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Abstract: Altered melanosome transport in melanocytes, resulting from variants in the melanophilin
(MLPH) gene, are associated with inherited forms of coat color dilution in many species. In dogs,
the MLPH gene corresponds to the D locus and two variants, c.−22G > A (d1) and c.705G > C (d2),
leading to the dilution of coat color, as described. Here, we describe the independent investigations
of dogs whose coat color dilution could not be explained by known variants, and who report a
third MLPH variant, (c.667_668insC) (d3), which leads to a frameshift and premature stop codon
(p.His223Profs*41). The d3 allele is found at low frequency in multiple dog breeds, as well as in
wolves, wolf-dog hybrids, and indigenous dogs. Canids in which the d3 allele contributed to the
grey (dilute) phenotype were d1/d3 compound heterozygotes or d3 homozygotes, and all non-dilute
related dogs had one or two D alleles, consistent with a recessive inheritance. Similar to other loci
responsible for coat colors in dogs, this, alongside likely additional allelic heterogeneity at the D
locus, or other loci, must be considered when performing and interpreting genetic testing.

Keywords: Canis lupus; mammalian pigmentation; melanophilin; coat color dilution; coat color genes;
coat color phenotypes

1. Introduction

Natural and artificial selection in dogs has led to a myriad of phenotypes with respect to coat
coloration and its patterns. Two pigments, phaeomelanin (red/yellow) and eumelanin (black/brown),
in which physical changes to the pigments themselves, as well as the timing and location of their
deposition, contribute to a variety of color phenotypes. One such phenotype, dilution, is found in
multiple mammalian and avian species. In dogs, the D (dilution) locus causes lightening of the coat
color—i.e., from black to grey, brown to silver, or red to cream—as well as pigmentation lightening of
the nose, paw pads, and eye color.

Melanosome transport, along cortical actin filaments in melanocytes, is regulated by three major
proteins: Rab27A (a member of the small GTPase Rab family), the motor protein myosin Va (MYO5A),
and melanophilin (MLPH) [1]. These three proteins form a functional ternary complex, in which an
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alteration in any of them can result in defects in melanosome transport and a dilute phenotype [1].
In 2007, Drögemüller et al. identified a transition at the splice boundary of the first untranslated exon
of the canine MLPH gene, predicted to result in reduced splicing efficiency [2]. This non-coding variant,
c.−22G > A (d1), was associated with the dilution phenotype in seven breeds of dogs at the time [2].
A small percentage of dilute dogs did not possess a d1 genotype predicted to result in the dilution
phenotype, and Bauer et al. (2018) subsequently identified a second MLPH variant, c.705G > C (d2),
located at the splice boundary of exon 7, and correlating to dilution in three additional breeds [3].

The effects of MLPH variants on melanosome transport and pigmentation are distinct from the
recently identified variants of phaeomelanin-based pigment intensity, which also perturb the perceived
depth of coloration, although resulting coat colors are varying shades of red, cream, and white [4].
Nevertheless, the previously identified d1 and d2 MLPH variants do not explain all of the dilute coat
color phenotypes in canids, and a recent report suggests that additional coat color alleles are likely
present at low frequency throughout the canine population [2,3,5]. Here we combined candidate gene
sequencing with a query based on a large dataset of whole genome sequences, to identify a novel
MLPH variant (d3), associated with dilute coat color in multiple dog breeds and wolf-dog hybrids.

2. Materials and Methods

2.1. Animals

Cheek swab DNA samples were collected from 16 dilute dogs (3 Hungarian pumis, 5 Hungarian
mudis, 5 wolf-dog hybrids, 1 Chihuahua, 1 Italian greyhound, and 1 Pekingese) that were previously
genotyped for the d1 and d2 MLPH alleles, and incorrectly predicted to have a non-diluted coat color
and 1 diluted d1/d1 Shih Tzu, along with 32 non-dilute dogs (11 Hungarian pumis, 15 Hungarian
mudis, 2 wolf-dog hybrids, 1 Pekingese, and 3 Shih Tzu). Written consent was obtained from all dog
owners. This study was approved under University of Minnesota IACUC protocol 1903 36865A.

2.2. MLPH Exon Sequencing

Genomic DNA was extracted from the cheek swab samples using Qiagen’s Puregene tissue kit or
Qiagen’s DNEasy DNA extraction kit. The entire coding sequence (except exon 11), as well as flanking
intronic boundaries, were Sanger sequenced in the Italian greyhound (Supplementary Table S1). For the
pumis, mudis, Chihuahua and wolf-dog hybrids, an amplicon encompassing exon 7 of the MLPH gene,
and extending into the flanking introns (including alleles d2 and the 1 bp insertion reported here),
was obtained (Supplementary Table S1). For the mudis and wolf-dog hybrids not previously genotyped
for the d1 allele, a 268 bp amplicon was obtained with d1 PCR primers F and R (Supplementary Table
S1). Genotyping was performed with direct Sanger sequencing of the amplicon at Eurofins Genomics
(Louisville, KY, USA), and visualized with Sequencher software (Gene Codes Corporation, Ann Arbor,
MI, USA), or sequenced by Laboklin and analyzed with SeqScanner Software, respectively.

2.3. Whole-Genome Database Query

The coding sequence and surrounding splice site regions of the canine MLPH gene, were inspected
for potential loss-of-function mutations in a variant call file (VCF). This contained 804 dog (from
>140 breeds) and 9 wolf genomes, available in an updated version of the Dog Biomedical Variant
Database Consortium (DBVDC), utilizing Golden Helix GenomeBrowse, with public annotations from
Ensembl Genes 89 and RefSeq Genes 104 [6,7].

3. Results

3.1. MLPH Exon Sequencing

Examples of dogs with dilute phenotypes included in our study are provided in Figure 1. Our initial
investigations focused on the Hungarian pumi and mudi dogs, as well as an Italian greyhound, whose
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dilute phenotypes were not explained by the d1 and d2 variants genotyped by a commercial laboratory;
i.e., these dilute dogs were not homozygous for the d1 (c.−22G > A) or d2 (c.705G > C) variants, and
they were not compound heterozygotes (d1/d2). The MLPH coding sequence, as well as flanking
intronic boundaries, were sequenced in the Italian greyhound, and exons 1 and 7 were sequenced in the
pumis and mudis. We confirmed the commercial laboratory results, where the dilute Italian greyhound
and dilute pumis were heterozygous for d1 and homozygous wild type for d2. At the same time, we
identified a cytosine insertion subsequent to a run of 8 cytosine bases, (NM_001103219.2: c.667_668insC
or chr25: g.48150749_50insC (CanFam 3.1 assembly), hereafter referred to as d3. No other variants
altering the protein coding sequence were found.
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Figure 1. Examples of dogs with a dilute phenotype. A, a dilute Hungarian mudi puppy flanked by its
black siblings; B, a dilute Hungarian pumi.

The canine MLPH gene contains 16 exons and 581 amino acid residues. As expected, considerable
cross species homology exists across the full length of the protein; however, several regions of poor
conservation are also present (Figure 2). The (c.667_668insC, p.His223Profs*41) insertion is predicted
to recode 41 amino acids, before a stop codon is generated that truncates 54% of the wild type protein.

3.2. Variant Database Search

Inspection of the DBVDC VCF containing 804 dog and 9 wolf genomes, also revealed the previously
unrecognized 1 bp insertion (d3) within exon 7, at an allele frequency of 0.0045. The d3 variant was
present in 7 genomes in the heterozygous state (4 indigenous dogs, 1 Tibetan mastiff, 1 Yorkshire terrier,
and 1 wolf), and no homozygous d3 individuals were found. Additionally, 1 heterozygous Shetland
sheepdog was identified within the University of Minnesota’s private database. The frequencies of the
d1 and d2 alleles in the DBVDC are 0.054 and 0.0025, respectively.

3.3. MLPH Genotyping

Sanger sequencing enabled us to resolve all three d3 variant genotypes, with the d3 variant
homozygous in the dilute mudi (Figure 3). In addition to the d3 variant in the dilute wolf-dog hybrid,
a previously recognized synonymous variant, c.669C > T (dbSNP rs852237859), was also observed.
This SNP is relatively common in the DBVDC dogs at an allele frequency of 0.062. None of the dogs
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with the d3 allele in DBVDC have this SNP, while the wolf from DBVDC with the d3 allele does. The d2

variant (also in exon 7) was not observed in our Sanger-sequenced study cohort.
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Figure 2. Amino acid sequence alignment of mammalian MLPH genes. The transcript IDs for the
alignments are as follows: Human, NM_024101.7; cat, ENSFCAT00000039067.3; American mink,
ENSNVIT00000032578.1; rabbit, ENSOCUT00000016497.4; and dog, NM_001103219.2. The position of
the d3 dog variant is indicated with an *, and the recoded peptide preceding the premature stop codon
follows in red.

3.4. Genotype-Phenotype Association

Table 1 and Supplementary Table S2 present the MLPH variant genotypes from the available
phenotyped dogs, including 14 Hungarian pumis, 20 Hungarian mudis, 7 wolf-dog hybrids,
1 Chihuahua, 1 Italian greyhound, 2 Pekingese, and 4 Shih Tzu.

A perfect association between the d3 variant and the dilute coat color was found in three pumi
families: all three grey pumis were compound heterozygotes (d1/d3), whereas all non-dilute pumis had
at least one D allele. The three families—P1–4, P5–11 and P12–14—were also investigated for allelic
segregation within the phenotype. No sire was available for families P1–4 and P12–14. The available
female P1 (mother of P2–P4) and P12 (mother of P13 and P14) carried one d1 allele, which was
transmitted to one of their respective offspring. Both pups were phenotypically grey and had d1/d3

genotypes, and thus inherited the d3 allele form the sire. In the third family (P5–P11), both parents were
heterozygotes: the mother for d3 and the father for d1. Four descendants showed a black coat color
being homozygous D/D or heterozygous D/d1 and D/d3, and one pup was compound heterozygous
d1/d3 and showed a grey coat.
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Figure 3. Sanger sequencing traces from MLPH exon 7. The red box highlights the location of the d3

variant. A, a D/D mudi; B, a D/d3 mudi; C, a d3/d3 mudi; D, a d3/ d3 wolf-dog hybrid that also has a
synonymous SNP (c.669C > T) 2 bp from the d3 mutation.

Table 1. MLPH variant genotypes in phenotyped dogs.

Breed Color D/D D/d1 D/d3 d1/d3 d1/d1 d3/d3

Hungarian pumi Black 5 4 2 0 0 0
Hungarian pumi Grey 0 0 0 3 0 0
Hungarian mudi Black * 5 3 6 0 0 0
Hungarian mudi Grey * 0 0 0 2 0 2
Hungarian mudi Cream * 0 0 1 0 0 1 #
Wolf-dog hybrid Black 0 1 0 0 0 0
Wolf-dog hybrid Grey 0 0 0 1 1 3
Wolf-dog hybrid Other 1 0 0 0 0 0

Chihuahua Grey 0 0 0 1 0 0
Italian greyhound Grey 0 0 0 1 0 0

Pekingese White 0 0 0 1 # 0 0
Pekingese Brown 0 1 0 0 0 0
Shih Tzu White 1 0 0 0 0 0
Shih Tzu Grey 0 0 0 0 1 **
Shih Tzu Non-dilute 0 2 ** 0 0 0

Dogs were genotyped by Sanger sequencing as described in Methods. *, mudi with merle patterning are included;
**, Shih Tzu chromosome containing both d1 and d3 variants; #, cream/white dogs with lightened nose, paw pad,
and eye color. Genotypes capable of producing the dilute coat color are shaded in grey.

The D locus genotypes for the 20 phenotyped mudi are also shown in Table 1. The dilute mudi
were either d1/d3 compound heterozygotes or d3/d3 homozygotes, while all non-dilute dogs had at
least one D allele. Transmission of the d3 allele was also demonstrated in a pedigree that produced
both dilute (d3/d3) and non-dilute (D/d3) offspring.

Similarly, the grey wolf-dog hybrids were discordant at their d1 locus genotype. These dogs
were evaluated at the d2 and d3 loci, and the genotypes d1/d3 or d3 /d3 were confirmed, respectively.
The mother and sibling of the d1/d3 heterozygote were subsequently genotyped. The d1 allele was
inherited from the mother (AW1), and the d3 allele was likely inherited from the father, or represented
a spontaneous mutation event. In three additional unrelated dilute wolf-dog hybrids (Figure 3),
the previously recognized synonymous variant, c.669C > T (dbSNP rs852237859), was observed in
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addition to the d3 frameshift variant. The d2 variant was not observed in any of the sequenced
samples. Additionally, the DBVDC database contained 9 wolves: 7 were wt/wt at both d1 and d3,
1 was heterozygous at d1 only, and 1 was heterozygous at d3 only.

Additional examples of the association between d1 and d3 variants, with dilute coat color in
smaller cohorts of other breeds, included the Shih Tzu, Chihuahua, Pekingese, and Italian greyhound
(Table 1). Examples of D/d3 heterozygotes (4 indigenous dogs, 1 Tibetan mastiff, 1 Yorkshire terrier,
1 wolf and 1 Shetland sheepdog) were identified in the aforementioned WGS variant databases.
A single homozygous d3 Shih Tzu has been identified (ShT3) (Table 1, Table S2), but this individual
was also homozygous for the d1 allele. The non-dilute offspring (ShT5 and 6) from this individual,
and a male wild type at all three known variants (ShT4), were heterozygous for both the d1 and
d3 alleles. However, from knowledge of the parents′ genotypes, it can be deduced that the pups
received a chromosome containing both the d1 and d3 variants from the dam, and a D chromosome
from the sire, so the offspring still had one functional D allele. In this case, the d1/d3 haplotype likely
represents either a spontaneous mutation at the d3 locus on the d1 background that is identical by state,
or a recombination event.

Figure 4 provides additional images of the dogs genotyped in our study, and the impacts of
additional coat color loci. Both mudis in (B), the mudi on the right in (C), and the mudis in (E) and (F)
also have the merle mutation [8]. The merle mutation is inherited as autosomal dominant, and often
results in uneven patches of pigment diluted to light grey, light brown, or white [8,9]. However, it is
not phenotypically apparent in phaeomelanin. Additionally, the dog on the left in (B) has a TYRP1
recessive brown mutation [10–12]. Dogs homozygous recessive at both TYRP1 and MLPH, are diluted
at brown instead of black, and have a resulting pigment color referred to in many breeds as “silver”,
“isabella”, or “lilac”. In mudis, this color is referred to as “grey-brown”. The mudis in (E) and (F) have
two copies of the recessive e allele of the MC1R gene, that affects phaeomelanin and results in varying
shades of cream [4,10,13–16]. Additionally, the mudi in (E) is homozygous for d3, thus showing grey
pigmentation on the nose and eye rims, and a lightened eye color.
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4. Discussion

MLPH gene variants cause coat color dilution in dogs and other species [17–21]. However,
not all dogs that are phenotypically dilute are explained by the two published MLPH dilution
variants [2,3]. The d3 variant was identified at the UC Davis Veterinary Genetics Laboratory, in exon 7
of a phenotypically dilute Italian greyhound, with one copy of d1 and no copies of d2. At the same
time, the d3 variant was detected at Laboklin in dilute pumis and wolf-dog hybrids, where testing
for d1 and d2 confirmed the dogs to be compound heterozygous d1/d3. Independently, a scan of the
DBVDC for other MLPH coding sequence variants by the University of Minnesota, identified the same
frameshift mutation in exon 7, after being presented with dilute mudis and wolf-dog hybrids, who
were tested previously as D/D or D/d1. All three independent identifications confirmed the mutation
through Sanger sequencing.

Exon 7 harbors two of the three known canine MLPH mutations (Figure 5). The region is not
highly conserved across mammals (Figure 2); however, it is in the vicinity of a predicted myosin Va
interaction site, necessary for facilitating melanosome transport. The ablation of MLPH-myosin Va
interaction, therefore, readily explains both the defective melanosome transport and the dilute grey
phenotype. Taken together, the above arguments strongly suggest that the variant, c.667_668insC,
contributes to the dilution of coat color in multiple breeds, and represents another loss-of-function
allele similar to d1 and d2. We observed the association of the d3 allele with dilute coat color, both in
its homozygous form and as a compound d1/d3 heterozygote. That compound heterozygosity can
result in the dilute coat color phenotype, has previously been shown with the d1 and d2 variants [3].Genes 2020, 11, x FOR PEER REVIEW 8 of 10 
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Figure 5. Locations of the d1, d2 and d3 variants within the MLPH gene. Exons are boxes, protein
coding regions are blue and non-coding regions are tan. Protein interaction domains were adapted
from a previous analysis in rabbit and American mink [18,21].

The d3 allele was found in a wide spectrum of breeds and other canids, minimally including
the Hungarian pumi, Hungarian mudi, Chihuahua, Pekingese, Italian greyhound, Shih Tzu, Tibetan
mastiff, Yorkshire terrier, and Shetland sheepdog, as well as indigenous dogs, wolves, and wolf-dog
hybrids. The wolf-dog hybrids in this study that carry the d3 variant have recent ancestry behind them,
including wolf, Alaskan Malamute, German shepherd dog, Siberian husky, and collie. The presence of
the d3 variant in village dogs and wolves may indicate that this variant represents an ancient mutation,
persisting at a low frequency across some breeds, while being lost in others. However, given that this
variant is a single nucleotide insertion in an 8 bp poly C stretch, the possibility that d3 is identical by
state, at least in some breeds, must be considered. The presence of the d3 variant on the d1 background
in the Shih Tzu, and the c.669C > T variant 2 bp from the wolf d3 allele, would suggest that this type of
spontaneous mutation can occur. Alternatively, this could represent a recombination event between
the d1 and d3 haplotypes. Regardless, the identified Shih Tzu had two copies of the d1/d3 haplotype,
suggesting that this specific allele is present, at least in this breed.

Despite a third dilution variant being discovered, not all phenotype/genotype discrepancies are
explained. Overall, 99.74% of > 10,000 genotyped phenotypically dilute French bulldogs, as reported
by their owners, are resolved by the known d1 and d2 variants, and the d3 variant has not yet been
detected in this breed at all (private lab observation, data not shown). Since every discordant dog
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is heterozygous at d1, and homozygous wild type at both d2 and d3, it is possible that at least one
additional MLPH variant exists, or a variant in a different gene altogether.

This novel d3 variant adds to our understanding of the basis for coat color variation, and the
interaction between variants in dogs and other species. Additionally, known coat color variants are
useful to breeders in understanding the potential outcomes of matings. As this newly identified
c.667_668insC d3 variant does not resolve all MLPH genotype/phenotype inconsistencies, additional
variants are likely. This fact must be taken under consideration when performing genetic testing
and counseling.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/6/639/s1,
Table S1: Primers used for the PCR amplification and sequencing of MLPH exons, Table S2: Genotypes of all dogs
in this study.
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