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Abstract: Controlling thermal comfort in the indoor environment demands research because it is
fundamental to indicating occupants’ health, wellbeing, and performance in working productivity.
A suitable thermal comfort must monitor and balance complex factors from heating, ventilation,
air-conditioning systems (HVAC Systems) and outdoor and indoor environments based on advanced
technology. It needs engineers and technicians to observe relevant factors on a physical site and to
detect problems using their experience to fix them early and prevent them from worsening. However,
it is a labor-intensive and time-consuming task, while experts are short on diagnosing and producing
proactive plans and actions. This research addresses the limitations by proposing a new Internet
of Things (IoT)-driven fault detection system for indoor thermal comfort. We focus on the well-
known problem caused by an HVAC system that cannot transfer heat from the indoor to outdoor
and needs engineers to diagnose such concerns. The IoT device is developed to observe perceptual
information from the physical site as a system input. The prior knowledge from existing research
and experts is encoded to help systems detect problems in the manner of human-like intelligence.
Three standard categories of machine learning (ML) based on geometry, probability, and logical
expression are applied to the system for learning HVAC system problems. The results report that
the MLs could improve overall performance based on prior knowledge around 10% compared to
perceptual information. Well-designed IoT devices with prior knowledge reduced false positives and
false negatives in the predictive process that aids the system to reach satisfactory performance.

Keywords: machine learning; consciousness prior; heat transfer; indirect measurement; air-handling
unit; building sustainability; internet of things

1. Introduction

A comfortable indoor environment is one of the most critical factors impacting human-
life quality (e.g., health, wellbeing, and working productivity performance). Indoor thermal
comfort concerns engineering processes to control the environment for satisfying occupants
in the building. Heating, ventilation, and air-conditioning systems (HVAC systems) are
engineering mechanisms required to handle ambient conditions of indoor thermal comfort
to provide occupancy comfort level. Significantly, in the tropical zones (e.g., parts of
North America, South America, Africa, Asia, and Australia), outdoor environments are
warm throughout the year and influence the indoor environment to become uncomfortable.
HVAC systems play a crucial role in controlling indoor ambient conditions by transferring
heat airflow from indoor to outdoor. Therefore, HVAC systems, the outdoor environment,
and indoor thermal comfort depend on each other to properly control such situations
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to be comfortable. The case needs engineers to monitor relevant factors from the indoor
environment [1], outdoor environment [2], and HVAC system mechanism [3] and to prevent
problems that can occur. In practice, engineers and technicians must routinely trace and
observe them physically and figure out how unsatisfactory factors can happen. However,
enormous systems may run continuously in real-world buildings, and fault detection and
diagnosis of indoor thermal comfort based on these complex factors are beyond manual
investigation by engineers and technicians. It is challenging to apply advanced technologies
to detect and diagnose such relevant factors automatically.

Cardillo et al. [4] reviewed advanced technologies for HVAC systems, e.g., Internet of
Things (IoT), machine learning (ML), and radar-based detection. These technologies play
an essential role in fault detection and diagnosis of indoor thermal comfort fields [5]. They
are critical technologies behind automatic and intelligent systems to address the problem by
connecting all relevant things from a dynamic environment. IoT devices percept real-time
signals, while ML analyzes them to discover relevant information for supporting engineers
and technicians. They can monitor and make better decisions that can prevent situations
from becoming worse. Peng et al. [6] proposed an approach for controlling thermal comfort
in an indoor environment. Yang et al. [7] proposed a prognostics and predictive approach
to detect failure events affecting occupants’ health. Their techniques employed IoT devices
and MLs to detect and diagnose failure events caused by HVAC systems failures, and
they claimed that such approaches could help decision makers discover problems at an
early stage. Xu et al. [8] and Shahinmoghadam et al. [9] proposed an IoT-based system for
an indoor environment monitoring to understand thermal comforts. They claimed that
IoT-based approaches could uncover vital factors that help technicians detect operating
issues according to dynamic environments and repair them on time. Thermal comfort
concerns the HVAC system and indoor climate and relates then to conditions of the outdoor
environment. Rijal et al. [10] discussed that a good understanding of outdoor environmental
factors could help occupants reach a satisfactory level of indoor thermal comfort, while
Elnaklah et al. [11] claimed that outdoor environment factors provide vital information for
better analyzing the indoor thermal environment for occupant comfort and health. This
suggests that fault detection and diagnosis of indoor thermal comfort satisfactions benefit
from IoT devices and MLs for discovering information from relevant factors that help
engineers explain and interpret the event precisely.

Current research has intensively studied IoT devices and ML-based fault detection
and diagnosis in indoor thermal comfort for an occupant’s good living. However, they
lack integration of interdisciplinary research between HVAC systems, indoor and outdoor
environments. This limitation becomes a problem when occupants cannot acclimate to
uncomfortable indoor environments that are not because of HVAC system problems, but
because the outdoor environment is worsening, and the heat-transfer system cannot ex-
change in time. For example, occupants may experience freezing, mugginess, or sweltering
heat, although the HVAC system is turned on. In these scenes, they must call for help
from engineers to fix such problems. However, engineers cannot identify and fix the
problem immediately and need to observe and collect all relevant factors from physical
sites manually (e.g., HVAC system, indoor environment, and outdoor environment) that
are time consuming and labor intensive. The system must be turned off during the process
where engineers physically check the problem. At the same time, occupants live without
an HVAC system and might be more trouble for susceptible occupants such as children,
patients, and older people. Therefore, IoT devices and ML-based interdisciplinary research
is challenging to address by automatically integrating and analyzing complex factors that
detect and diagnose problems early.

This research encodes all relevant factors concerning interdisciplinary study, HVAC
systems, the outdoor environment, and the indoor environment. It aims to describe what
factors may co-occur with failure events that cause occupants to feel uncomfortable. Our
research consists of two parts: (1) hardware designs and developments to connect relevant
observations from environments and (2) software designs and developments to detect
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and diagnose events of interest. These can help engineers insightfully understand the
problem in advance to plan strategies to minimize the crucial situation proactively. The
main contributions of this research are:

• Explorations of random variables to represent relevant knowledge from interdisci-
plinary factors;

• Physical designs of an IoT device to collect real-time factors of events as states of
random variables;

• Proof of correlations between factors to explain indoor thermal comfort;
• Proposal of machine learning models enhanced by interdisciplinary factors.

This research is structured as follows: Section 2 reviews background knowledge and
related works; Section 3 proposes explorations of random variables to represent relevant
knowledge from interdisciplinary; Section 4 contributes an IoT device to collect real-time
observations as states of random variables; Section 5 analyzes correlations between interdis-
ciplinary factors to explain thermal comfort; Section 6 proposes machine learning models
enhanced by interdisciplinary aspects; Section 7 summarizes the design and deployment of
IoT-based measurement for thermal comfort in the indoor environment.

2. Related Works

This section proposes background knowledge for understanding relevant factors
whose effects may impact indoor thermal comforts. Recent advances in the HVAC system,
outdoor environment, and indoor environment are investigated to show current progress
and future trends.

2.1. Thermal Comfort and Life Quality

Uncomfortable environments may impact occupants’ quality of life, which is relevant
to work productivity and health. In health care sectors, controlling indoor thermal comfort
plays a vital role that can help physicians understand patients’ problems that they can diag-
nose and thus plan for proper treatment. Aghamohammadi et al. [12] examined that toxic
environments caused by thermal comfort are highly associated with somatic symptoms
(e.g., insomnia, headache, fatigue, and dizziness). They claimed that the statistical signifi-
cance between them shows strong correlations. Sun et al. [13] discovered that bad thermal
comfort has significantly co-occurred with children’s respiratory diseases (e.g., asthma, dry
cough, and pneumonia). Tsang et al. [14] and Cao et al. [15] discussed that sleep quality is
a factor of life quality, and poor thermal comfort directly affects it. They summarized that
reasonable control of indoor thermal comfort could help occupants reach good life quality.
Such reasonable control can only be accomplished if the engineers understand outdoor
environments and HVAC system factors.

Ma et al. [16] discussed measuring the right factors relevant to occupant wellbeing
based on thermal comfort. They reviewed recent trends and found that understanding
thermal comfort depends on how related random variables are well defined. They must be
designed to cover all conditions in environments because computer systems can monitor
and analyze the situation from the environment based on random variables. They discussed
that designing and developing random variables aligned with IoT and ML technologies is
challenging to sense, detect, and diagnose such factors. The following section will review
how ML is influential to observe and identify such relevant factors.

2.2. Fault Detection

A fault detection system is a computational process to determine abnormal events,
failures, and malfunctions, which can be unsatisfied to people and damage properties [17].
A fundamental principle of fault detection requires knowledge to reason the possible
abnormal events. Fault detection needs human-like perception to sense what happens in
a particular environment [18]. Such input is a vital feature essential to detecting the fault.
Sensor technologies such IoT devices play as perceptions to input signals into the systems.



Sensors 2022, 22, 1925 4 of 24

Automatic fault detection may employ a rule-based system (if-part analysis) deter-
mined by domain experts. However, in indoor thermal comfort, rule-based systems may
not cover in case of complex events that perform malfunctions. For example, an uncount-
able indoor environment may correlate to an outdoor setting and HVAC systems that can
randomly occur without clear rules to identify. Shi et al. [19] researched automated fault
detection and diagnostics for building systems. They discussed that ML is a core technology
that can help systems detect a fault in indoor thermal comfort. Chegari et al. [20] reviewed
recent trends and future directions for fault detection systems in indoor thermal comfort.
They showed that ML is highly capable of dealing with failures in complex environments.
The following section will show how ML may help the fault detection systems.

2.3. Machine Learning (ML)

ML is the brain of software agents to acquit knowledge and make intelligent deci-
sions [20]. It allows software agents to imitate human-like intelligence to solve particular
problems or tasks such as fault detections. It learns such problem solving using experience
provided by engineers and practitioners and improves learning performance according to
varieties of affairs [21]. In this way, indoor thermal comfort fault detection must employ
ML to encode engineer and practitioner logic on how to deal with the problem to alleviate
time-consuming and labor-intensive tasks [22].

Experiences are directions that allow ML to encode reasonable logic, and engineers
and practitioners may guide ML on identifying the faults by labeling sample data. It is
called supervised learning, which helps software agents fit the functions between sample
data and its label. Finally, software agents can automatically distinguish and classify which
events are regular or faults that help occupants make decisions.

Standard supervised ML algorithms can be divided into three approaches: geometry,
probability, and logical expression, as studied by Flach [23]. A Decision Tree (DT) is an
algorithm-based if-part expression divided instance using a Boolean valued function (if X
then-part Y). Artificial Neural Network (ANN), k-Nearest Neighbors (k-NN), and Support
Vector Machine (SVM) are distance-based metrics to compute dimensions in space (X- and
Y-axis). Naïve Bayes is a probabilistic algorithm to calculate features using a conditional
probability distribution P (Y|X). The three approaches employ different algebraic functions
but can compute and classify outcomes. However, the critical facts are that the outstanding
performance of ML algorithms depends on the quality of experiences (e.g., nonsense in,
nonsense out). Therefore, the design and development of input technologies such as IoT
devices must help ML algorithms achieve good performance. Our research question is “if
we design and develop the input process well, then ML algorithms can better perform the
task of indoor thermal comfort better”. In the next section, we will explore knowledge
contributed to the research question.

2.4. Related Works Based on IoT and ML

This section is dedicated to examining current research based on IoT devices and ML
for controlling indoor thermal comfort. We divide our reviews into three aspects: indoor
environments, outdoor environments, and HVAC systems.

Good indoor thermal comfort relies on a well-understood outdoor environment that
helps engineers operate heat transfer, and it is currently an impressive research field. Kükrer
and Eskin [24] researched how the outdoor environment in different building zones affects
indoor thermal comfort. They summarized that the outdoor climate directly affects indoor
thermal comfort, and its factors should be employed to control occupants’ satisfaction.
Chegari et al. [25] found that outdoor environmental factors and indoor thermal comforts
are highly associated. They analyzed outdoor environments related to building design,
such as opaque and glazed walls, shading devices, and thermal ventilation. They highly
influence indoor thermal comfort, and building designers must consider them to provide
occupants’ satisfactory feelings. In conclusion, these outdoor environment factors influence
the indoor thermal comfort where 90% of occupants spend their time in the building.
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Moreover, occupants’ wellbeing and health rely on this concern, and the indoor thermal
comfort needs more contribution to help people adapt themselves based on a dynamic
outdoor environment [26].

The factors of discovery of indoor environment thermal comfort is recently an important
issue and has been widely paid attention to from various research aspects. Song et al. [27]
reviewed data-driven research of human comfort in the indoor environment. They found
that IoT devices and MLs are the technologies that were most applied to discover indoor
environmental factors. Zhang et al. [28] studied the roles of temperature and humidity that
impacted thermal comfort in the indoor environment, while Kong et al. [29] studied how
temperature and humidity correlate to indoor thermal comfort. They summarized that
indoor temperature and humidity are dynamic, and controlling them using IoT devices
and MLs to be stable is challenging because they are random, unknowable patterns, and
automatic systems to handle them are demanded.

Automatic HVAC systems are a mechanical control of fresh airflow movement in a
building. They offer intelligent mechanisms to balance indoor and outdoor temperature
and humidity. IoT devices and MLs are the heart of automatic HVAC systems that mimic
human-like manners to perceive and detect indoor thermal comfort events and control them
to satisfy occupants. Yan [30] proposed an automatic approach for monitoring a mechanism
of HVAC systems that can identify instrument malfunction early. He applied IoT devices
for reading signals from HVAC systems, employed ML to detect fault mechanisms, and
discussed that IoT devices and MLs are potent tools for automatically controlling HVAC
systems. Li et al. [31] proposed a system for detecting fault mechanisms in HVAC systems.
They employed sensor-driven information to train machine learning models that could
identify abnormal events effectively.

Although the work has been intensively researched in various fields (e.g., outdoor
environment, indoor environment, and HVAC systems), no work explains the factors of
complex problems that may co-occur or co-cause occupant discomfort. Following simple
questions, “Why are we suffering from muggy feelings although the HVAC system has been
running with perfect mechanisms?” and “Why do we feel cooler or hotter than what we set it
on the thermostat?”, it is hard to answer such occupant questions immediately, primarily
when HVAC systems produce the problem that originates uncomfortability in an indoor
environment. There are recently no standard measurements to diagnose problems without
engineers and technicians who must manually check HVAC systems on the physical site.
They might break up the HVAC systems to set up sensors to collect relevant information
automatically. However, it is a high cost and requires advanced knowledge in heat transfer-
based technologies to do so.

These need new contributions to study co-effects from interdisciplinary fields to
explain how these events have happened that can be employed to predict such problems
automatically. Therefore, our research aims to fill this gap by contributing IoT-based
measurements for indoor thermal comfort caused by HVAC system problems and dynamic
outdoor environments using machine learning for automatic detection events.

3. Overview System of Thermal Comfort Diagnosis

This section proposes the overview architecture to connect indoor and outdoor envi-
ronments and HVAC systems. These can help engineers realize and deal with the problem
by using real-time digital information to monitor and detect them early. The overview
architecture is shown in Figure 1.

Figure 1 consists of five components: (1) home connecting, (2) data sensing, (3) data
preprocessing, (4) comfort interpreting, and (5) application. Home connecting represents
environments where the system needs to observe indoor thermal comfort and its outdoor
conditions. It is a sensory component acting as engineer perceptions to observe indoor
and outdoor situations, and the HVAC system functions to figure out physical sites. Home
connecting requires installing sensor-related devices and software to activate the system
running when devices are turned on. Such software also controls devices to frequently read
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analog signals from the environment and connects physical sites to a cloud-based platform
to stream analog signals to the data sensing component. Data sensing is the first component
of a cloud-based platform site. It determines signal features from each sensor and stores
them into digital formats. Data sensing holds only raw digital data from physical sites, but
it cannot be employed for thermal comfort detection and diagnosis and must be prepared
first. Data preprocessing transforms raw digital data into a machine-readable format. It
discretizes raw signals to thermal comfort events and describes their semantics using
descriptive statistics such as mean, standard deviation, min, and max. These statistical
factors are employed as input features for machine learning to model thermal comfort
knowledge. Comfort diagnosis is the system’s heart that produces outcomes using a
correlation-based machine learning model between indoor satisfactory feeling factors
and the HVAC system’s outdoor environment. The predicted outcomes are visualized to
engineers, technicians, and occupants that help them know what is happening and how to
adapt themselves at that moment to fit with a different environment.
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A sensor-related device is a hardware component that needs to be designed and
developed before running the system. In the next section, we dedicate to research on how
to perform such a device covering all the system’s environmental factors.

4. Random Variables (RVs) for Environmental Representation

Events of environments and HVAC systems are fixed (e.g., a state is known), but they
occur randomly (e.g., a time is unknown). For example, Thailand’s outdoor temperature
is fixed with specific values between 22.1 and 35.4 ◦C, but it is unknown to which value
points will happen. It can be understood how nature works, and we need to model such
understanding into a machine-readable format. We need measurable functions to encode
these possible values to the actual numbers. RVs encode characteristics of the random
phenomenon when the characteristics are fixed and defined as events. However, the events
are unknown to when and where they will occur. RV is a mathematical object and allows
software agents to compute its events (i.g., estimated, calculated, and classified). We
employed RVs to model relevant factors based on the HVAC system, outdoor environment,
and indoor environment, which is listed in Table 1.

Table 1 details low-level information using continuous RVs and their possible val-
ues. The low-level information is directly sensed from physical sensors without semantic
meaning that humans can understand. RVs are determined state ranges according to their
natures. For example, temperatures are set to 0−60 ◦C because 56.7 ◦C is the highest tem-
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perature recorded on Earth. People cannot deal with temperatures high than this, which
causes death from hyperthermia.

Table 1. The low-level information based on RVs for thermal comfort measurement.

No. Random Variable State

1. Indoor Temperature (I-Temp) 0.00–60.00 ◦C
2. Indoor Relative Humidity (I-RH) 0–100% RH
3. Outdoor Temperature (O-Temp) 0.00–60.00 ◦C
4. Outdoor Humidity (O-RH) 0–100% RH
5. Electric Current (Ampere) 0.00–20.00 A
6. Timestamping (Date time) 24 h timestamp (YYYY-MM-DD HH:MM:SS)

Electric current is a new assumption to model HVAC load behavior that ranges be-
tween 0.00−20.00 amperes. It is proposed to measure the effectiveness of an HVAC system.
The assumption is “If we observe HVAC airflow in different conditions, the characteristics of
power consumption behavior must be dissimilar from each other”. Because the hardest airflow
is transferred, more power is needed to drive the HVAC system. We can employ electric
current as an indirect measurement of airflow patterns in indoor thermal comfort. In other
words, it aims to simplify the complex testing of mechanical heat transfer and address the
labor-intensive and time-consuming tasks for engineers to spot problems on physical sites
replaced by IoT technologies to detect instead.

Timestamping indexes a transaction of all relevant factors that helps software agents
identify thermal comfort events. It represents electronic timestamps (year, month, day, hour,
minute, second) that are crucial for recording when such an event occurs. The electronic
timestamp is recoded by a computer system (e.g., microcontroller unit) based on the
Time Stamp Authority (TSA) server standard. Software agents can exchange information
referring to the same event time indexing.

In thermal comfort, we can understand that all factors from physical sensors are
continuous, but we need high-level information to make immediate decisions. For instance,
we do not consider the temperature of 32.4854527 . . . ◦C with ±0.3 ◦C but need to know
whether it is hot (higher than 27 ◦C), it is cool (lower than 20 ◦C), or it is acceptable
(between 20 and 27 ◦C). The semantics of data points is essential information, and low-
level information models semantics of humans, understanding how they feel after sensing
signals from environments. In simple words, low-level information is derived from low-
level information with human understanding representations.

High-level information models relate factors according to interdisciplinary views (e.g.,
HVAC system, indoor environment, and outdoor environment). The low-level information
from Table 2 models signals from physical sensors working as direct human perception.
The high-level information model semantic, understanding how a human feels, needs prior
knowledge to infer such feeling. Therefore, the low-level information is raw materials
for converting into high-level information. For example, to encode indoor feeling, indoor
temperature and humidity are primary sources of whether they are balanced to comfort hu-
mans or needed for control and adjustment. Our high-level information for environmental
measurement is represented in Table 2.

Table 2 shows high-level information using continuous and discrete RVs to encode
relevant states as possible events in the human-level understanding called prior knowledge.
Outdoor Feeling and Indoor Feeling are synthesized based on the balance of two primary
sources: temperature (Temp) and relative humidity (RH). Prior knowledge for balancing
between temp and RH was introduced by Xiong and Yao [32], of which we can program
this prior knowledge and then transfer it to the microcontroller, which allows agents to
transform the raw signal to human understanding. For example, if the temperature is
between 26 and 27 ◦C, an expected relative humidity should be between 40% and 50% that
is an optimal dew point for comfortable occupant feeling.
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Table 2. The high-level information based on RVs for thermal comfort measurement.

No. Discrete RV State Primary Source

1. HVAC Airflow Good, Bad, Worst Engineering
Intervention

2. Indoor Feeling Comfortable, Dry, Uncomfortable, Worst I-Temp and I-RH
3. Outdoor Feeling Comfortable, Dry, Uncomfortable, Worst O-Temp and O-RH
4. Time of Day Morning, Afternoon, Evening, Night Date Time
5. In-Out Temp Diff −20.00−20.00 ◦C I-Temp and O-Temp
6. In-Out Humi Diff 1.00−60.00% RH I-RH and O-RH
7. Thermostat Diff 1.00−10.00 ◦C Thermostat and I-Temp

Humidity and temperature differential (Hum–Temp Diff) is the difference in tempera-
ture and humidity between indoor and outdoor environments. Hum–Temp Diff implies
the heat transfer process of HVAC Airflow, how it can move heat from inside to outside,
and how it can balance indoor and outdoor humidity. Engineers and technicians utilize
them to diagnose problems in thermal conform. In this way, we need prior knowledge to
transform raw data into Hum–Temp Diff. Prior knowledge of this concern was initially
carried out by Humphreys [33] and Zhang [34], who studied relationships between indoor
and outdoor environments. We model Hum–Temp Diff based on three aspects: In-Out
Temp Diff, In-Out Humi Diff, and Thermostat Diff. In-Out Temp Diff and In-Out Humi
Diff represent the differential between indoor and outdoor using the simple mathematic
minus operation of two primary sources. Thermostat Diff models the differential between
exact indoor temperature (sensor measuring) and temperature expectation (temperature
on HVAC thermostat set up by the user).

The HVAC Airflow reflexes the HVAC system performance in the process of dew point
balancing. We designed HVAC Airflow RV based on the suggestion from engineers who
are experienced with problem solving in indoor thermal comfort. They claimed that most
indoor thermal comfort problems relate to HVAC system performance. In contrast, figuring
out such a problem is complex and requires high heat transfer mechanical engineering
skills. For example, HVAC Airflow is good, bad, or worst, and engineers must respond
differently to such events to fix or prevent uncomfortable situations.

Time of Day roughly models a period of occurring events, and people do not recognize
it with complete information. For example, they do not say, “it was very muggy on Monday
2nd, August 2021 at 22:57:36” instead, they may say, “it was very muggy last night”. They show
that timestamping can be discretized when they want to explain thermal comfort events.
We then modeled the Time of Day by discretizing its states into the morning, afternoon,
evening, and night from the date–time factor that software agents can understand in the
same manner with human-like understanding.

The following section will introduce a new design and deployment of IoT devices for
thermal comfort application aligned with random variables for environmental representation.

5. IoT-Based Environment Perception

The design and development of sensor-related devices are challenging because they
need to percept multiple factors from different aspects. To develop sensory components,
one must understand how nature works based on interdisciplinary research between HVAC
systems, indoor environment, and outdoor environment. This section aims to elaborate on
how agents perceive relevant factors using computing and IoT technologies.

5.1. Environmental Factor Observation

The hardest part in thermal comfort is identifying critical environmental factors and
representing them in a machine-readable format. We aim to design sensor-related devices
using fewer sensor models but can represent environmental factors effectively, because we
consider opportunities to expand this device prototype to be a product for future businesses
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that should be applied in practice with reasonable price that occupants can afford on them
in real-world.

We begin our design by considering the indoor environment that concerns relative
humidity and temperature. According to the literature review, feel-like comfort depends
upon the balance between humidity and temperature, which recent research has proven.
We decided to employ relative humidity and temperature to represent our indoor envi-
ronment because the HVAC system balances relative indoor humidity and temperature
by transferring indoor airflow to an outdoor environment that wishes to obtain the best
indoor thermal comfort.

The effectiveness of an HVAC system relies on how airflow exchanges between indoor
and outdoor environments. Unfortunately, measuring such airflow requires a high skill of
mechanical engineering and needs to customize the physical model of the HVAC system to
install sensors and trace the airflow quality. Moreover, modification of the physical model
will automatically expire the warranty, which is a big problem, and occupants are concerned
about this; thus, we should avoid this solution. We then designed an indirect measurement
of HVAC system airflow quality. It imitates when physicians want to treat their patients
by initially measuring the symptom to diagnose diseases. For instance, patients’ runny
noses may be diagnosed with flu, or skin rashes may be diagnosed as allergies. Observing
symptoms is basic information and might not be complete to confirm diseases but is still
helpful to warning physicians early to treat first aid and prevent patients from becoming
worse. We employ this intelligent manner to diagnose the HVAC system problem through
its electricity consumption. In simple words, the highest level of electricity consultations
represents the symptom of the most demanding mechanical engine of HVAC system works
because of airflow problem.

The outdoor environment is another factor that influences indoor thermal comfort,
which depends on its variation. For example, outdoor temperature and relative humidity
vary according to location, season, and duration, which are out of control. We encode the
variation by measuring outdoor temperature and relative humidity.

We aim to design sensor-related devices by covering three relevant fields: indoor
environment, outdoor environment, and HVAC system, and need to specify physical
sensor models, their factors, possible ranges, and error rates. We choose the sensor models
that can function on relevant fields, and the details of these needs are shown in Table 3.

Table 3. The sensor models and their functions in interdisciplinary fields.

No. Field Physical Sensor
Model Factor Range Error Rate

1. Indoor
Environment

DHT22 AM2302
Temperature −40–80 ◦C ±0.2 ◦C

Relative Humidity 0–100% RH ±1.0% RH
2. HVAC system SCT-013 Ampere 0–100 A ≤0.2 A

3. Outdoor
Environment

AM2315 I2C Single
Bus

Temperature −40–125 ◦C ±0.3 ◦C
Relative Humidity 0–100% RH ±2.0% RH

Table 3 shows that physical sensor models used in indoor and outdoor environments
are different, although their factors are similar. Sensor models for the outdoor environment
need waterproof factions and endure bad situations such as heavy rain and intensive
sunlight. The physical sensor model can be replaced by alternate model brands available
in the market zone. For instance, if AM2315 I2C Single Bus might not be available for the
outdoor environment, it can be replaced by LHT65 LoRaWAN or something else as long as
their factor properties are similar. However, these sensors are analog-read, and hardware
can only be run when the controller commands them.

The roles of the controller are to control sensor streaming signals from the environment
and connect them with a cloud-based platform. It is an essential part of our system.
Moreover, the controller is a source of timestamping to produce the index of events. It
connects to a timestamping server using computer software that needs to be programmed.
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We apply the ESP32 microcontroller unit, multicore processors for three main reasons:
(1) low cost of usage and purchase, (2) low-power consumption, and (3) built-in Wi-Fi and
Bluetooth microchip connection with open source. Ioannou et al. [35] and Karthick et al. [36]
employed ESP32 in a real-time system for controlling sensors and transferring their signals
to a cloud-based platform. They discussed that such a microcontroller could process
information effectively. Therefore, we selected ESP32 as a microcontroller to control relevant
sensors and connect them with our cloud platform. Microcontrollers can be used differently
according to the purpose and available items. For example, the popular microcontrollers
applied in air quality monitoring systems are ESP8266, Arduino Uno, and Raspberry Pi [26].

The following section details the design and development of the device perception to
connect the sensor models.

5.2. Design and Development of Device Perception

Sensor-related devices must sense all relevant factors in a parallel and real-time
manner. They need a specifically well-designed and functional prototype to fulfill such a
manner. We propose utilizing sensors detailed in Table 3 and interconnecting them using
an ESP32 microcontroller, a medium between real-world environment and cloud platform.
ESP32 connection employs Message Queue Telemetry Transport (MQTT) [37], the standard
messaging protocol for the Internet of Things (IoT), which depends upon communication
network bandwidth and can undesirably be down. We address this concern by plugging
the secure digital card (SD card) to store continuous signals if the system fails and resend it
to the cloud again when the connection is recovered. Our blueprint of circuit design and
development and prototype is shown in Figure 2.

Figure 2 shows the design and implementation of a final prototype that can sense the
thermal factors from the environment. Figure 2a,b shows the creation of the PCB sensor
connection in the device prototype. It consists of five elements. DHT22 is selected to observe
the temperature and relative humidity as indoor conditions and outdoor conditions. SCT-
013 is for HVAC systems’ electrical usage and SD Card reader for temporal data storage
before streaming to cloud storage. Lastly, we control relevant sensors based on the ESP32
microcontroller to convert analog into digital signals using the software. The final prototype
we used is shown in Figure 2c. The best of our prototype is compact and able to plug and
play the sensors in case the sensors are defective, and this provides an easy way to replace
the new one.

For the software aspect, we implemented the software for sensor controlling using
MicroPython [38]. Micropython is a low-level Python operating with advanced features to
transfer commands from general Python to embedded systems. Based on Micropython,
they are open source and ready-used libraries to control physical sensors such as DHT,
AM2320, and EmonLib for monitoring electric current consumed, which works well with
SCT-013 [39]. We streamed signals from all factors to Google Cloud Internet of Things (IoT)
Core [40], data collection in the cloud, ready to analyze and visualize to support engineers
interpreting thermal comfort situations.

This prototype will be installed to observe environments as a human-like perception-
based sensory device. Our design and development process was consulted and guided by
mechanical engineers in heat transfer and thermal comfort. We aimed to minimize relevant
factor sensing, which is crucial for future commercialization but is still good enough to
help them understand thermal comfort.

The following section will employ this signal to analyze how such factors relate to
indoor thermal comfort and evaluate relationships between system load behaviors and
airflow patterns. RVs from Table 3 will show how they can affect indoor thermal comfort.
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6. Indoor Thermal Comfort Measurement Case Study

This section highlights how to measure relevant factors based on RVs. Both the
outdoor environment and HVAC system can correlate the indoor thermal comfort factors.
Our research questions are (1) “Do the factors sensing from the indoor environment, outdoor
environment, and HVAC system have a statistically significant relationship between them?” and
(2) “Is there a statistical association between indoor environments, airflow patterns, and power
consumptions?”. Herein, we do not ask about outdoor temperature and relative humidity
that may impact indoor thermal comfort. They are well-known factors that most current
research showed highly impact indoor thermal comfort [41,42].

6.1. Design of Experiment: Environmental Setup

Our experiment was set up in the living room at the computer engineering department,
Prince of Songkhla University, Songkhla, Thailand. The room size is 6 × 12 m and consists
of six LED light panels, one LED television, and one personal computer. The airflow model
of the HVAC system uses air condition based on an on-off system with 30,000 BTU (British
Thermal Unit), and its maximum power consumption is 11 Amp per hour reported on the
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paper plate model. The thermostat of the air condition system was set up to 25 ◦C, and the
air velocity was fixed to an auto mode.

To maintain the conditions of the outdoor environment, we set the experiment date
from January 2020 to February 2021. Songkhla has a tropical climate, which is hot all year
round (30–34 ◦C).

This indoor environment was fixed (e.g., no additional object is moved in or moved
out of the room) during data collecting to ensure no radiant heat from the additional object,
which can be biased to indoor thermal comfort during the experiment. The daily occupancy
pattern in the room was regular and consistent across the days. Three researchers lived
daily in the room from 9.00 a.m. until 5.00 p.m.. The normal activities were meeting and
performing research. According to the hot weather, people wore hot weather clothing that
had a small effect on the heat exchange between the skin/clothing boundaries. The room
and its facilities required for our experiment are shown in Figure 3.
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Figure 3 shows that our prototypes were installed in two positions where Prototype 1
is for the indoor environment and Prototype 2 is for the outdoor environment and HVAC
system. The prototype was programmed to control all sensors by collecting data every two
seconds. Prototype 1 measures indoor temperature and humidity where its position must
be set close to air condition. It can represent how the air conditioner’s thermostat works,
which is helpful for engineers to diagnose indoor thermal comfort problems caused by the
HVAC system. Prototype 2 measures two situations: (1) outdoor temperature and humidity
and (2) electricity consumption, which consider only the HVAC system. Its position must be
installed on the outdoor building site (e.g., not on partitions between buildings) to directly
perceive sunlight, wind, shade, and rain. These can model temperature and humidity
random variables for each condition. For instance, intensive sunlight may relate to high
temperatures, and heavy rain may relate to high humidity. Electricity consumption is
measured through current lines (e.g., an average of three phases) that are supplied to
the HVAC system. The current measurement is wired to a compressor directed to the
outdoor prototype.

Our prototypes will read signals from indoor, outdoor, and HVAC systems, store them
in the SD card, and stream them to the cloud-based platform. In the next section, we will
elaborate on how such signals can expose the characteristics of each situation.
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6.2. Normal Distribution of Physical Sensor-Based Relevant Factors

This research aims to employ basic sensors and measure how HVAC systems can
affect indoor thermal comforts but can uncover such factors in the standard of professional
equipment. Normal distributions of each relevant factor are essential information that
engineers must employ to identify problems for indoor thermal comforts. It exposes
behaviors of factor characteristics based on descriptive statistics.

Temperature and relative humidity of outdoor and indoor environments are well-
known factors to measure thermal comfort that are statically changing together in na-
ture [43]. Power consumption of HVAC systems is another factor that plays a crucial role in
building and energy fields. Recently, engineers and technicians have manually measured
how the HVAC systems consume energy during the process with professional equipment.
However, problems caused by HVAC systems that affect indoor thermal comforts through
energy consumption behavior are not considered. Moreover, it is not assessable to ordinary
users to measure how they can be related. We collect these signals from our prototypes us-
ing a randomized controlled trial (RTC), design trial intervention based on three categories
based on HVAC system behaviors: (1) good airflow, (2) bad airflow, and (3) worst airflow.
The HVAC system behaviors have been categorized and determined by engineers and
technicians who have respondent to maintain the HVAC system. These categories provide
an insightful information for respondents to diagnose the causes of system behavior and
the urgence of the responding.

In this case study, we control the air conditioner’s filters by blocking airflow streaming
through the evaporator coil as if filters lack proper maintenance that cause them to be dirty.
This situation is a typical mistake that occupants do not realize and are concerned about,
while it is a primary cause of problems in indoor thermal comforts.

We set 0% (e.g., filters are completely blocked, and no air can flow through the system),
20% (e.g., filters are blocked in 80% of their areas, which means less air can flow through
the system), and 100% (e.g., filters are spotless, and air can provide perfect flow through the
system) of airflows. At the same time, other conditions such as the amount of refrigerant,
thermostat sensor, condensate drain, compressor, and fan controls were pre-checked and
proved that the HVAC system could run perfectly. The RTC is a powerful method to
simulate rare events, theory of black swan events, such as 0% and 20% airflows that are
difficult to happen but are likely possible in real-world conditions. We did not measure the
other condition because we need to approve our research questions with basic experiments.
Nevertheless, it makes sense to confirm that HVAC systems directly impact indoor thermal
comforts, and indirect measurement based on cheap sensors can initially identify HVAC
systems problems.

We sample the data for three scenarios from signal collections where the outdoor
environments are fixed by collecting in the same season and employing a standard of
descriptive statistics to uncover a normal distribution of each relevant factor. Samples for
each scenario are categorized based on airflow conditions: good, bad, and worse filters.
We used sample sizes of 1600 transactions to statistically analyze each airflow conditions.
Good airflow behavior was collected from 9.00 a.m. until 5.00 p.m. on Wednesday, 21 July
2021. The summarization of good airflow is shown in Table 4.

Table 4. Summary of good airflow condition.

Summary/Factor I-Temp I-RH O-Temp O-RH Ampere

Minimum 24.80 41.20 30.10 70.20 0.14
1st Quartile 25.40 44.50 31.20 77.00 0.18

Median 25.50 46.40 31.80 79.20 6.94
3rd Quartile 25.70 47.80 32.10 81.80 7.71
Maximum 26.00 51.60 34.60 91.80 10.12

Mean 25.45 46.24 31.62 80.18 5.32
Standard Deviation 0.26 2.07 0.64 5.20 3.35
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Table 4 clarifies the distributions of each random variable that the mean of indoor
temperature (I-Temp) is 25.45 ± 0.26 ◦C, converged to the ideal temperature setting on
the thermostat, which is 25.00 ◦C. The indoor humidity (I-RH) is 46.24 ± 2.07%RH that is
perfectly comfortable for occupants according to the standard of the dew point prior knowl-
edge (see the detail in [32]). The electric current (Ampere) consumed 5.32 ± 3.35 A that is
around half the default value set on the paper plate model that is 11.00 A. It is the power
used while transferring the heat from indoors into outdoors. The outdoor environment is
the worst condition where the outdoor temperature (O-Temp) is 31.62 ± 0.64 ◦C, and the
outdoor humidity (O-RH) is 80.18 ± 5.20% RH. Engineers interpret that the performance
of the HVAC system is a good condition that can control indoor thermal comfort well,
although the outdoor condition is worst.

We sampled the data of bad airflow from 9.00 a.m. until 5.00 p.m. on Friday, 2 July
2021. The statistical description is shown in Table 5.

Table 5. Summary of bad airflow condition.

Summary/Factor I-Temp I-RH O-Temp O-RH Ampere

Minimum 22.20 33.20 29.70 63.40 0.05
1st Quartile 22.60 37.10 30.90 71.40 6.47

Median 23.00 41.10 31.60 81.40 7.02
3rd Quartile 23.30 44.20 31.90 85.40 7.60
Maximum 23.90 54.00 35.00 96.20 9.93

Mean 22.98 40.83 31.38 78.76 6.10
Standard Deviation 0.41 4.55 0.61 7.95 2.65

Table 5 shows the distributions where airflow condition is bad and the average trend
of outdoor temperature and relative humidity is equally likely with Table 3 (when con-
sidering together their standard deviations). The indoor environment, temperature, and
relative humidity are entirely different from Table 3, and the indoor thermal comfort is
uncomfortable according to the standard dew point. The temperature of 22.98 ◦C with
40.83% of humidity is dry for occupants to spend their time working. Significantly, the first
quartile of indoor environment shows where the temperature is less than 23.00 ◦C, and
humidity is less than 40% RH. They are undefinable, or humans might not be able to spend
their lives in such the worst situation because it causes them to be sick. It confirms that the
bad condition of the HVAC system influences indoor thermal comfort where the outdoor
environment is similar to the good condition of the HVAC system from Table 4. The exciting
point is electricity consumption, where the average power of bad airflow is used 6.1 A,
and good airflow is used 5.32 A, in which their behaviors are different. Moreover, their
first quartile shows that bad airflow consumes 6.47 A while good airflow consumes 0.18 A,
highlighting the patterns of different behaviors between the two scenarios.

The worst airflow condition was set up from 9.00 a.m. until 5.00 p.m. on Thursday, 8
July 2021. The statistical description is shown in Table 6.

Table 6. Summary of worst airflow condition.

Summary/Factor I-Temp I-RH O-Temp O-RH Ampere

Minimum 23.00 31.10 27.20 65.30 0.01
1st Quartile 23.90 34.10 31.10 73.00 6.56

Median 26.50 40.10 31.80 76.40 7.10
3rd Quartile 28.40 40.60 32.30 83.70 7.61
Maximum 28.80 48.50 36.50 99.10 8.65

Mean 26.15 38.09 31.35 79.17 6.85
Standard Deviation 2.08 3.66 1.51 9.18 1.54

Table 6 shows that the distributions of indoor environments are comfortable where the
average temperature is 26.15 ◦C and the average relative humidity is 38.09% RH. The rest of
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the average factors are similar to the bad conditions in Table 5. However, when we consider
the details, we found that indoor thermal comfort is more dynamic than other conditions.
The first quartile of the indoor environment is dry, where the average temperature is
23.90 ◦C. The average relative humidity is 34.10% RH. The median is quite acceptable,
where the average temperature is 26.50 ◦C, and the average relative humidity is 40.10% RH.
However, it is not comforting, as the thermostat is set up while the third quartile is warmer
than the rest. It shows that indoor thermal comfort in a day is changed entirely from
cooler to warmer, which can harm occupants both for health and productivity. Susceptible
occupants such as older adults and patients should avoid this situation to prevent the
worst effect. The behavior of electricity consumption is similar to bad conditions but still
has different features, such as that the median and the standard deviation are higher and
narrower than the rest.

In conclusion, the behavior of the HVAC system directly associates with indoor thermal
comfort, and controlling thermal comfort must interpret how airflow works. Moreover,
power consumption highly correlates to airflow behavior, and we can say that power
consumption is an indirect measurement of HVAC systems. It confirms that our IoT-based
design and development prototype can percept key signals from environments, and we
can utilize this to understand indoor thermal comforts.

6.3. Correlations between Continuous RVs

The goal of this section is to answer the research question “Do the factors sensed
from the indoor environment, HVAC system, and outdoor environment have a statistically
significant relationship between them?”. It aims to measure correlation coefficients between
continuous variable factors that can be employed to estimate how relevant factors can
strongly co-occur if one of them is observed.

We applied Pearson’s correlation (Pearson’s R) to perform a measurement that can
return the statistical relationship in three possible ranges of outcomes. Pearson’s R is
the symmetric relationship between two variables (Ampere co-related to I-Temp equals
I-Temp co-related to Ampere), regardless of the types of their factor unit (e.g., ◦C or % RH).
Ranges of Pearson’s outcomes are between +1 to −1, where the positive score (+1) defines if
a relationship of one random variable factor increases, then the magnitude of other random
variable factors will increase. The negative score (−1) represents a relationship of one
random variable factor increasing, and the magnitude of the other random variable factors
decreasing. Neutral (0) indicates that changing the relationship of one random variable
factor is not associated with the rest. The behavior of events co-occurring from Pearson’s
R helps us make sure that our design of perception device helps support engineers and
technicians to identify the problem of thermal comforts. The correlation coefficient between
continuous random variables is shown in Figure 4.
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Figure 4 shows correlation coefficients between factors from the indoor, outdoor, and
HVAC systems based on the Mi × Mj matrix. Each cell represents symmetric correlation
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(Rij) measuring the linear association between row ith factor and column jth factor. The
color gradation from blue to white represents a positive relationship (+1 to 0), and the color
gradation from white to red represents a negative relationship (0 to −1).

We can interpret the degree of correlations according to the cell; the pairs of O-
Temp and O-RH and O-Temp and I-RH are perfectly opposing. In comparison, the pairs
of I-Temp and I-RH and I-Temp and I-RH are perfectly positive regardless of airflow
conditions because these correlations are changing together in nature. Their values are
slightly different in each airflow condition but still obverse the features and directions of
such correlations. Especially, Ampere in all conditions is relevant to the remaining factors
(overall value lies over ±0.50) that can interpret whether it can be used to observe how the
rest of factors appear if Ampere changes its correlations or directions.

When we compare the worst condition with the rest, some cells change the correlations’
directions entirely. For example, the pairs of Ampere and I-Temp, I-Temp and O-RH, and
O-Temp and I-Temp change the directions (from blue to red or vice versa) that means
airflow plays a critical role in indoor thermal comfort.

In conclusion, most of them are likely co-occurring, and they can be used as informa-
tion in event detection and explanation of thermal comfort. However, correlations between
continuous random variables are initial information based on physical perception. We
also need to analyze in human levels if they are highly significant between the indoor
environment, outdoor environment, and HVAC system. In the next section, we design
measurement of discrete variables, whether they have statistical significance or not.

6.4. Correlations between Discrete RVs

This section aims to answer the research question “Is there a statistical association between
indoor environments, airflow patterns, and power consumption?” that is based on observations
from power consumption (Ampere). We begin our measurement using analysis of variance
(ANOVA) to test the statistical significance of discrete random variables in the viewpoint of
power consumption. Our goal is to indirectly measure airflow patterns of HVAC systems
through power consumption of how they associate with indoor thermal comfort. Our
case study is based on the reality that events randomly occur and are likely unbalanced.
Moreover, we can understand that some RVs play an important role only when they interact,
such as TimeOfDay and Ampere. It occurs independently on an everyday basis and has
no statistical significance, but it becomes significantly important when conditioned with
airflow behavior. Therefore, we measured our discrete RVs from Table 2 by choosing
two-way ANOVA using the Type III method of sums of squares and setting the significance
α level (alpha) at 0.05, as suggested by Larson [44]. The measurements using two-way
ANOVA are shown in Table 7.

Table 7. The results of two-way ANOVA based on ampere-fixed observation.

Source Degrees of Freedom F Statistic p Value

Target 3 2810.49 <0.0001
In_feellike 4 65.46 <0.0001 × 10−55

TimeOfDay 6 39.83 <0.0001 × 10−48

In-Out Temp Diff 1 1574.81 <0.0001
In-Out Humi Diff 1 54.79 <0.0001 × 10−13

Thermostat Diff 1 1094.35 <0.0001 × 10−230

In-Out Humi Diff × In_feellike 4 62.69 <0.0001 × 10−52

Residual Variance 13177.0

Table 7 summarizes the statistical significance of discrete RVs where Target, TimeOf-
Day, In-Out Temp Diff, and In_feellike are perfectly relevant to Ampere (p value < 0.0001)
except for In-Out Humi Diff and Thermostat Diff that are lower than others (p values
~0.0478 and ~0.0278, respectively). Nevertheless, they still have statistical significance
because p values are higher than the α level. When considering them together with Target
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based on two-way ANOVA (e.g., X1 × X2 means X1 and X2 co-influence Y), they become
significantly important (p values < 0.0001). It confirms that our design of discrete RVs for
thermal comfort measurement works and is ready to be applied in the event detection and
explanation approach. However, we see that Ex_feellike was not included in the Table
because the outdoor environment in our case study was too high humidity (~100% RH)
and temperature (~34 ◦C) through the years. This situation is considered an unsuitable
environment for humans to spend their time outside the building, and Ex_feellike becomes
a constant with no significance with the others; thus, we excluded it from the Table.

We simplified this concern by visualizing a mathematical comparison of Ampere distri-
butions when they are conditioned on a TimeOfDay in different Target. The mathematical
comparisons are encoded in the form of a boxplot that is illustrated in Figure 5.
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Figure 5 displays the overall distributions between good, bad, and worst conditions in
the boxplot (boxplot of power off condition shows no information because its ampere factor
has zero value). Boxplot represents the distributions of each event that the mid-point in the
box (red lines) encodes for median values, and start and end points encode for minimum
and maximum values. The area on the top median encodes 25% of its larger values, and
the below-median in the box encodes 25% of its lower values.

We can see that these good and bad airflows are approximately equal (between four
and seven), but they are entirely different when we consider the view of TimeOfDay. For
example, the median of event distributions of good and bad airflows in the early morning is
close, but areas on top and below red lines are different. It confirms that Ampere correlates
to airflow conditions. In contrast, the event distributions conditioned on the worst airflow
are different from the others. Their median and areas on top and below the red lines are
shown in different shapes. We can say that the features of worst airflow are outstanding,
and they are helpful to identify the events of indoor thermal comforts.

We can conclude that both continuous and discrete RVs are highly potential to be used
in event detection and explanation of indoor thermal comfort. In the next section, we will
approve our assumption by employing the RVs to train Deep Neural Networks that aim to
model features for indoor thermal diagnosis.

7. Experimental Setup Based on Machine Learning

This section evaluates whether our predefined random variables, both continuous
RVs and discrete RVs, can help software agents identify problems caused by the HVAC
system semantically. RVs are modeled based on prior knowledge that represents human-
like intelligence, particularly discrete RVs encoding for human-like interpretation. The
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research question is “Do well-defined RVs from sensors help software agents predict HVAC
system problems?”.

7.1. Model Testing Metrics

We employed ML classification metrics that are precision, recall, and F-measure
to evaluate model performance. Precision is a proportional ratio of correctly predicted
outcomes against total predicted outcomes from models; recall is a proportional ratio of
correctly predicted outcomes against actual outcomes from models; F-measure is a balanced
point between precision and recall. We used the well-known python library—scikit-learn
for the metrics computation.

The formula metrics of Precision, Recall, and F-measure are calculated as:
Precision = TP

TP+FP , Recall = TP
TP+FN , F − measure = 2×(Precision × Recall)

(Precision + Recall) . True positives
(TP) represent the case of corrected outcomes from models that are agreed with the actual
predicted outcomes. False positives (FP) represent incorrect outcomes from models that
disagree with the actual predicted outcomes. False negatives (FN) represent unidentified
outcomes that are compared with the actual predicted outcomes.

According to the formulas, we can conclude that precision is concerned when the
results of unidentified outcomes are detailed, and recall is considered when incorrect
outcomes in the models are discussed. F-measure is considered when the medium between
precision and recall is explained.

Because Target has multiple classes, we applied macro-averaged scores (Macro Avg)
and weighted-average scores (Weighted Avg) to summarize the performance of each metric.
The Macro Avg and Weighted Avg are calculated as follows.

Macro Avg =
∑n

i=0 metrici

n
. (1)

weightedAvg =
n

∑
i=0

weighti × metrici (2)

weighti =
samplei

∑n
i=0 samplei

(3)

where metrics are Precision, Recall, and F-measure, n is the number of events of Target,
and samplei is the number of event i samplings. The Macro Avg focused on all classes have
the same priority without considering the number of classes in data samplings, which is
needed to describe the overall model performance. The Weighted Avg focused on each
class with a different priority according to the proportion of classes in data samplings. In
simple words, minor classes lacking data samplings may cause poor performance, and
Weighted Avg balances concern this by considering that each class with more proportion
should be more significant.

7.2. Experimental Objectives

The experimental objective is to evaluate the effectiveness of ML models trained by
RVs. The models’ predictive performance comparisons are proposed based on two scenar-
ios: training based on continuous RVs representing unknown prior knowledge and fully
learned from data. Training based on continuous RVs and discrete RVs represents learn-
ing from experts and observation. It conforms to how well-designed RVs can encourage
software agents to learn and solve problems close to human-like intelligence.

The assumption is that well-design random variables will benefit them to learn and
solve complex problems better. In simple words, our design and development of devices
and RVs help ML algorithms approve learning ability to recognize the complex pattern
from raw data.
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7.3. Training and Testing Data Description

In total, 263,979 transactions were collected between May 16 June and 19 August 2021,
in the environment set up in Section 6. Each transaction was transformed into 13 events as
a state of random variables and their labeled classes detailed are in Section 4. However,
the dataset was collected quickly with limited transactions, and partitioning training and
testing data using 50–50 strategies may cause the model to be overfitting or underfitting. In
this way, K-fold cross-validation was applied to slit testing and training data to avoid the
over–under fitting problem. It is a concept to randomly divide training and testing data
that employs all transactions to train and test the models.

K-fold cross-validation splits transactions into K sets where one of K sets is employed
for testing data (e.g., unseen data in the model), and the rest, K − 1 folds, is employed for
training sets. The configuration of this experiment sets k = 10, suggested by [45] where one
holds for evaluating model’ performances, and nine utilizes for hyperparameter tuning.
This solution aims to approve that the models can generalize problems and best-fit models
when they need to deal with new data never seen before.

7.4. Results

The geometry, probability, and logical expression-based models were built using two
hyperparameter tuning cases. First, partial hyperparameter tuning employs purely low-
level information from sensors built without prior knowledge. Complete hyperparameter
tuning utilizes low-level and high-level information, which means that the model was
learned from raw data aligned with existing knowledge based on human-like understand-
ing. They evaluated the performance using 10-fold cross-validation represented in Precision
(PS), Recall (RC), and F-measure (F1). The results of partial hyperparameter tuning are
shown in Table 8.

Table 8. The comparative effectiveness of Target based on partial hyperparameter tuning.

Model SVM KNN ANN DT NB

Class PS RC F1 PS RC F1 PS RC F1 PS RC F1 PS RC F1

Power Off 0.96 0.92 0.94 0.96 0.94 0.95 0.95 0.91 0.93 0.95 0.95 0.95 0.97 0.92 0.94
Bad 0.77 0.63 0.69 0.76 0.73 0.75 0.64 0.75 0.69 0.72 0.70 0.71 0.74 0.52 0.61

Good 0.77 0.93 0.84 0.85 0.91 0.88 0.78 0.77 0.78 0.85 0.86 0.85 0.70 0.93 0.80
Worst 0.86 0.60 0.71 0.86 0.79 0.82 0.83 0.67 0.74 0.78 0.82 0.80 0.91 0.44 0.60

Macro Avg 0.84 0.77 0.80 0.86 0.84 0.85 0.80 0.78 0.78 0.82 0.83 0.83 0.83 0.70 0.74
Weighted Avg 0.85 0.85 0.85 0.88 0.88 0.88 0.83 0.82 0.82 0.86 0.86 0.86 0.83 0.82 0.81

Table 8 illustrates that partial hyperparameter tuning-based models perform high
performance for all approaches. The Weighted Avg and Weighted Avg show that both
performances are equally likely. KNN can fit a model properly that can deal with unseen
data with the highest performance. KNN works well with limited factors but has over-
whelming training data to determine the distance between independent and dependent
points. In contrast, NB is an underfitting model that produces the poorest RC in the worst
airflow class. It means that NB cannot identify actual events such as Bad (52%) and Worst
(44%) because NB assumes that all factors are independent, while Bad and Worst airflows
are complex and dependent on factors to predict the output. The remaining models can
perform acceptable performance.

We enhanced the assumption by supplementing prior knowledge based on high-level
information to fine-tune hyperparameters. The results of complete hyperparameter tuning
are shown in Table 9.

Table 9 shows that all models are improved compared with partial hyperparameter
tuning-based models from Table 8. The outstanding model is DT in that Weighted Avg is
up to 94% for all metrics. DT models high-level information well because it can compute
categorical data, transform events using Boolean logic, and express most of our high-level
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information in categorical forms. Macro Avg of SVM, KNN, and ANN have perfect perfor-
mance resulting around 90%. However, they are significantly different when considering
Macro Avg F1. Their F1 Macro Avg is around 85%, slightly lower than DT. It can be summa-
rized that geometry-based models perform less than logical expression-based models when
most high-level information is represented in categorical forms. However, NB is slightly
improved but has no statistical significance, although the high-level information is given.
NB is unsuitable for complex problems, and providing new factors such as high-level
information with complex conditions did not help the model turn hyperparameters well.

Table 9. The comparative effectiveness of Target based on complete hyperparameter tuning.

Model SVM KNN ANN DT NB

Class PS RC F1 PS RC F1 PS RC F1 PS RC F1 PS RC F1

Power Off 0.97 1.00 0.99 0.98 0.98 0.98 0.96 1.00 0.98 1.00 1.00 1.00 1.00 0.98 0.99
Bad 0.83 0.67 0.74 0.77 0.76 0.77 0.87 0.68 0.76 0.86 0.86 0.86 0.66 0.59 0.62

Good 0.85 0.95 0.90 0.87 0.90 0.88 0.86 0.94 0.90 0.92 0.91 0.92 0.77 0.88 0.82
Worst 0.89 0.69 0.78 0.86 0.80 0.83 0.89 0.76 0.82 0.90 0.94 0.92 0.73 0.52 0.61

Macro Avg 0.89 0.83 0.85 0.87 0.86 0.87 0.89 0.85 0.87 0.92 0.93 0.92 0.79 0.74 0.76
Weighted Avg 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.91 0.90 0.94 0.94 0.94 0.84 0.84 0.84

We simplified the results from complete and partial hyperparameter tuning models
by comparing the overall performance based on Macro Avg, considering all classes are
equally likely important and highlighting how models improve performance differently
given additional prior knowledge. The comparative results are shown in Figure 6.
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Figure 6. Comparison of the machine learning models between partial and complete hyperparameter
tunings based on precision, recall, and f-measure: (a) comparison of the macro avg of SVM models;
(b) comparison of the macro avg of KNN models; (c) comparison of the macro avg of ANN models;
(d) comparison of the macro avg of DT models; (e) comparison of the macro avg of NB models.
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Figure 6 shows that the Precision and Recall of ANNs and DT improved around 10%,
while SVM and KNN improved approximately around 5%. It means that given high-level
information helps the model decrease incorrect outcomes (False Positive) and increases
the effectiveness of dealing with unidentified outcomes (False Negative). However, BN is
worse, given prior knowledge. It gave the model more incorrect outcomes because such
prior knowledge was complex.

7.5. Discussion

In conclusion, our Internet of things-driven approach can help ML models solve
thermal comfort problems caused by the HVAC system. The perception devices perform
successfully with a valuable contribution of the open-source software and hardware. It is
not possible to measure the real-time HVAC system data without technicians and engineers
in general, but our approach could indirectly measure them based on prior knowledge. It
imitates the way of technicians and engineers to detect and determine the HVAC system
problems. We can say that well-design RVs help indirect models to identify fault events
using stand sensors without breaking the HVAC system engine. The performance presents
perfect accuracies, which is helpful for technicians and engineers to employ them and
make better decisions. The logical expression-based model is suitable for thermal comfort
problems when employing high-level information based on categorical forms. Because
current prior knowledge encodes in discrete RVs, a logical expression-based model can
compute ideally. It suggests that if prior knowledge is presented in continuous RVs with
high dimensions, the geometry-based model might be a suitable solution to tune hyper
parameters. In contrast, the probability-based model is not applicable for thermal comforts
using complex factors.

This study has shown that machine learning models have been improved given prior
knowledge. However, they need more contributions to improve performance. It is still
challenging to fulfill research gaps; for example, the probability-based model is based on an
advanced algorithm such as Causal Bayesian Networks, which is proposed to solve complex
problems. Deep Neural Networks, an advanced algorithm of ANNs, are challenging to
apply to thermal comfort fields to improve recent performance. Moreover, DT outperforms
in our case study, but it is well known that DT is quite overfitting with training data. It can
be applied to the Random Forests algorithm to advance the DT that deals with overfitting.

Although we mentioned that the indoor environment was fixed in the design and
experiment section, more conditions are useful for the indoor thermal comfort analysis;
for example, the variation of inside air velocity, which annotates the conduction effect of
heat transfer and influences the thermal comfort conditions for the people in the room.
Moreover, the number of people in the building space, which is interesting because the
action of people in the room affects the air movement, complicates the heat flow dynamic
in the room.

8. Conclusions

This study has addressed limitations in indoor thermal comfort that have helped
engineers and technicians to monitor and detect problems on physical sites automatically.
We proposed a new design and development of the Internet of Things-driven fault detection
system to imitate human-like perception. It offers real-time monitoring of the problems
caused by the HVAC system automatically. We represented prior knowledge based on
expert experience and understanding to help the system detect the problem in the manner of
human-like intelligence. Statistical significance between relevant factors from the Internet of
Things device and prior knowledge is essential for monitoring and detecting HVAC system
problems. We prove our proposed system using stand ML models based on geometry,
probability, and logical expression for testing their predictive ability to identify HVAC
system problems given sensor data and prior knowledge. The results show that models
based on sensor data reached acceptable predictive performance, while additional prior
knowledge could improve their predictive performance by around 10%. It reveals that
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the well design of prior knowledge can help systems identify problems in indoor thermal
comfort. The sensor data based on the proposed device and prior knowledge are ready for
real-world applications.

Although the recent study could monitor and detect problems caused by HVAC
systems, it could not detail how and why such events happen. The current system cannot
reason and explain the motivation behind the phenomenon, which is needed information
when engineers and technicians have to make decisions. In the future, we will expand
the ML model by augmenting cause–effect computing to help the model interpret event
details close to human-like intelligence. Cause–effect computing is a new paradigm based
on causal inference, such as attention mechanisms based on deep learning and structural
causal mechanisms based on the directed acyclic graph. Applying them to the recent model
that offers reasoning mechanisms and allows systems to detail the motivations behind
problems is challenging.

Moreover, the recent case study considers HVAC system problems based on a single
on–off engine in a small room. We will experiment on HVAC system inverter engines,
multiple systems in a standard room such as a conference room and classroom. We will
expand the period to 12–36 months to observe the hidden features in different seasons.
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