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Patient-derived organoids (PDO) and patient-derived xenografts (PDX) continue to emerge as important
preclinical platforms for investigations into the molecular landscape of cancer. While the advantages and
disadvantage of these models have been described in detail, this review focuses in particular on the bioin-
formatics and state-of-the art techniques that accompany preclinical model development. We discuss the
strength and limitations of currently used technologies, particularly ‘omics profiling and bioinformatics
analyses, in addressing the ‘efficacy’ of preclinical models, both for tumour characterization as well as
their use in identifying potential therapeutics. We select pancreatic ductal adenocarcinoma (PDAC) as
a case study to highlight the state of the art of the field, and address new avenues for improved bioinfor-
matics characterization of preclinical models.
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1. Introduction

A growing number of preclinical models are on the rise as sur-
rogate biological systems that promise to elucidate disease patho-
genesis, and which are hypothesized to be effective for preclinical
treatment testing. This encompasses a range of engineered cells
and tissues of varying genomic complexity, spanning both in-
vitro and in-vivo models. Over the past decade of cancer research,
there has been an explosion of patient-derived tumour xenografts
(PDX) and patient-derived organoids (PDO) for a variety of cancer
types [1]. Development of these preclinical models in particular
aims to serve multi-fold purposes: recapitulating genetic and phe-
notypic tumour heterogeneity, assessing cancer evolutionary
dynamics, analyzing mechanisms of cancer progression, and iden-
tifying potentially viable therapeutics [1,2]. PDX and PDO models
for personalized drug testing are superseding use of human cancer
cell lines for several key reasons. The artificial environment of
human cancer cell lines produces homogenous populations that
no longer genetically recapitulate the original tumour, and there
have been significant differences observed in the gene expression
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profiles of tumours and matching cell lines [3–7]. PDX models are
developed by engrafting surgically resected tumour samples into
immunocompromised mice, and can be propagated by serial pas-
saging in mice [8–10]. Organoids are derived from stem cells
(pluripotent stem cells or adult specific stem cells) that are grown
in 3D in Matrigel alongside niche factors; these ex-vivo models
mimic the in vivo architecture of the original tumour, and can be
characterized using nucleic acid and proteomic methods [11,12].

Interrogation of anti-cancer therapeutics using PDX and PDO
models focuses on two main directions. The first is precision and
personalized medicine. The underlying assumption here, is that
the complexity of human tumours, and the ensuing range of phar-
macological responses, vary substantially from patient to patient
[2,5,8]. Patient-specific organoids for individualistic treatment of
cystic fibrosis patients has been met with success [13–15], and
has served both as a proof-of-concept and trigger for drug testing
in organoids across multiple cancer types. PDO models have
become a more preferable model to PDX, owing to shorter time
frames and versatility to produce a spectrum of drug-sensitivity
data [8,16]. In addition to small-scale, personalized patient treat-
ment, PDX and PDO models are being exploited for the purpose
of grander preclinical decision making. In that context, the inten-
tion is to capture population diversity, and from it, identify clini-
cally actionable genetic alterations [8,17]. Population-based drug
screens also provides insight into mechanisms of therapeutic resis-
tance, as well as large-scale genotype-phenotype correlations [8]. A
pertinent example of this approach is a recent population-based
drug screen has been carried out on the ‘PDX Encyclopedia’, a com-
pendium of >1000 PDX models across a range of solid cancers
[8,18]. In that screen, Gao et al. [18] used a 1 � 1 � 1 testing
approach to assess population responses to 62 treatments across
6 indications, using PDX models that contain a diverse set of driver
mutations. Through this analysis, they identified therapeutic can-
didates that had not been realized using in vitro models, and suc-
ceeded in using this large panel to validate previously proposed
biomarkers of drug sensitivity [8,18]. Whether for precision medi-
cine or population-wide screening, the use of omics profiling, and
the ensuing bioinformatics and computational biology analyses,
have played a large role in the assessment of model fidelity
(Fig. 1). For precision medicine, single- and multi-omics profiling
Fig. 1. The range of bioinformatics and computational biology analyses applied to asses
from the patient are grown directly into a xenograft model (in-vivo), or as a 3D organoid
involve propagation of tumour cells in cell lines (in-vitro), followed by transfer to PDX
assessed using various ‘omic profiling technologies that can then be analyzed to determ
number and structural variation changes (WGS, WES), gene expression for bulk tumour (
expression changes (proteomics), response to therapy (pharmacogenomics), enrichmen
(morphometric profiling and radiomics). (For interpretation of the references to colour
is employed to assess whether molecular changes in the patient
are also identified when transplanted to the disease model. For
population-wide screens, these omics platforms are used to high-
light the spectrum of genetic changes that can be identified across
both the population and sub-populations (in some cases, tumour
subtypes), when the tumours are grown into in vivo or ex vivo
models.
2. Bioinformatics approaches towards preclinical disease
modelling

‘How well do PDX and PDO recapitulate the patient tumour?’
This remains a key question at the forefront of any analysis involv-
ing preclinical models, whether for the intended use of these mod-
els in tumour characterization, or for preclinical testing. Defining
whether a given PDX or PDO model serves a representative tumour
analog, or ‘patient avatar’, remains a rather complex question [16]
that is largely dependent on the aspect of the tumour being mod-
elled. A number of high-throughput ‘omics technologies and bioin-
formatics approaches (Fig. 1, Table 1) have been used to address
the question from a number of angles. A large majority of publica-
tions (representative examples in Table 1) have focused on whole-
genome sequencing (WGS), whole-exome sequencing (WES), RNA
sequencing (RNAseq) and more recently, single-cell RNA sequenc-
ing (scRNA). We highlight some of these technologies below.

Whole-exome sequencing approaches have been largely used to
address model fidelity by demonstrating that a patient and match-
ing disease model share similar mutation profiles, particularly for
mutations pertaining to well-recognized driver genes of the
tumour. Exome profiling demonstrates that PDO models recapitu-
late subtype-specific mutational profiles of key driver genes and
pathways that are observed in patient tissues of gastric cancer
[19]. Variant conservation, distribution of variant allele frequen-
cies, and overlap of mutational load between primary tumours
and PDX have also been used as metric to demonstrate PDX model
fidelity [20].

Whole-genome sequencing approaches provide a more encom-
passing picture of complex genomic events, including mutations,
structural variations, and copy number changes. Similar to WES,
sing disease model fidelity. In the most direct approach (blue arrows), tumour cells
(ex-vivo). Other intermediate steps (black arrows) towards growing PDX and PDO
to PDO prior to profiling. Patient tumours and resultant disease models are then
ine molecular and functional changes, including: mutation load (WGS, WES), copy
transcriptomics and RNAseq) or across individual cells (single-cell RNAseq), protein
t of biological pathways (metabolomics) and tumour histoarchitectural agreement
in this figure legend, the reader is referred to the web version of this article.)



Table 1
Overview of commonly used bioinformatics and high-throughput analytical
approaches towards assessing the molecular landscape, as well as donor fidelity, of
PDX and PDO models across different cancer types.

Technology
Used

Bioinformatics Analysis & Outcomes Representative
Examples and
Organ type(s)

Whole Exome
Sequencing
(WES)

– Match tumour-model mutational
profiles and genetic events for
tumour suppressor and oncoge-
nes (ex: identification of a frame-
shift deletion in the same gene,
across donors and matching
models)

– Assess allelic fractions of somatic
mutations (distribution of MAF)

– Compare trinucleotide alter-
ations and mutation patterns
(C ? A, C ? G, C ? T, T ? A,
T ? C, T ? G)

– Phylogenetic analysis

[19,20,25]
Gastric
Pancreas
Oral Cavity

Whole Genome
Sequencing
(WGS)

– Similar investigations to WES
(see above)

– Deeper exploration of structural
variation events (insertions,
deletions, duplications, translo-
cations) that are retained when
tumours are transplanted into
PDX or PDO

– Investigation into copy number
changes due to model transplan-
tation, including identification of
clones and subclones.

[20–23]
Esophagus
Breast
Pancreas
Oral Cavity

Single-cell RNA
sequencing
(scRNA)

– investigation of tumour hetero-
geneity (ex: intra-tumour
diversification)

– Deeper probe into clonal evolu-
tion as well as progression of
somatic mutations

[26–29]
Brain
Colorectal
Lung
Breast

Proteomic
profiling

– assess overlap of the transcrip-
tome and proteome for given
models

– identify patient-specific, distinct
proteomic signatures for PDX
and PDO (ex: microsatellite
stability)

[30]
Colorectal

Metabolomics – examine metabolite abundance
in preclinical models

– identify enriched pathways
across patients and PDX or PDO

– assess metabolic reprogramming
in tumourigenesis and tumour
progression

– correlate metabolite enrichment
against transcriptomic and pro-
teomic profiles to obtain a sys-
tem-wide understanding of
tumourigenesis

[31,32]
Breast
Intestine

D.M.A. Gendoo / Computational and Structural Biotechnology Journal 18 (2020) 375–380 377
WGS can shed deep insights into whether mutations are retained
when tumours are transplanted into PDX and PDO. To this end,
SNP-based sample clustering from WGS data has been used to
assess the genetic distance between patient tissues and organoids
across 33 breast cancer patients [21]. Distributions of mutations
can also be analyzed to identify key mutational signatures in can-
cer; the expectation is there will be a concordance of signature
types identified in matching tumour-model pairs [21]. Further
characterization using WGS profiling focuses on more complex
genomic events. Consistency of large-scale structural alterations
and overall copy number profiles, compared to SNVs, has been
observed in esophageal organoids [22]. WGS has also been used
to demonstrate that chromothriptic events, which represent con-
certed, chromosomal structural rearrangements, are retained in
esophageal and pancreatic organoids [22,23]. Notably however,
not all events are always concordant between donor-model pairs.
Using the same technology, the authors also noted cases of discor-
dance between tumour-donor pairs, including the addition or
reduction of large-scale amplifications when tumours were trans-
planted to the PDX and PDOmodels [22,23]. In addition to complex
genomic events, whole genome sequencing has also been exploited
to assess copy number changes, as well as investigate clonal struc-
ture and dynamics. It has been demonstrated in breast and
hematopoietic cancers that copy number aberrations acquired
through PDX passaging are substantially different from their par-
ental tumours [24]. Accordingly, assessment of copy number aber-
rations, and agreement across multiple passages of PDX and PDO,
sheds light on the genomic stability of these models and their asso-
ciation with drug therapy [20–22].
3. A bioinformatics case study: pancreatic cancer

Despite advancements in the use of PDX and PDO model to
examine the molecular cancer landscape and to conduct preclinical
testing, assessment of model fidelity for donor-model fidelity
remains largely centered on qualitative, rather than quantitative,
comparisons of genomic alterations. This poses a significant hurdle
for translation of these models into the clinic, particularly for
highly lethal and therapy-recalcitrant tumours [5,33–35]. As a rep-
resentative example, we focus on Pancreatic Ductal Adenocarci-
noma (PDAC), which has a relatively unchanged 5-year survival
rate, and is notoriously considered to have the worst prognosis
amongst solid tumours [36,37].

WES profiling of PDAC cell lines and PDX models has been thor-
oughly conducted, across both primary and metastatic tumour
[25,38,39]. Xie et al. [39] addressed somatic SNV characterization
of paired primary tumours, metastasis, and matching PDX. In par-
ticular, the authors focused on allele frequency distributions and
the agreement of functional mutations (driver genes and tumour
suppressors) for matched data sets across three PDAC patients.
Despite the limited patient and sample size of the study, the
authors argue that their findings demonstrate that PDX models
closely approximate PDAC genetics, particularly for advanced or
end-stage disease [39]. Witkiewicz et al. [25], and Knudsen et al.
[38] conducted a more detailed comparison of matched cell lines
and PDX models that are derived from the same tumour, and
demonstrated PDX utility in recapitulating patient-specific thera-
peutic sensitivities. Knudsen et al. [38] compared genetic events
across 27 profiled PDAC patients, including primary tumour,
matched PDX, and in some cases, cell lines derived from PDX. They
indicated preservation of PDAC oncogenic driver mutations (ex:
KRAS, TP53, SMAD4) and high allele frequencies in the cell lines,
and conservation of >75% of nonsynonymous mutations across pri-
mary tumours and PDX [38]. In a similar vein, Wikiewicz et al. [25]
conducted an interrogation into actionable genetic events that are
retained in matched models, and a detailed investigation into ther-
apeutic sensitivity of these models following drug treatment. Out
of 28 cases, they identified a genetic event with sensitivity to a
therapeutic strategy, and stressed upon the functional relevance
of using patient-derived models to identify the significance of
potentially actionable genetic events [25]. Collectively, these stud-
ies aimed to emphasize the fidelity of PDAC disease models at the
genomic level based on mutational profiles. However, sole agree-
ment of mutational profiles, and in particular for only a subset of
driver genes, presents only a marginal characterization that is lar-
gely unreflective of the diverse molecular heterogeneity of the dis-



378 D.M.A. Gendoo / Computational and Structural Biotechnology Journal 18 (2020) 375–380
ease. Actionable driver mutations in PDAC remain to be identified;
few patients with BRCA2 and KRAS mutations, for example, have
been identified benefitting from targeted therapies [37,40]. As
such, much more comprehensive analyses need to be undergone,
that are reflective of PDAC tumours and disease models at different
levels of genomic complexity.

As a larger encompassing ‘omics platform, whole-genome
sequencing has been used to assess the genomic complexity of
resected PDAC tumours [37,41-43], and has shed light on complex
genomic events, such as catastrophic mitotic phenomena (chro-
mothripsis) that occur with high frequency [43]. WGS profiling
has only been addressed very recently for PDAC PDX and PDO
models [23,40], including work conducted by our laboratory [23].
To this end, WGS analysis is starting to play a role in assessing
agreement of structural variation (SV) and copy number variation
(CNV) across donor-model pairs in PDAC, with a focus on events
which play a significant role in PDAC drug response and tumouri-
genesis [23,40,44–46]. Our laboratory in particular has conducted
the first quantitative assessment of whole-genome comparisons
between PDAC tissue and matched model systems; this presented
a new opportunity for investigation of PDX and PDO fidelity at
single-gene, chromosome- and genome-wide levels [23]. Our find-
ings indicated that PDX and PDO demonstrate concordance of SV
genomic events against patient tumours, particularly for chromo-
somes demonstrating chromothriptic behaviour [23]. Additionally,
our assessment of a unique cohort of matched patient, PDX, and
PDO ‘trios’ underscored that PDO models better recapitulate
patients if grown using tumour tissue directly, rather than being
grown from a PDX [23]. This is a pertinent observation, given
increased findings that suggest PDO models are better able to
reconstitute the PDAC tumour niche, compared to PDX and cell
lines [47–50].

In comparison to PDX, PDO models pose several advantages as
PDAC tumour surrogates, given their increased ability to demon-
strate ductal- and stage-specific characteristics, and that their 3-
D architecture promotes interaction between pancreatic cells that
better reflect the original tumour [47,48,50,51]. Only recently,
screening of large-scale PDAC organoid libraries has provided addi-
tional insight as to the efficacy of these models for widespread
screening of therapeutics. Using a combination of whole-genome
sequencing, transcriptomic profiling, and therapeutic profiling
(‘pharmacotyping’), Tiriac et al. demonstrated that PDO models
demonstrate heterogeneity in chemotherapy response, and identi-
fied transcriptional signatures that mirrored patient outcomes in
two clinical cohorts [40]. Such findings present new avenues for
further use of these models in population-wide therapeutic
screens, and highlight the role of computational analyses in vali-
dating the efficacy of these models.

As of yet, clonal analysis using single-cell sequencing, or other
approaches, has not been thoroughly addressed for organoid mod-
els [52]. Single-cell RNAseq conducted on PDAC primary tumours
[53] has been used to identify subsets of cells with different prolif-
erative features that may serve as biomarkers for antitumor
immune response. Comprehensive assessment of clonal hetero-
geneity in disease models, as well as primary tumours, is expected
to provide further insight into the underlying factors behind
chemo-refractory disease in patients [52], and as well as heteroge-
neous responses to drug treatment [27].

4. Platforms for growth

Despite ongoing advancements, much remains to be done
towards fully probing PDX and PDO at various molecular levels
for several cancer types. One of the platforms that remains
largely unaddressed is metabolomics (Fig. 1). Both NMR- and
mass-spectrometry based metabolomics play a role in systems
biology understanding of tumorigenesis, by 1) linking meta-
bolic changes and regulatory mechanisms with transcriptomics
and proteomics, and 2) highlighting how microenvironmental
factors ultimately influence the cancer phenotype [54–57].
Metabolic profiling of preclinical models has been addressed for
a small number of cancer types including breast [31,58], pancreas
[59], and colorectal cancers [32,60]. Nicolle et al. [59] incorporated
metabolic profiles into a multi-omic clustering of PDAC xenografts;
by harnessing information of metabolite transport and correlating
it with transcriptomic profiles of pathway expression, they
proposed pathways and molecular functions that could aid in the
further characterization of PDAC subtypes (ex: distinguishing
classical from basal subtypes). Similarly, integration of MS-based
metabolomics and lipidomics of cell-enriched intestinal organoids
[32], along with gene expression dynamics, highlighted several
enzymatic activities and pathways that are reflective of different
cell-enriched organoid populations. Such an integration of metabo-
lomics and transcriptomics has also been harnessed to assess
subtype-specific drug response to treatment in breast cancer PDX
models [58]. These findings underscore how incorporation of
metabolic profiles provides newer insights into disease model
fidelity in a translational context, instead of remaining as of yet, a
distal ‘omics platform.

Integration of metabolomics, along with other technologies,
emphasizes the importance of multi-omic, as opposed to single-
omic, characterization of PDX and PDO. Indeed, optical imaging
of metabolic heterogeneity, across both tumours and disease mod-
els, is proposed to provide spatially and temporally comprehensive
picture of tumour metabolism [61], and can be harnessed to pre-
dict therapeutic response of PDX and PDO [31]. Despite advance-
ments, poor model characterization still affects development of
anticancer treatments, and attributes to only a small percent of
potential drugs passing FDA approval at the clinical stage [62–
64]. Accordingly, to efficiently identify whether these models can
be used as disease surrogates, the focus needs to shift from limited
snapshots of donor-model comparisons, towards sufficient integra-
tion of data which embodies different molecular and functional
states of the tumour.
5. Summary & outlook

PDX and PDO models continue to be utilized towards for the
identification of both patient-specific patterns and population-
wide trends that are characteristic of major cancer types. The main
objective is to address whether such models can serve as disease
model surrogates for patients, and to what molecular extent do
they substitute for the original patient tumour. Bioinformatics
approaches are in continuous demand to elucidate the molecular
landscape of patient-derived xenografts and organoids, and to
determine whether these models recapitulate genetic and pheno-
typic diversity of their parent tumours. There have already been
great strides into ‘omics profiling of PDX and PDO, particularly
using WGS, WES, and transcriptomics, and these technologies
and ensuing computational analyses have shed deep insight into
the nature of these preclinical models. However, there still remains
a need for comprehensive bioinformatics analysis that is focused
on multi-omic integration, and which provides quantitative, rather
than qualitative, assessments of model fidelity. Additionally, there
remains untapped potential behind some technologies, including
proteomics and metabolomics, which has yet to be fully realized.
Shifting the approach of how bioinformatics and computational
analyses are used to conduct donor-model comparisons promises
to provide greater insight on the ability of PDX and PDO models
to serve as tractable and transplantable systems across various
tumour types.
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