomitant with the yield increase, there has been a de-
crease in grain protein content from 2002 to 2017 which reflects
the well-established antagonistic relationship between yield and
protein content (Supplementary Figure S5; Simmonds 1995).
Unlike for yield, linear trends in grain protein content were not
consistent across the four end-use groups. While we identified an
overall significant decrease in grain protein content over time,
this was not observed in the UFG1 varieties that are used for
breadmaking (Figure 4). UFG2 varieties which also have bread-
making potential, however, showed significant decrease over
time just like the UFG4 varieties used for animal feed. The decline
in UFG2 varieties grain protein content may be due to the fact
that this group comprise varieties that did not consistently meet
the higher grain quality (in particular protein content) require-
ment for UFG1 and were downgraded to UFG2. The fact that our
analysis captures expected trait (yield, protein content, and HFN)
differences in end-use groups (Figure 4, A and B, Supplementary
Figure S6, A and B) suggests that the linear mixed effect model
adopted is appropriate to handle the incomplete design of the
NVPT and to examine phenotype trends within each end-use
group.

HFN stability is still an important breeding target
The multi-dimensional (year and location) nature of the NVPT
also allows for examining varietal adaptability across multiple
environments. Despite the unbalanced nature of the NVPT data-
set, results from our yield stability analyses using this dataset
largely agrees with findings by Pennacchi et al. (2019) who exam-
ined yield stability using a balanced dataset from three years of
field trials on 64 UK wheat varieties that were released between
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Figure 7 (A) Manhattan plot for days to ripening using EVM derived from the 2002–2017 NVPT of UK winter wheat varieties. The FDR threshold is
indicated with a dotted line. The seven wheat chromosome groups are indicated on the x-axis and each homoeologous sub-genome is colored in red (A
genome), gray (B), or yellow (D). (B) QQplot showing expected and observed distribution of –log (P-values). (C) Allele effect of the marker showing the
highest significant MTA for days to ripening.

Figure 8 Yield comparison between treated and untreated trials before
and after the emergence of the “warrior” yellow rust race. Scatter plot
showing changes in yield in treated (light blue) and untreated trials (dark
blue) before (unshaded region) and after (shaded region) the emergence
of the “warrior” yellow rust race. The EVM for each period are regressed
separately against the first year of entry into the NVPT trials for each
variety. The solid lines are the regression lines. The regression equations
are shown at the bottom corners of the plot.
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1975 and 2008. Pennacchi et al. (2019) identified four varieties
(Gladiator, Humber, Mercato, and Zebedee) as high-yielding vari-
eties with high stability. Three out of these four varieties are pre-
sent in our study (Gladiator, Humber, and Zebedee), of which two
(Humber and Zebedee) are among the top five varieties with high-
est yield stability. Similarly, Istabraq which was identified by
Pennacchi et al. (2019) as less stable was one of the varieties with
the least yield stability in our study.

Despite this variation in yield stability, we generally observed
year-to-year stability in yield (0.35–1.34) and protein content
(0.23–1.77) in most of the varieties irrespective of their end-use
group. This is likely attributable to the fact that we mainly exam-
ined data from RL trials that are comprised of varieties which had
been previously screened for distinctness, uniformity, and stability
during National Listing trials. Despite this “pre-screening,” almost
all the varieties show high environmental sensitivity for HFN (FW
coefficient: �0.28 to 6.03). Sjoberg et al. (2020) similarly obtained a
wide range of FW coefficient for HFN in 133 varieties trialed across
3 years in the Pacific Northwest of the United States.

HFN is inversely related to a-amylase activity within the grain.
High a-amylase activity caused by incidences of pre-harvest
sprouting (PHS) and/or pre-maturity amylase (PMA) reduce the
bread-making potential of wheat grains. Both PHS and PMA are
known to be highly environmental dependent: PHS is induced by
wet raining conditions during harvest maturity while PMA is
mostly caused by low or high-temperature shock around grain
physiological maturity (Joe et al. 2005; Mares and Mrva 2014). The
environmental conditions required to induce PHS and PMA occur
infrequently from year to year making it difficult for breeders to
screen for these traits under field conditions. In addition, both
traits are controlled by many genes most of which have small
effects making marker-assisted selection (MAS) for HFN stability
difficult. Within the last decade, progress has been made in iden-
tifying genes with major effects on PHS including TaMFT and
TaMKK3-A (Nakamura et al. 2011; Torada et al. 2016). We also pre-
viously showed the effect of TaMMK3-A in reducing PHS in UK
germplasm (Shorinola et al. 2016) and developed markers to facil-
itates its use in breeding (Shorinola et al. 2017). The availability of
markers for major genes controlling PHS now makes it possible
to apply MAS for improving HFN. However, selection for PMA re-
sistance remains a major challenge because the conditions that
induce PMA vary between varieties (Liu et al. 2021).

Population structure within UK winter wheat
germplasm
Our analysis reveals that three modern wheat varieties made
major contributions to the development of winter wheat varieties
released in the United Kingdom between 2002 and 2017. These in-
clude Cadenza (Pop1), Claire (Pop2) and Robigus (Pop4), which are
themselves UK varieties released in 1992, 1999, 2005, respectively.
In fact, more than 75% of the variety parents (i.e., released varie-
ties used as direct parents in crosses) used to generate the UK RL
varieties released between 2002 and 2017 are from the United
Kingdom (Supplementary Table S7). This narrow geographical
source of variety parents is consistent with the assertion of
Fradgley et al. (2019) that breeders are using less variety parents
from other countries, perhaps to increase the geographical and
environmental adaptation of the UK gene pool.

Besides the limited geographical diversity of variety parents
recently used in UK breeding, other studies have shown limited
genetic diversity in important loci due to selection. For instance,
Brinton et al. (2020) showed that UK RL varieties only contain
three haplotype blocks in a chromosome 6A interval

(187–445 Mbp) that is associated with productivity traits (e.g.,
Simmonds et al. 2014). In contrast, the Watkin collection (landra-
ces collected in the 1930s; Wingen et al. 2014) contains 40 haplo-
types blocks, including Watkins-specific haplotypes with
beneficial phenotypes that are currently not present in the world-
wide germplasm evaluated in Brinton et al. (2020). Understanding
the need to broaden the UK gene pool, UK breeders are actively
pursuing the inclusion of new diversity from wheat landraces,
synthetics, and wild relatives (Moore 2015). In addition to using
these sources, it is important to note that increasing diversity can
also be achieved by crossing with already adapted varieties carry-
ing alien introgressions, like Robigus which carries an interspe-
cific introgression fragment (Gardiner et al. 2019). Robigus has
made significant contributions to the UK wheat pedigree since its
introduction. Fradgley et al. (2019) identified Robigus as the sec-
ond most used parents in UK breeding, next to Capelle Desprez.

We also observed a clear association between the population
groups and end use groups. Varieties from the Claire and Robigus
population groups are mostly used for biscuit (UFG3) and feed
(UFG4). This is not surprising as Claire and Robigus themselves
are biscuit-making (UFG3) varieties. Varieties from the Cadenza
population group are mostly used for breadmaking (UFG1 and
UFG2). This is consistent with the fact that Cadenza is a bread-
making variety. One probable explanation for this association is
that breeders tend to make crosses with varieties from the same
end-use groups to ensure that the gene combinations underlying
the traits in the target end-use groups are preserved in their prog-
enies (Simon Berry 2021, personal communication). This suggests
that the choice of parents is an important determinant of the
end-use class of varieties.

Historical data could be valuable for trait
mapping
We identified significant MTA peaks spanning a gene (NAM-A1)
that have been previously associated with natural variation in
time to senescence—synonymous to the days to ripening trait
examined in our study. Cormier et al. (2015) identified a C/T
missense SNP (in the NAC domain) and A/- frame-shift deletion
(leading to a truncated protein) in NAM-A1 from a worldwide
wheat collection, and suggested functional roles for these
polymorphisms. Harrington et al. (2019) showed that missense
mutations in the NAC domain of NAM-A1 result in delayed
peduncle and flag leaf senescence. Similarly, Avni et al. (2014)
showed that loss of function NAM-A1 mutants showed
significant delay in senescence. Given the large interval
covered by the MTA peaks for days to ripening on chromosome
6A (73.4 – 86.5 Mbp, �140 genes), we cannot rule out the possi-
bility that other gene(s) underly these days to ripening effect.
Nonetheless, the co-localization of our GWAS peak with a
known locus for the target trait highlights the usefulness of
this historical dataset for quantitative trait mapping.

Limitations of this study
Due to the type (gene-based SNP) and limited number of markers
used, we acknowledge the limitation of this study to more
precisely define the population groups represented in UK winter
bread wheat collection to a high resolution. Brinton et al. (2020)
demonstrated the inadequacy of array-based genotyping chips to
precisely define haplotype groups due to their gene-centric
design. Scaffold-level assemblies are now available for important
UK wheat varieties including representatives of Pop1, Pop3, and
Pop4 (Cadenza, Claire, and Robigus; Walkowiak et al. 2020). These
genome assemblies can be combined with high-density
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genotyping or re-sequencing data to more precisely define the
populations groups of wheat varieties grown in the United Kingdom.

Also, beside the MTA for days to ripening, we did not identify
robust MTA for the other traits. This could be due to three main
reasons. First, the sample size used in our study limits the statis-
tical power of our GWAS analysis. As our study focused on a de-
fined breeding period (2002 – 2017) our sample size was limited to
the number of varieties trialed in this period. Using the functions
described by Wang and Xu (2019) for explicitly calculating the
power of a LMM-based GWAS analysis, we estimate that our pop-
ulation size can detect MTA that explains at least 14.9% of phe-
notypic variance at a statistical power of 0.9. Consistent with
this, the most significant days to ripening MTA we detected
explains 17.5% of variation in days to ripening. Our GWAS popu-
lation size is therefore underpowered to detect QTL with smaller
effects. Second, most such large effect genes controlling these
traits will have been fixed in the United Kingdom wheat popula-
tion over time by breeders. As such, the MTA detected here, al-
though of large effect, may not have been under strong selection
by breeders over time. Third, while the phenotyping conditions
used in the NPVT might be representative of UK farming condi-
tions, they might not always be best suited for trait mapping. An
example is the application of PGRs in the trials to prevent lodging
(by reducing plant height), but this might mask the effect of
height genes. Despite these limitations, our work demonstrates
that national trials data can be valuable for examining trait
trends, stability, and genetic architecture.

Data availability
The original data files for the trials described in this study can be
downloaded from the AHDB website at: https://ahdb.org.uk/
knowledge-library/recommended-lists-for-cereals-and-oilseeds-
rl-harvest-results-archive (Accessed: 2021 December 13). As data
for different traits are combined in these original files, we reor-
ganized the files to separate the data for each trait into separate
files. The reorganized files are available at Zenodo: https://doi.
org/10.5281/zenodo.4761528 (Accessed: 2021 December 13). All
Supplementary figures and tables cited, as well as the pedigree
file for Helium visualization, are provided as Supplementary Files
available with this article. Supplementary material is available at
figshare: https://doi.org/10.25387/g3.14946033 (Accessed: 2021
December 13).
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