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THE BIGGER PICTURE Biological systems contain numerous components and points of regulation. These
factors complicate mathematical modeling approaches; however, methods have been developed that
explore the entire solution space before an optimal solution is selected. One such approach, particle swarm
optimization, is based upon the swarming of birds. Each bird in the flock assesses multiple landing spots
while at the same time sharing that information with its neighbors. Eventually, the entire flock chooses an
optimal location based on food availability and the avoidance of predators. When transformed into multi-
variable equations, this behavior can remove bias when interpreting complex datasets. This can be a
powerful tool in the pharmaceutical industry for the study of complex equilibria. Enhancements to these
modeling approaches may allow for the analysis of higher-order kinetic and thermodynamic problems in
biochemistry.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Understanding a drug candidate’s mechanism of action is crucial for its further development. However, ki-
netic schemes are often complex and multi-parametric, especially for proteins in oligomerization equilibria.
Here, we demonstrate the use of particle swarm optimization (PSO) as a method to select between different
sets of parameters that are too far apart in the parameter space to be found by conventional approaches.
PSO is based upon the swarming of birds: each bird in the flock assesses multiple landing spots while
at the same time sharing that information with its neighbors. We applied this approach to the kinetics
of HSD17b13 enzyme inhibitors, which displayed unusually large thermal shifts. Thermal shift data for
HSD17b13 indicated that the inhibitor shifted the oligomerization equilibrium toward the dimeric state. Vali-
dation of the PSO approach was provided by experimental mass photometry data. These results encourage
further exploration of multi-parameter optimization algorithms as tools in drug discovery.
INTRODUCTION

High-throughput screens (HTSs) are employed in drug discov-

ery to identify enzyme inhibitors. Often, practitioners aim to

find molecules that compete with the substrate of the enzyme;

however, the possibility of false positives through undesirable

pan-assay interference compounds (PAINs), as well as exotic

allosteric mechanisms,1,2 complicate interpretation. Biophysi-

cal techniques are employed as orthogonal methods to
This is an open access article under the CC BY-N
confirm target engagement and to exclude undesirable mech-

anisms.3 Compared with biochemical screens—which mea-

sure a single parameter of inhibition—biophysical techniques,

such as thermal shift, are data rich and require specialized

models to interpret.4 A recent HTS revealed a micromolar in-

hibitor of HSD17b13. A fluorescent thermal shift assay was

selected as orthogonal proof of binding, as this solution-

based method would allow sampling of all oligomerization

states of the protein. When the inhibitor was tested in a
Patterns 4, 100733, May 12, 2023 ª 2023 The Authors. 1
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Figure 1. Kinetic scheme of HSD17b13 and the activity of the

inhibitor

The protein exists in an equilibrium containing 3 species: a monomer (A), ho-

modimer (B), and homotetramer (C). The chemical structure of the inhibitor is

shown in (D). Enzymatic activity was measured in 384-well optiplates. Final

concentration of HSD17b13 was 30 nM. Inhibitor was titrated and lumines-

cence was monitored at room temperature for 60 min using a multimode plate

reader (E). A counter assay was performed as described above except in the

absence of HSD17b13 and quantified at 30 min.
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thermal shift screen, it gave a shift of 15�C. The magnitude of

this shift was unusually large given the micromolar potency3–5;

thus, we hypothesized that the inhibitor was affecting oligo-

merization of the protein.

One of the most commonly used methods to measure drug

candidate binding to proteins of therapeutic interest is the fluo-

rescent thermal shift assay (FTSA).6,7 FTSA has several advan-

tages over other techniques, including ease of development,

low reagent quantities and associated cost, and ability to be

performed on standard thermal cycler instruments. The method

is based on the observation that ligands alter protein thermal

stability upon binding to the native state of the protein. This

premise of FTSA has been expanded to include models as-

sessing ligand binding to unfolded proteins and incorporation

of techniques such as surface plasmon resonance to enhance

the determination of biophysical parameters (e.g., KD, kon, koff,

DG, DS, and DH).3 Despite its widespread application in the

pharmaceutical industry, FTSA is limited by its largely qualita-

tive metric, using only the change in protein melting tempera-

ture (DTm). More quantitative methods have been described8

wherein the thermodynamics and kinetics of ligand-induced

stabilization have been investigated to generate models that

describe thermal shift based upon the entropy of protein

melting.4 Thus, FTSA yields a data-rich output suitable for

fitting complex biological systems.

Many cellular functions are carried out by large, multi-protein

complexes.9 Inherent to the formation of these complexes are

numerous intermediate structures that exist in equilibrium. The

hydroxysteroid dehydrogenases (HSDs), in their active form,

may exist as both homodimers and tetramers stabilized by

NADH.10 Similarly, HSD17b13 dimerizes via binding events be-

tween aE and aF helices, interactions that are necessary for

enzymatic activity.10 Small-molecule inhibitors of these and

other oligomeric enzymes may attribute their activity to shifts in

the oligomerization equilibrium, a mechanism that may be

derived via analysis of FTSA data. Thus, we hypothesized that
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a potential reason for a compound with a weak mM IC50 causing

a 15� thermal shift may be due to the inhibitor influencing the

oligomerization of the HSD17b13 protein.

A model was developed to define the melting parameters of

HSD17b13 in terms of monomer, dimer, and tetramer equilib-

rium. However, the requirement to simulate multiple reactions

increased the complexity of the model and raised the number

of unconstrained kinetic parameters.11,12 Determining an opti-

mum parameter dimensionality, therefore, may increase the

robustness of the model and improve its predictive power,

particularly when available experimental data are limited. A

commonly used process for optimizing fitting of datasets in

these settings is the Levenberg-Marquardt algorithm, which

has demonstrated its performance in manifold applications

such as communication systems, signal processing, and image

analysis.13,14 Non-convex problems—which can involvemultiple

local minima—require global optimization approaches to deter-

mine the global optimum, and approaches that do not require

the objective function to be differentiable often greatly increase

the speed of convergence.

A concept for the optimization of non-linear functions—termed

particle swarm optimization (PSO)—was originally described by

Kennedy and Eberhart in 1995.12 In PSO, a number of particles

are placed in the search space of a problem, and each evaluates

the objective function at its location. Each particle then moves

through the search space by combining aspects of the history

of its own current and best locations with those of other mem-

bers of the swarm. Successive iterations occur after all particles

have been moved. Eventually, the swarm, like a flock of birds

foraging for food, convenes at or near the global optimum of

the fitness function.

PSO has several advantages over classic optimization tech-

niques like linear gradient descent and quasi-Newton methods:

(1) it makes few or no assumptions about the problem itself

(i.e., it is metaheuristic), (2) it searches large spaces of candidate

solutions, (3) it does not require the problem to be differentiable,

and (4) it is flexible, easy to implement, and efficient. For finding

an optimal set of hyper-parameters, naive methods such as grid

and random search have been employed, which run large

numbers of independent experiments under different hyper-

parameter guesses and then select the best set. Contemporary

versions of PSO have included different choices of hyper-param-

eters, different topologies, and varying ways of updating the

hyper-parameters to improve its performance.15 In software

packages like hydroPSO,16 for example, adjustments to—

among other variables—particle size and acceleration coeffi-

cients can be made to achieve better performance than with

the standard implementation. Despite these improvements,

PSO has been shown to be vulnerable to sub-optimal solutions

and premature convergence.12 The use of PSO for optimization

of the kinetics of chemical reactions has been explored and

compared with the performance of using a genetic algorithm;

PSO was found to perform better.15

Herein, we describe an approach using PSO alongside linear

gradient decent to examine the effects of a small-molecule inhib-

itor of HSD17b13 on the enzyme’s oligomerization equilibrium.

Thermal shift data in the absence and presence of inhibitor

were analyzed, and the best fitting parameters indicated that

the inhibitor shifted the protein to the dimeric state. Validation



Figure 2. FTSA data from HSD17b13 alone

and in the presence of varying concentra-

tions of inhibitor

(A, top panel) The best individual fit (solid lines) of

the raw fluorescence data (dashed lines) using PSO

and linear gradient descent; bottom panel displays

the residuals after fitting.

(B, top panel) Raw fluorescence data (dashed lines)

as shown in (A). Repeated optimization of global and

local parameters using PSO uncovered a second

minima further refined using linear gradient descent

(solid lines); the bottom panel displays the residuals

after fitting. Parameter optimization using PSO and

refinement via linear gradient descent were per-

formed as outlined in the experimental procedures

(see flowchart).
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of these findings was provided by mass photometry data,

demonstrating that increasing concentrations of the inhibitor

progressively shifted the equilibrium away from the quaternary

complex. Our approach using PSO can help to interpret complex

protein kinetics without prior knowledge of the underlying bio-

physical parameters.

RESULTS

The experimental system used as a basis for PSO is shown in

Figure 1. HSD17b13 exists in an equilibrium comprising

monomeric (Figure 1A), dimeric (Figure 1B), and tetrameric

(Figure 1C) states. This kinetic scheme was employed to

define the PSO parameters. The IC50 of the inhibitor (Fig-

ure 1D) was determined in a cell-free assay (Figure 1E).

Despite the IC50 of the inhibitor being in the mM range, a
15� thermal shift was observed (Figure 2),

which, for a simple single-site binding

model, would imply an affinity in the low

nM range.3,4

FTSA data with HSD17b13 alone and

in the presence of increasing concentra-

tions of inhibitor are presented in Fig-

ure 2. The best individual fit of the raw

fluorescence data using PSO and linear

gradient descent is shown in Figure 2A

(top panel). Depending on the results’

choice of the initial PSO steps, a fitting

approach using PSO and linear gradient

descent resulted in the closest global

minimum (i.e., a set of parameters

for which the sum of residuals was low;

Figure 2A, bottom panel). However,

repeated optimization of global and local

parameters using the same fitting

approach uncovered a second set of pa-

rameters (a second minimum) that could

be further refined using linear gradient

descent but resulted in higher residual

levels (Figure 2B, top panel, and resid-

uals, bottom panel). The results of

the fit to the data in Figure 2A (detailed
in Table 1) suggest that, in the presence of the inhibitor, the

equilibrium of HSD17b13 is shifted to the dimeric state.

The fit parameters beta and gamma represent allosteric con-

stants that describe the change in affinity for the equilibrium

constants for dimerization and tetramerization upon inhibitor

binding, respectively. The fitted value for beta is close to 1, indi-

cating that dimerization is unaffected; however, gamma is very

large (109), indicating a decrease in the affinity of tetramerization

of several orders ofmagnitude (Table 1). This result indicates that

the inhibitor would not bind to tetrameric protein and, equally,

that the protein would not tetramerize with the inhibitor bound.

The affinity of the inhibitor binding to monomeric protein is

given by pKi and calculated to be 1 mM. When pKi is converted

via the allosteric constant of dimerization, 0.03 alpha, results in

an affinity of the inhibitor to the dimeric form of 30 mM, which is

in good agreement with the IC50 displayed in Figure 1. These
Patterns 4, 100733, May 12, 2023 3



Table 1. Fitting parameters and values derived from PSO and linear gradient descent (LGD)

PARAMETERS

pKD1 dH1 dS1 dS2_factor dS3_factor logalpha pKi logbeta loggamma

PSO 5.9 540,000 1,700 38 60 �0.5 3 �0.2 12

After LGD 4.7 230,000 710 27 9 �2.8 3 �0.2 8.7

SD (all LGD) 0.7 56,000 170 8 11 0.9 0.7 0.3 9.4

COV (%) 14 24 24 30 120 30 23 150 100

Parameters represent the following: pKD1, affinity of two monomers to form a dimer; dH1, enthalpy of melting; dS1, entropy of the first transition;

dS2_factor, change in entropy of the second transition relative to the first transition; dS3_factor, change in entropy of the third transition relative to

the first and second transitions; logalpha, the base 10 logarithm of the allosteric constant of dimerization; pKi, binding affinity of the inhibitor to mono-

meric protein; logbeta, the base 10 logarithm of the allosteric constant describing the change in affinity for the equilibrium constants for dimerization

upon inhibitor binding; loggamma, the base 10 logarithm of the allosteric constant describing the change in affinity for the equilibrium constants for

tetramerization upon inhibitor binding. SD and COV denote standard deviation and coefficient of variation, respectively.
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results indicate that the inhibitor preferentially binds to and sta-

bilizes the dimeric form of the protein.

The results of the fit were reproducible, with the coefficient of

variation generally less than 30% (Table 1), except for dS3_fac-

tor—which describes the midpoint of the third transition—and

gamma—which was so large as to be unreliable.

Figure 3 displays mass photometry data for HSD17b13 in the

absence and presence of inhibitor. In the absence of the inhibi-

tor, two peaks were observed in the range of 50 and 70 kDa

and a third peak of lower intensity in the range of 130 kDa. The

molecular weight of monomeric HSD17b13 is approximately

29 kDa. We tentatively assign the three peaks to the monomer,

dimer, and tetramer species, respectively. In the presence of

the inhibitor, the distribution was dominated by the peak corre-

sponding to the dimer, suggesting that the inhibitor shifted the

protein oligomerization equilibrium toward the dimeric state.

These experimental results are consistent with the conclusions

derived from the PSO and linear gradient descent approach to

fitting the FTSA data.

DISCUSSION

PSO was initially described in 1995 and has been applied to

interpret geological anomalies17 and other non-biological activ-

ities. We have applied the methodology to data generated by

FTSA to provide a quantitative description of a compound

altering the multimerization equilibrium of a protein.

Unlike in vitro biochemical screens that are commonly used for

HTS and that measure a single parameter (e.g., IC50), biophys-

ical techniques like FTSA are data rich and require specialized

computational methods to interpret. Such methods are also crit-

ical for investigating outliers in drug discovery campaigns, such

as false positives. Here, we observed a surprising result, namely

that a weak inhibitor of HSD17b13 produced a thermal shift that

is consistent with a more potent compound. Thus, we employed

PSO to explore the entire solution space to delineate the mech-

anism of inhibition.

The advantage of PSO is that, when applied to the entire

solution space, an unbiased search of parameter space is

performed, allowing for the identification of the best global

parameters and neighboring local minima that, in this study,

were refined using linear gradient descent (Figure 2; for

more details regarding the fitting approach using PSO, see

Figure 4). Despite this capability, PSO requires fine-tuning of
4 Patterns 4, 100733, May 12, 2023
hyper-parameters like the personal and social acceleration

coefficients (c1 and c2, respectively), number of particles,

etc. Furthermore, repetition of PSO runs is needed, as we

experienced an inherent failure rate (identification of a local

instead of the global minimum) of 85%. However, in this

case involving inhibitor-induced shifts in HSD17b13 equilib-

rium, the fits that led to the lowest residuals after the linear

gradient descent refinement step consistently described the

dimer as the dominant species in the presence of the inhibitor.

Reducing failure rate would require more extensive fine-tuning

of the hype-parameters, such as incorporating a greater num-

ber of informants and exploiting more random topologies.

Mass photometry data (Figure 3) were found to be consistent

with the inhibitor shifting the oligomerization equilibrium

toward the dimeric state.

This method allows an unbiased approach using non-linear

fitting to establish the mechanism of an inhibitor across a com-

plex kinetic scheme. Previous methods4 employed liner gradient

descent that required the user to submit ‘‘best guess’’ starting

parameters, which may introduce bias from the user as to where

they think the solution should lie. Other methods define the start-

ing parameters using features of the data, such as fluorescence

values or graidents of cuvres; however, this this may also start

the fit too close to a false minima to escape and discover the

trueminima if linear graident decent is used. This approach relies

on the availability of a kinetic model where multiple mechanisms

may be explained by the use of allosteric parameters; it is not

suitable for models that describe a single type of kinetic

behavior. Equally, although this method allows an increase in

the complexity of the model compared with methods employing

solely linear gradient, the method does not allow for an infinite

level of complexity. Users should be careful to match high-

parameter stochastic fitting methods to techniques that collect

a high volume of data, as well as that have many independent

conditions (i.e. concentrations) collected and analyzed together.

Despite these limitations, PSO, as described herein, accurately

modeled the effects of inhibitor on HSD17b13 equilibrium in the

absence of prior knowledge of the mechanism of action and

without the intrinsic bias of linear gradient descent, in that PSO

does not require ‘‘starting’’ parameters, which may influence the

solution space searched. Moreover, these findings were derived

from FTSA, which does not require specialized equipment like

mass photometry. These results suggest that a fitting routing

using PSO may be an unbiased approach that could be



Figure 3. Mass photometry data for HSD17b13 in the presence and

absence of inhibitor, shown as probability as a function of mass

(bars) with a sum of three gaussians fitted to the data (lines)
In the absence of inhibitor, two peaks were observed in the range of 30 and

70 kDa and a third peak of lower intensity in the range of 130 kDa. We tenta-

tively assign these to represent the monomer, dimer, and tetramer, respec-

tively. The inhibitor increased the peak at 70 kDa, suggesting that the inhibitor

shifted the equilibrium toward the dimeric state.

Figure 4. Flowchart demonstrating the process for generating and

optimizing parameters using PSO and linear gradient descent

Fluorescence data for a ‘‘zero trace’’ (i.e., protein alone, no inhibitor) were

measured and parameters were optimized using PSO and refined using linear

gradient descent. PSO was then used to estimate local parameters on traces

produced by increasing concentrations of inhibitor. Global parameters were

then optimized using the PSO followed refinement of all parameters using

linear gradient descent. The plots show representative fits after optimization

by PSO (top) and after refinement by linear gradient descent (bottom).
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implemented in other drug discovery campaigns to enable com-

pound optimization regardless of therapeutic modality.

Conclusions
Determining a drug candidate’s mechanism of action facilitates

optimization of potency, physicochemical characteristics, and

pharmacology. However, molecular targets often exist in equi-

libria with multiple higher-order structural states. Herein, we

have shown that a combination of PSO and linear gradient

descent—when applied to data derived from an extensively

used fluorescence assay—models an inhibitor-induced equilib-

rium shift for HSD17b13, as confirmed by mass photometry.

Thus, PSO may be broadly applicable to biological processes

and enable an understanding of pathological and pharmacolog-

ical perturbations.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by Martin Redhead (mredhead@exscientia.

co.uk).

Materials availability

All unique/stable reagents generated in this study are available upon reason-

able request to the lead contact.

Data and code availability

Our source code is available at GitHub (https://github.com/Exscientia/

particle_swarm_ftsa) and datasets have been archived at Zenodo.22

Protein production

A PCR product with 15 bp vector-specific overhangs comprising amino acids

26–275 and utilizing the native DNA coding sequence of human HSD17b13

sequence (accession NM_178135) was cloned using In-Fusion (Takara,
63969) into NcoI KpnI restricted pEXS2 to generate HSD17b13 26-275 with

an N-terminal methionine and C-terminal 10-His affinity tag. The plasmid

was transformed into Rosetta2 (DE3) cells (Sigma, 71400) and grown in Power

Broth liquid media (Molecular Dimensions, MD12-117) at 37�C and 180 RPM

to an OD600 between 0.6 and 0.8 before induction with a final concentration

of 0.2 mM IPTG and continued to grow at 20�C for 20 h. HSD17b13 was puri-

fied in a two-step process: first, a Ni-NTA IMAC affinity purification, and sec-

ond, a size-exclusion chromatography step on an ÄKTA Pure 25 system. Pools

separating oligomeric states were in 20 mM HEPES (pH 7.5), 250 mM NaCl,

and 1% glycerol and were flash frozen in liquid nitrogen before storing at

�80�C. For a detailed purification protocol, please see the supplemental

information.

Enzymatic assays

HSD17b13 activity was assayed in 384-well optiplates (PerkinElmer) in glyci-

namide assay buffer (20 mM glycinamide, 150 mM NaCl, 0.05% (v/v) Tween

20, 0.1 mg/mL BSA). Enzyme (4 mL; 30 nM) was pre-incubated with test com-

pound for 15 min before the reaction was started by addition of NAD substrate

(200 mM) and NADPHGlo reagent (Promega; 12 mL). Luminescence was moni-

tored at room temperature for 60 min using a Pherastar FSX (BMG) multimode

plate reader.

Counter-assay method

To assess the interaction between screen compounds and the detection re-

agent, a counter assay was run in the absence of HSD17b13. Compounds

were incubated for 15 min in the presence of NADPH Glo reagent (Promega;

12 mL), followed by application of NADH substrate (720 nM; 4 mL) in glycina-

mide assay buffer. The reaction was quantified at 30 min using a Pherastar

FSX (BMG) multi-mode plate reader.

FTSA and spectral fitting

The PySwarms package was employed to provide the PSO fitting18, FTSA was

conducted as described previously.19 Briefly, HSD17b13 was incubated in

the absence and presence of the inhibitor at increasing concentrations

(0–200 mM). Fluorescence data for a ‘‘zero trace’’ (i.e., protein alone, no inhibitor)

were generated and parameters were optimized using PSO. The model used is
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described in the supplemental information. Linear gradient descent was

performed on the ‘‘zero trace’’ following PSO to refine local and global fitting pa-

rameters, and the boundaries for the PSO were broad and based on physically

realistic space (positive melting enthalpies, binding constants >0). PSO was

used on the individual traces (i.e., each inhibitor concentration) of thermal shift

data to optimize local parameters, which subsequently were refined with linear

gradient descent. Then, optimal global parameters for all traces were deter-

mined using PSO and refined using linear gradient descent.18 An outline of

this general approach is shown in the flowchart displayed in Figure 4, with

each box representing a step in the data fitting process.

Mass photometry

The purified protein was concentrated to 1.7 mg/mL and, prior to the MPmea-

surement, pre-incubated with buffer (20 mM glycinamide, 150 mM NaCl, 5%

DMSO) for 2 h. Each MP measurement was performed on glass coverslips

and recorded using a OneMP mass photometer, Refeyn, for an interval of

60 s. Sample stocks at 100 nM were diluted in the appropriate buffer on

glass coverslips to 10–50 nM. One of the samples contained solely protein

in buffer, while 200 mM compound 1 was added to the other sample. Image

processing was performed with the software DiscoverMP (Refeyn, v.2.4.2)

as described.20,21 After background removal, molecular weights of particles

were estimated by contrast comparison with calibrants of known mass

measured on the same day. Figure 3 shows the probability density function

of counts of particles per mass as histograms with a bin width of 2.8 kDa.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100733.
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