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SARS-CoV2 infection results in a range of symptoms from mild pneumonia to cardiac

arrhythmias, hyperactivation of the immune response, systemic organ failure and death.

However, the mechanism of action has been hard to establish. Analysis of symptoms

associated with COVID-19, the activity of repurposed drugs associated with lower

death rates or antiviral activity in vitro and a small number of studies describing

interventions, point to the importance of electrolyte, and particularly potassium,

homeostasis at both the cellular, and systemic level. Elevated urinary loss of potassium

is associated with disease severity, and the response to electrolyte replenishment

correlates with progression toward recovery. These findings suggest possible diagnostic

opportunities and therapeutic interventions. They provide insights into comorbidities

and mechanisms associated with infection by SARS-CoV2 and other RNA viruses that

target the ACE2 receptor, and/or activate cytokine-mediated immune responses in a

potassium-dependent manner.
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INTRODUCTION

SARS-CoV2 infects cells via interaction with the ACE2 receptor which is found primarily on
the surface of the heart, liver, kidney, and lungs (1). ACE2 is a negative regulator of the renin-
angiotensin system (RAS) that acts in conjunction with ion transporters and the insulin receptor
to protect against hypertension, diabetes, cardiovascular disease, and organ damage (2). It does this
by regulating electrolyte balance and blood pressure, cell volume, intercellular signaling, filtering
of urine in the kidney, membrane potential, and the firing rate of electrically active cells (3, 4).
Binding of ACE2 by the SARS-CoV2 virus and the processes of viral entry and replication, enhance
degradation of the receptor, which decreases inhibition of the classical RAS system. The net result
is increased reabsorption of sodium and water, and raised blood pressure (5). Hypokalemia/low
intracellular potassium can also lead to cellular hyperpolarity, increased resting potential, and
depolarization in cardiac and lung cells that can trigger ventricular arrhythmia and respiratory
dysfunction (6). In parallel, expression of the viral viroporin, Orf3a protein actively promotes
potassium efflux, and stimulates activation of the innate immune response. It does so by triggering
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the cell-intrinsic Nod-like receptor family, pyrin domain-
containing 3 (NLRP3) inflammasome (7–9), which promotes
cytokine release. Inflammasome responses play fundamental
roles in clearing viruses and promoting tissue repair (10),
however, hyperactivation of this immune response, gives rise to
the devastating “cytokine storm” that is associated with severe
infection, and a major cause of death (11).

This mini-perspective discusses the effects of electrolyte
and potassium imbalance in SARS-CoV2 infection, describes
how a number of comorbidities of COVID-19 affect ion
homeostasis and, identifies some drugs effective against SARS-
CoV2 in vivo that have also been shown to affect pH or K+
balance. Collectively, these findings highlight the importance of
maintaining, and promoting electrolyte homeostasis. They also
provide a framework for beginning to understand the broad,
and seemingly unrelated, range of symptoms associated with
COVID-19 and possibly other RNA viruses, that target the ACE2
receptor and/or those that activate the NRPL3 inflammasome in
a potassium-dependent manner.

POTASSIUM IMBALANCE IS COMMON
AMONG PATIENTS WITH SEVERE
SARS-CoV2 INFECTION

Potassium homeostasis is maintained at a systemic level, in the
balance between dietary intake (∼100 mmol/day) and excretion
(95% via the kidney; 5% via the colon) and via internal balance
of K+ between intracellular and extracellular fluid compartments
(4). Hypokalemia, typically defined as <3.5 mmol/L in plasma,
shares many of the features of SARS-CoV2 infection, including
muscle weakness, palpitations, cardiac dysrhythmias, and poor
diabetic control (4, 12).

In the course of SARS-CoV2 infection, hypokalemia is
primarily caused by elevated aldosterone, which promotes
excretion of potassium in urine (13). One study involving 1,415
patients, found electrolyte imbalance and hypokalemia were
associated with disease severity (Weighted Mean Difference:0.12
mmol/L [95% CI: −0.18 to −0.07 mmol/ L], I21/433%) (14).
Another found that hypokalemia around the time of admission
was associated with a requirement for invasive mechanical
ventilation (15), while a smaller study observed that although
only 54% of the patients (n = 175) had low potassium levels,
of the severely ill patients 85% had hypokalemia (13). A case-
controlled study of three emergency rooms in France found
that hypokalemia and hyponatremia (sodium <135 mmol/L)
were independently associated with COVID-19 infection, but
that low sodium, and not potassium levels were associated with
ICU admission (16). Disease severity is also related to the degree
of response to potassium replacement as mildly ill COVID-
19 patients with hypokalemia in the Chen study achieved
normokalemia within 5–8 days of potassium replacement (3 g
potassium chloride or 40 mEq/day), whereas, it took 10–14
days to achieve homeostasis potassium in severely ill patients
(13). Severe hypokalemia may be harder to correct as it is
associated with alkalosis (29% had a ≥ pH 7.45) (13). This
is due to hydrogen-potassium exchange between the intra

and extracellular fluid (4). Patients with COVID-19 are also
susceptible to pro-arrhythmic effects (17).

A NUMBER OF COMORBIDITIES FOR
COVID-19 AFFECT ION HOMEOSTASIS

Patients with severe symptoms of COVID-19 are more likely
to have kidney or cardiovascular disease, hypertension, diabetes
mellitus (DM) or other comorbidities than those with milder
symptoms (18–22). The association between COVID-19 and a
number of these comorbidities is bidirectional (23, 24): patients
with diabetes are more likely to develop severe symptoms or die
of COVID-19 (12, 22) and acute diabetes or acid-ketosis can
develop as a result of SARS-CoV2 infection (25–28). High levels
of insulin are found in the olfactory bulb in the brain. Insulin
modulates the voltage-dependent potassium channel, Kv1.3, and
suppresses the Kv1.3-contributed current in cultured olfactory
bulb neurons (OBNs) of rodents (29, 30),while deletion of the
Kv1.3 channel results in “super smeller” mice (31). There is little
data on the effect of decreased insulin production on the Kv1.3
channel, however it may contribute to the anosmia experienced
by some COVID-19 patients (32).

A NUMBER OF REPURPOSED DRUGS
EFFECTIVE AGAINST SARS-CoV2 AFFECT
POTASSIUM BALANCE

It has been hard to obtain insights into the mechanism by
which SARS-CoV2 acts, based on the diversity of symptoms
identified in infected individuals. Likewise, FDA approved drugs
that act in vitro to reduce viral replication and plaque formation,
increase cell viability, or are associated with lower death rates
in patients target a range of host factors. These drugs are
used for a wide range of purposes from treatment of malaria
to pancreatitis and diabetes (33–36) (Table 1). However, some
patterns are emerging: 17 of 66 FDA approved drugs with
anti-viral activity were found to target the Sigma-1 receptor
(σ1-R) and sigma-2 receptor (σ2-R) (SIGMAR1/SIGMAR2)
(34). Sigma receptors are ubiquitously expressed in mammalian
tissues and are involved in cellular signaling in a number of
conditions including retinal and neurodegenerative disorders
(37, 38). A number of σ1-R and σ2-R receptor agonists have
been found to inhibit Kv2.1 potassium channel activity in a
receptor-independent manner (39), suggesting that they act to
modulate potassium currents directly. Another 7 of the 69
drugs inhibit protein synthesis (34). Although the mechanism
is not known, protein synthesis, and potassium abundance
are inversely correlated in systems as diverse as yeast, algae,
and mouse fibroblasts (40–43), such that inhibition of protein
synthesis would be expected to result in greater intracellular
potassium abundance. A further 17 drugs have been shown
to affect osmotic or ion homeostasis. Agonists of potassium
channels, angiotensin II, and protein synthesis were also found
to be enriched among drugs with anti-SARS-CoV2 activity in an
independent study (35).
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TABLE 1 | Repurposed drugs with anti-viral activity that also affect

potassium balance.

Drug Human

target

Anti-

viral

activity

Indication Affects Reference

Camostat Cell Entry (44, 45) Pancreatitis Elevates

Na+:K+ ratio

(46)

Chloroquine Cell Entry (47) Malaria,

immune

modulation

Blocks hERG

K+ channels

(48)

Hydroxy

chloroquine

Cell Entry (34, 47) Malaria,

immune

modulation

Blocks hERG

K+ channels

(48)

Loratadine SLC6A15 (49) Antihistamine Kv1.5, outward

current

(50, 51)

Nafamostat Cell Entry (52) Pancreatitis Can induce

hyperkalemia, by

suppressing the

Na-K ATPase

dependent

pathway

(53)

Pioglitazone CISD1 (54) Diabetes Remodeling of

Kv1.5 & Kv4.2

(55)

YH-1238 H+, K+

ATPase

Proton

Pump

(35) Phase I H+,K+-ATPase

(ATP4A, ATP4B)

(35)

Some of these repurposed drugs many act to reduce
disease severity via their effects on the immune system. Sex
hormones, such as progesterone, promote immune tolerance,
and anti-inflammatory responses and that may account for lower
COVID-related disease severity and mortality in women and
during pregnancy (56, 57). Clinical studies of drug efficacy
also point to the key role of the renin-angiotensin system
and electrolyte balance in influencing patient outcomes. A
retrospective study of COVID-19 patients taking famotidine,
an antiacid, found that hospitalized patients taking the drug
were more than twice as likely to survive (33). Famotidine
was also identified in a computational screen of drugs likely to
have anti-SARS-CoV2 activity (36). Another drug, Nafamostat,
acts on potassium balance by reducing urinary excretion of
potassium via the Na+/K+ ATPase-dependent pathway (58,
59). These data support the idea that restoring potassium
balance promotes a better host response against viral infection.
Conversely some of these drugs pose a risk as they promote
hyperkalemia (48, 60). This is a complication found in a
number of patients who die of COVID-19 (37% of those who
died (n = 113) compared with 14% (n = 161) of those who
recovered (61).

Potassium dysregulation is also likely to form part of the
mechanism that promotes viral pathogenicity. A study that
ectopically expressed the SARS-CoV2 envelope (E) protein in
HEK 293 and NIH3T3 cells found that it formed a pH-dependent
ion channel permeable to potassium and sodium ions (62).
Only a small proportion of the E protein ends up in the viral

envelope and most is localized to the endoplasmic reticulum-
Golgi complex where it multimerizes to form a virioporin, that
promotes an increase in intra-golgi pH (62, 63). The E protein
channel is critical for infectivity and for the pathogenicity of
SARS-CoV2, as it is for other coronaviruses, and thus presents
a good target for therapeutic intervention (63, 64).

DISCUSSION

Taken together, these observations drawn from comorbidities,
clinical features of disease and the possible targets of drugs
that are effective against viral infection show that symptoms
associated with low intracellular potassium are similar to those
that result from SARS-CoV2 infection, and that potassium efflux
can promote hyperactivation of the innate immune response.
Although we do not yet understand how SARS-CoV2 acts in
detail, potassium balance is likely to be important for both the
propagation and pathogenicity of the virus, via effects on both
the virus, and on homeostatic mechanisms in the host.

It is likely that this line of enquiry will have relevance
for understanding the consequences of viral infection more
broadly. Ion disturbance, mediated by virioporins, is central to
the mechanism of action of a range of viruses from influenza,
and rhinovirus to COVID-19 and HIV (8), and a number of
RNA viruses modulate activity of the NLRP3 inflammasome in
a potassium-dependent manner (65, 66). In bats, dampening
of the inflammasome and proinflammatory responses confers
tolerance to a range of RNA viruses, suggesting that modulating
the inflammasome may prove a useful therapeutic target for
reducing disease severity in humans too (10).

Similarities between SARS-CoV2 and other coronaviruses
offer further mechanistic insight and opportunities for drug
repurposing. SARS-CoV1 also enters the cell via the ACE2
receptor and can cause acute lung failure, cardiac arrhythmia,
gastrointestinal disorders, hyperkalemia and diabetes (4, 5,
67, 68). Nafamostat, which induces hyperkalemia, inhibits the
activity of SARS-CoV1, 2 and MERS-CoV (52, 53, 60, 69).
Approximately 50 FDA-approved drugs are known to have
activity against all 3 viruses (70). These results present a strong
argument for gaining a fundamental understanding of how
electrolyte balance functions in both the healthy host and in
response to viral infection. This knowledge is expected to identify
strategies for diagnosis and therapeutic intervention in patients
suffering from a number of virally induced diseases.
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