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A B S T R A C T

Objective: The supply territories of main cerebral arteries are predominantly
identified based on distribution of infarct lesions in patients with large arterial occlusion; whereas, there is no consensus atlas regarding the supply territories of
smaller end-arteries. In this study, we applied a data-driven approach to construct a stroke atlas of the brain using hierarchical density clustering in large number of
infarct lesions, assuming that voxels/regions supplied by a common end-artery tend to infarct together.
Methods: A total of 793 infarct lesions on MRI scans of 458 patients were segmented and coregistered to MNI-152 standard brain space. Applying a voxel-wise data-
driven hierarchical density clustering algorithm, we identified those voxels that were most likely to be part of same infarct lesions in our dataset. A step-wise
clustering scheme was applied, where the clustering threshold was gradually decreased to form the first 20 mother (> 50 cm3) or main (1–50 cm3) clusters in
addition to any possible number of tiny clusters (< 1 cm3); and then, any resultant mother clusters were iteratively subdivided using the same scheme. Also, in a
randomly selected 2/3 subset of our cohort, a bootstrapping cluster analysis with 100 permutations was performed to assess the statistical robustness of proposed
clusters.
Results: Approximately 91% of the MNI-152 brain mask was covered by 793 infarct lesions across patients. The covered area of brain was parcellated into 4 mother,
16 main, and 123 tiny clusters at the first hierarchy level. Upon iterative clustering subdivision of mother clusters, the brain tissue was eventually parcellated into 1
mother cluster (62.6 cm3), 181 main clusters (total volume 1107.3 cm3), and 917 tiny clusters (total volume of 264.8 cm3). In bootstrap analysis, only 0.12% of
voxels, were labelled as “unstable” – with a greater reachability distance in cluster scheme compared to their corresponding mean bootstrapped reachability distance.
On visual assessment, the mother/main clusters were formed along supply territories of main cerebral arteries at initial hierarchical levels, and then tiny clusters
emerged in deep white matter and gray matter nuclei prone to small vessel ischemic infarcts.
Conclusions: Applying voxel-wise data-driven hierarchical density clustering on a large number of infarct lesions, we have parcellated the brain tissue into clusters of
voxels that tend to be part of same infarct lesion, and presumably representing end-arterial supply territories. This hierarchical stroke atlas of the brain is shared
publicly, and can potentially be applied for future infarct location-outcome analysis.

1. Introduction

Infarct location, in addition to lesion volume and severity of
symptoms, is one of the most important predictors of functional out-
come in stroke patients (Ernst et al., 2017; Payabvash et al., 2018;
Payabvash et al., 2017b); however, integration of infarct lesion topo-
graphy into location-outcome analysis could be challenging. Many

authors have applied visual inspection of infarct lesion and the 10-re-
gion Alberta Stroke Program Early CT Score (ASPECTS) to assess the
infarct location (Barber et al., 2000). Nevertheless, such brain atlases
are devised based on consensus and anatomical observations (Nowinski
et al., 2006), rather than a data-driven approach from distribution of
infarct lesions among stroke patients. A potential solution for evalua-
tion of infarct lesion topology would be automated parcellation of
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lesion mask based on a reference atlas of arterial perfusion territories.
Traditionally, perfusion territories of main cerebral arteries have

been delineated based on correlation of angiographic findings with
follow up anatomical evaluation of infarct distribution in patients with
large vessel occlusion (Berman et al., 1980, 1984; Hayman et al., 1981;
Nowinski et al., 2006). However, delineation of perfusion territories for
the smaller distal end-arteries has been challenging given the anato-
mical variation in arterial branching pattern and their final supply
territories. A hypothetical solution for delineation of brain end-arterial
supply territories is to identify regions (voxels) which tend to infarct
simultaneously among large cohort of stroke patients. One can assume
that adjacent voxels that frequently belonged to same infarct lesion
among consecutive stroke patients are supplied by a common end ar-
tery. A hierarchical clustering approach can identify and represent such
clusters at different levels of contingency.

The density clustering, or DBSCAN (density-based spatial clustering
of applications with noise) is one of the most common clustering al-
gorithms used in data mining (Ester et al., 1996). Much like other data-
driven clustering algorithms, the DBSCAN: (1) does not require speci-
fication of the number of output clusters a priori, (2) can find arbitrarily
shaped clusters, depending on the distance metric definition, and (3)
perhaps most notably, the algorithm has an inherent notion of noise,
and hence is robust to outliers. Similar to DBSCAN, the ordering points
to identify the clustering structure (OPTICS) is a density-based clus-
tering algorithm which also assigns a reachability distance for all points
(Ankerst et al., 1999). This reachability distance represents the
minimum density that must be accepted for a cluster so that both points
belong to same cluster. Subsequently, a reachability plot can be con-
structed from reachability distance, and presented like a dendrogram
(tree diagram) in hierarchical clustering (Wang and Li, 2013; Wang
et al., 2016). Once the full dendrogram is constructed, one may extract
different sets of clusters from the dendrogram through thresholding at
different reachability values – similar to hierarchical clustering. This
method allows data exploration in an efficient manner through mini-
mizing the number of computationally intensive operations.

In this study, we applied the OPTICS data-driven density clustering
analysis to a large dataset of stroke lesions to generate a probability-
varying atlas of the brain, delineating those voxels that tend to be part
of same infarct lesion among our patients' cohort. The resultant atlas
topology can change depending on reachability thresholds, allowing
visualization of both small regions with extremely high probability of

simultaneous infarct, to very large, but less probabilistically stringent,
regions of simultaneous infarct probability. In theory, larger clusters
formed at initial hierarchical levels represent arterial supply territory of
main cerebral arteries; whereas, smaller clusters identified at sub-
sequent hierarchical levels represent supply territories of smaller distal
end-artery branches. The resultant brain-atlas, which is constructed in
MNI-152 standard brain space, is made publicly available.

2. Methods

2.1. Data acquisition

The dataset for this study were collected from patients with acute
and non-acute ischemic infarcts (Liew et al., 2018; Payabvash et al.,
2017b). In 238 patients with acute stroke, infarct lesions were seg-
mented on 2-mm thickness axial diffusion weighted images (DWI)
scans, which were obtained on two MRI scanners from two university-
affiliated hospitals (Payabvash et al., 2016, 2017b). In 220 patients
with primarily chronic stroke, infarct lesions were segmented on 1mm3

(isotropic) resolution T1-weighted images, which were obtained on 17
different scanners from 11 centers worldwide (Liew et al., 2018). The
details of image acquisition and data collection have been previously
described (Liew et al., 2018; Payabvash et al., 2017b). The MRI datasets
were fully anonymized before data transfer. Image acquisitions were
based on studies approved by local ethics committees and institutional
review boards of corresponding centers.

2.2. Infarct lesion segmentation and coregistration

The infarct lesions were manually segmented on DWI or T1-
weighted images depending on the chronicity of stroke. All manual
segmentations were performed (or supervised) by neuroradiologists
using MRIcro software (http://people.cas.sc.edu/rorden/mricro/
mricro.html) (Rorden and Brett, 2000). A total of 405 acute and 393
chronic infarct lesions were segmented and saved as binary masks. All
binary masks were smoothed using MRIcro smooth VOI (volume of
interest) tool with full width half maximum parameter set to 2mm and
threshold set to 0.5 (Liew et al., 2018). Then, original DWI and T1 le-
sions along with binarized infarct lesion masks were coregistered to the
2-mm thickness isotropic standard MNI-152 template using a 12-para-
meters affine transformation from FSL (https://fsl.fmrib.ox.ac.uk/fsl/

Table 1
Iterative subdividing scheme for density-based clusters.

Relative
hierarchy

Mother cluster size
(cluster annotation)

No. of Mother Clusters
(cluster annotation)

No. of main
clusters

No. of tiny
clusters

Tiny clusters –
Average size

Tiny clusters –
Cumulative size

Orphan
voxelsa

Reachability
threshold

0 4 (#1, #6, #80, #71) 16 123 8.59 1056 0 1.25× e−3

1 25961 (#1) 2 (#1.1, #1.5) 18 62 10.6 656 547 9.47× e−4

2 14,183 (#1.1) 1 (#1.1.1) 18 35 13.2 463 134 8.05× e−4

2 4121 (#1.5) 0 20 62 13.4 834 255 3.41× e−4

3 8818 (#1.1.1) 1 (#1.1.1.1) 20 26 11.0 287 103 6.20× e−4

4 2703 (#1.1.1.1) 0 13 83 12.5 1040 508 0
1 17,529 (#6) 2 (#6.61, #6.84) 21 52 9.65 502 622 1.06× e−3

2 4829 (#6.61) 0 12 106 11.5 1215 1185 0
2 2766 (#6.84) 0 8 81 9.6 776 1562 0
1 4442 (#71) 0 7 121 9.82 1188 1542 0
1 9130 (#80) 1 (#80.588) 18 108 11.0 1186 1879 8.72× e−4

2 4520 (#80.588) 1 (#80.588.1545) 10 58 10.4 606 722 1.08× e−19

3 2319 (#80.588.1545) 1 (#80.588.1545)b 0 0 0 0

An iterative scheme was applied for hierarchical clustering: the reachability threshold was initially set to form 20 mother/main clusters along with any number of
tiny clusters. The same scheme was repeated for any mother cluster formed among subdivisions. Eventually, the brain was parcellated into 1 mother, 181 main, and
917 tiny clusters.
Mother clusters referred to those> 1850 voxels (~50 cm3); main clusters were > 37 voxels (~1 cm3); and tiny clusters were≤ 37 voxels.
Cluster size are presented in voxel, where each voxel is 0.027 cm3.

a During subdivision clustering process, some voxels could not be assigned to any of sub-clusters generated at corresponding hierarchical level, and are referred to
as “orphan” voxels. The column depicts the total number of orphan voxels generated at corresponding sub-clustering level.

b One of the mother clusters at the 3rd hierarchical level (#80.588.1545) could not be resolved to smaller main or tiny clusters.
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fslwiki) (Woolrich et al., 2009). In order to maximize the efficiency in
computation of distance metric for clustering, all coregistered infarct
masks were sub-sampled to 3× 3mm isotropic resolution; and voxels
with no infarct in our cohort were excluded from computation.

2.3. Distance measure

In order to calculate the likelihood of a voxel belonging to an infarct
lesion given another voxel belongs to same infarct lesion among pro-
vided binary masks, we have devised a distance metric for clustering
based on probability theory. For n subjects, the probability of a voxel i
being in an infarct lesion (Pi) is defined as the number of subjects with
an infarct lesion at voxel i divided by the total number of subjects:

=
∑

= ⎧
⎨⎩

=P
v k

n
where v k

voxel i for subject k belongs in an infarct lesion
otherwise

( )
, ( )

1,
0,

i
k
n

i
i

1

Hence a voxel, where all subjects have an infarct lesion will have a
value of 1, whereas a voxel where none of the subjects have an infarct
lesion will have a value of 0.

Conditional probability is a measure of probability, or likelihood,
that an event occurs provided that another event has occurred. The
probability of event B occurring – given the probability that an event A
has occurred P(A) – is denoted as P(A|B). While conditional probability
can explain the framework for our analysis, it is not a distance metric,
suitable for our clustering algorithm. In order to satisfy the conditions
of a distance metric, we instead opted to use the joint probability as
defined as P(A ∩ B)= P(A|B)P(B). The joint probability satisfies non-
negativity and symmetry conditions, but not subadditivity. In order to
enforce subadditivity, we opted to use the Euclidean distance of joint
probabilities for a voxel against all other voxels as the distance metric.
For all pairs of voxels i and j, the distance between the two voxels is
defined as the l2-norm of the joint probabilities of the voxels with all
other voxels, i.e.:

… = ∪ … ∪ = −P P Pfor all voxels N P P P P P P D i j1 , [ ( ) ( )]; ( , ) ‖ ‖x x N x i j1 2

The joint probabilities of all voxels against all other voxels where
calculated, resulting in a N×N symmetrical matrix. The Euclidean
distance between all rows (or columns) of the matrix against all other
rows, resulting in another N×N symmetric matrix with zero diagonal
(distance matrix), which is used as distance measure for clustering. The

Fig. 1. In density-based hierarchical cluster analysis of infarct lesions, higher reachability thresholds were associated with smaller number of clusters (A), larger
average size of clusters (B), and higher percentage of MNI-152 brain space coverage by clusters (C).
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distance matrix was computed using our own implemented C code,
using OpenMP (https://www.openmp.org/) CPU parallelization over
32 threads. Solely, the distance matrix computation took slightly longer
than 3weeks to complete at 2.6 Ghz per thread.

2.4. Density clustering

For exploratory analysis, a data driven analysis scheme is optimal to
minimize subjective adjustment of input parameters. Density clustering
(Duan et al., 2007), using the OPTICS algorithm is preferred since it is
mostly data driven, and robust to outliers due to its inherent ability for
filtering out noise, and relative computational efficiency. Furthermore,
the OPTICS algorithm preserves the full reachability plot. This allows

immediate extraction of voxel clusters at different reachability thresh-
olds, without performing the full clustering algorithm each time, which
can be computationally and memory intensive. This also enabled us to
feasibly stratify the clustering results in a hierarchical fashion.

For computation of distance matrix, a C++ implementation of
OPTICS with R (https://www.r-project.org/) wrappers was used to
perform OPTICS (Hahsler et al., 2017). The OPTICS reachability plot
was saved as an R-object for further analysis and extraction of cluster
sets. The clustering computation took slightly< 10 h, of which half the
time was allocated for parsing the distance matrix. However, this op-
eration requires over 650 GB of memory in total as the entire distance
matrix needs to be loaded into memory at once.

Fig. 2. (A) The first 20 mother/main clusters formed at hierarchical level 0 after gradual increase of intra-cluster homogeneity. Among these clusters, there were 4
mother clusters (> 50 cm3), which are marked with arrows, and further subdivided as depicted in Figs. 3 through 6. In addition to 20 mother/main clusters, (B) a
total of 123 tiny clusters (< 1 cm3) were formed at this hierarchical level. (C) Red-colored mask depicts the 166.6 cm3 (9.2%) of MNI-152 brain mask which was not
covered by infarct lesions in our cohort (793 infarct lesions in 458 patients). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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2.5. Data analysis and cluster construction

The resulting stroke map can be viewed at different reachability, or
“probability” thresholds. The reachability of a point p from a point o is
defined as (Achtert et al., 2006):

← = −p o o p oreachability ( ) max{dist( , ), minPts dist( )}

The reachability is the minimum distance threshold of ε to make p
density reachable from o, and thus part of the same cluster.

In order to extract meaningful information from the full reachability
plot that are visually comprehensible, we have devised a visualization
approach based on hierarchical cluster subdivision. This method allows

Fig. 3. Iterative hierarchical subdivision of mother cluster #1 (red color on Fig. 2) from hierarchical level 0 into smaller clusters (Table 1). At hierarchical level 1 (A),
two mother clusters (#1.1 in red – subdivided in C, − and #1.5 in purple – subdivided in B) are formed in addition to 19 main and 62 tiny clusters. At hierarchical
level 2, the mother cluster #1.5 (B) is subdivided into 20 main and 62 tiny clusters; and the mother cluster #1.1 (C) is subdivided to one mother cluster (#1.1.1 in red
– subdivided in D) in addition to 18 main and 35 tiny clusters. At hierarchical level 3 (D), the mother cluster #1.1.1 is subdivided into one mother cluster (#1.1.1.1 in
red – subdivided in E), 20 main, and 26 tiny clusters. At hierarchical level 4 (E), the mother cluster #1.1.1.1 is subdivided into 13 main and 83 tiny clusters. Tiny
clusters are all mutually color coded with emerald (#43D344) for visualization purposes. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Iterative hierarchical subdivision of mother cluster #6 (purple color on Fig. 2) from hierarchical level 0 (Table 1). At hierarchical level 1 (A), two mother
clusters (#6.61 in red – subdivided in B, − and #6.84 in purple – subdivided in C) are formed in addition to 21 main and 52 tiny clusters. At hierarchical level 2, the
mother cluster #6.61 (B) is subdivided into 12 main and 106 tiny clusters; and the mother cluster #6.84 (C) is subdivided into 8 main and 81 tiny clusters (Table 1).
Tiny clusters are all mutually color coded with emerald (#43D344) for visualization purposes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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us to view sections of the reachability plot and its corresponding clus-
ters in a hierarchical fashion that is consistent throughout the ex-
ploration of the clustering structure. Given that exploration of infarct
lesion clusters smaller than 1 cm3 is unlikely to be clinically relevant,
we applied a hierarchical cluster sub-division scheme (implemented in
R version 3.5.2), where beginning from the very top of the reachability
plot, the reachability threshold is decreased until the first 20 mother/
main clusters emerge. Any cluster between the size of 37 voxels
(~1 cm3) and 1850 voxels (~50 cm3) are referred to as “main” clusters.
Those clusters equal or smaller than the 37-voxel threshold are referred
to as “tiny” clusters; whereas, clusters larger than 1850 voxels are re-
ferred to as “mother” cluster, and were iteratively subdivided applying
the same scheme (Table 1). The analysis routine iterates through the
entire density plot until no mother clusters remain or until the sub-
division reaches zero. During iterative subdivision of mother clusters, a
series of “orphan” voxels had stochastic behavior in sub-cluster as-
signment and were not included in any resultant main or tiny cluster. In
other words, from a density clustering perspective, the algorithm con-
siders these (“orphan”) voxels as outliers in relation to their tendency to
infarct (or not infarct) together with other voxels within the mother
cluster. One possible explanation would be that these “orphan” voxels
represent tiny end-arterial supply regions or technically single-voxel
tiny clusters.

2.6. Bootstrapping analysis for assessment of cluster reliability

As a form of cross-validation, and in order to assess the statistical
robustness of proposed clusters through permutation testing, we ap-
plied a bootstrapping cluster analysis similar to the framework pro-
posed by Kerr and Churchill (Kerr and Churchill, 2001). Briefly, 2/3rd
of the dataset was randomly selected and subsampled to 4-mm isotropic
voxel resolution in order to achieve feasible processing times. The
reachability distances were calculated for 100 iterations, and then
super-sampled back to the 3-mm space for inference. Then, reachability
distances in the 3-mm isotropic dataset were tested against the boot-
strapped distribution of reachability distances. Thus, each voxel will
possess a distribution of reachability distances from the permutations,
which can be tested against the (original) clustering reachability dis-
tances achieved in Section 2.5. Those voxels with distances significantly
(p < .05) greater than its corresponding mean bootstrapped reach-
ability distance distribution were labelled as “unstable”, since they may
not truly belong to the cluster assigned in the proposed atlas. Given the
computationally intensive nature of bootstrapping, the number of
iterations was limited to 100, where, even at the 4-mm isotropic re-
solution, each permutation required at least 6.4 GB memory space to
store the distance matrix, and 30 h to compute using 15 CPU threads

simultaneously.

3. Results

Overall, 1660.5 cm3 (90.9%) of the MNI-152 brain mask
(1827.1 cm3) was covered by 793 infarct lesions from 458 patients. The
median number of infarcts per each voxel was 4, with interquartile of 2
to 8.

Fig. 1 demonstrates the relationship between reachability threshold
with number and size of clusters, as well as percentage coverage of
brain tissue. Clusters formed at a given threshold depict voxels/regions
that are equally likely to be in the same infarct lesion among our cohort.
In other words, if a voxel within a cluster is infarcted, other voxels
within the same cluster have a high likelihood to be infarcted as well –
depending on the reachability threshold.

At relatively high reachability thresholds (allowing loose connec-
tion between voxels), the clustering yields large regions covering most
of the brain (Fig. 1c). On the other hand, at the absolute zero threshold,
numerous clusters, will be formed making many clusters intangible for
further investigation. Alternatively, the intra-cluster homogeneity
moves in the opposite direction of reachability threshold: when the
intra-cluster homogeneity constraint is completely enforced without
allowing any heterogeneity, we obtained 1672 clusters, most of which
very tiny in size (mean cluster size of 24 voxels).

Table 1 summarizes the results of iterative clustering scheme. The
hierarchical clustering scheme resulted in 1 mother cluster measuring
2319 voxels (62.6 cm3), 181 main clusters, and 917 tiny clusters. One of
the mother clusters formed at the hierarchical level 2 – annotated as
#80.588.1545 – could not be further subdivided. In this case, the
reachability threshold has already reached zero and no further sub-
division is possible. Also, it should be noted that intra-cluster homo-
geneity constraint is more tightened in subdivisions of mother clusters
compared to those formed at upper hierarchical level; thus, the prob-
ability of simultaneous infarct in two voxels belonging to smaller sub-
subdivision is much higher compared to two voxels from clusters
formed at upper levels of hierarchy.

Fig. 2A depicts the first set of 20 mother/main clusters which were
formed as we gradually increased the intra-cluster homogeneity in our
hierarchical clustering scheme. In addition to these 20 clusters, 123 tiny
clusters, averaging 8.59 voxels (~0.23 cm3) in size were formed
(Fig. 2B). All infarcted voxels were included among 20 mother/main
and 123 tiny clusters at hierarchical level 0 – covering 90.9% of MNI-
152 brain mask. Fig. 2C depicts the 166.6 cm3 (9.1%) non-coverage
area of MNI-152 brain mask, which was not covered by any infarct
lesion among our cohort, predominantly localized to edges of the brain
mask.

Fig. 5. Iterative hierarchical subdivision of mother cluster #71 (light green color on Fig. 2) at hierarchical level 1, resulted in 7 main and 121 tiny clusters. Tiny
clusters are all mutually color coded with emerald (#43D344) for visualization purposes. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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The average size of the 181 main clusters was 227 voxels (6.1 cm3),
with median size of 84 voxels (2.3 cm3). The 182 mother/main clusters
measuring between ~1 to 62 cm3 covered 43,329 voxels (~1169.9 cm3

or 64.0% of MNI-152 brain mask), and the cumulative size of tiny
clusters throughout the brain was 9809 voxels (264.8 cm3 or 14.5% of
MNI-152 brain mask). In addition, during iterative subdivision of mo-
ther clusters, a total of 9057 orphan voxels (244.5 cm3 or 13.3% of
MNI-152) could not be assigned to any sub-cluster. It should be noted
that these orphan voxels were part of the larger mother cluster at the
immediate upper hierarchical level, but could not be assigned to any
sub-cluster in subdivision process. The hierarchical subdivisions and
clusters are available at https://github.com/doggydaddy/stroke_atlas.

Figs. 3 through 6 illustrate the iterative hierarchical cluster sub-
divisions of the four mother clusters formed at hierarchical level 0

(Fig. 2A). On visual inspection of clusters, the mother cluster #1
overlaps with right anterior cerebral artery (ACA), and bilateral pos-
terior cerebral artery (PCA) territories, which are further parcellated in
hierarchical subdivisions depicted in Fig. 3. The mother cluster #6
(Fig. 4) covers most of the right middle cerebral artery (MCA) territory
as well as MCA-PCA border zone; whereas, mother cluster #71 (Fig. 5)
covers left ACA and MCA-PCA border zone. The left MCA territory is
parcellated into main or tiny clusters at hierarchical level 0 (Fig. 2), and
subdivision of mother cluster #80 (Fig. 6). The #80.588.1545 mother
cluster, which could not be further subdivided, overlaps with left MCA-
ACA border zone (Fig. 6c). Table 2 lists the major arterial supply ter-
ritories and their corresponding cluster subdivisions in Figs. 2 through
6.

In bootstrap cluster analysis, only 0.12% (75 of 65181) of voxels

Fig. 6. Iterative hierarchical subdivision of mother cluster #80 (dark green color on Fig. 2) from hierarchical level 0 (Table 1). At hierarchical level 1 (A), one mother
cluster (#80.588 in red – subdivided in B) in addition to 18 main and 108 tiny clusters are formed. At hierarchical level 2, the mother cluster #80.588 (B) was
subdivided into one mother cluster (#80.588.1545 in red and marked with an arrow) in addition to 10 main and 58 tiny clusters. However, at hierarchical level 3, the
mother cluster #80.588.1545 (C) could not be further subdivided (Table 1). Tiny clusters are all mutually color coded with emerald (#43D344) for visualization
purposes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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were labelled as “unstable” –with a reachability distance in final cluster
scheme greater than their corresponding mean bootstrapped reach-
ability distance. Among 182 mother/main clusters, only 21 contained
any of these “unstable” voxels (Supplemental Table 1, and
Supplemental Fig. 1). Overall, these “unstable” voxels formed at most
5.19% of a single cluster, and<1% volume of 13 clusters as detailed in
Supplemental Table 1. In total, 39 “unstable” voxels belonged to main/
mother clusters; and the other 36 “unstable” voxels belonged to tiny
clusters. Supplemental Fig. 1 depicts the topographic location of “un-
stable” voxels, and their corresponding mother/main clusters. Of note,
the majority of “unstable” voxels localized to borders of the stroke-atlas
clusters (Supplemental Fig. 1).

4. Discussion

Using a dataset of 793 infarct lesions, we have devised a stroke-atlas
for the brain applying a hierarchical cluster subdivision scheme based
on cluster size for exploratory analysis. The scheme explores the whole
reachability plot in a consistent manner, producing sets of clusters at
different reachability thresholds for parcellation of brain tissue in
standard MNI-152 space. The clusters identified at different hier-
archical levels depict the brain territories, where voxels are likely to be
part of same infarct lesion in our study cohort. The hierarchical atlas
allows parcellation of brain into small number of larger regions with
moderate likelihood of simultaneous infarct among voxels; or large
number of smaller regions with higher likelihood of simultaneous in-
farct among voxels. The final stroke atlas parcellates the brain into 182
regions measuring 1-to-62.6 cm3; and 917 tiny clusters measuring< 1
cm3.

In addition, the bootstrap analysis of a randomly selected subset of
subjects was applied to validate the proposed clustering scheme, and
evaluate robustness of stroke-atlas clusters to inconsistency/mislabeling
of any given voxel. As detailed in the methods Section 2.6, those voxels
with reachability distance greater than the bootstrapped distribution of
reachability distances were labelled as “unstable” since they may not
truly belong to the assigned stroke-atlas cluster. Generally, smaller
clusters tend to be less robust statistically compared to larger clusters,
and more susceptible to noise. This may be especially detrimental in
analyzing high dimensional data (such as functional or diffusion MRI),
where random noise in the data due to artifacts in scan acquisition
might result in false positives due to random chance. However, in our
analysis, two factors partially counteracted the “curse of dimension-
ality”: First, clustering analysis was performed on binary masks, and
hence each lesion has quite compact data points at its center. Even
considering expected scanner noise and artifact as well as manual
segmentation inconsistencies, the majority of data error are expected to
localize along the boundaries of each infarct lesion, and likely not af-
fecting the bulk of cluster voxels in our analysis. Indeed, Supplemental
Fig. 1 shows that “unstable” voxels were typically found along the

boundaries of proposed stroke-atlas clusters. Second, as the average
cluster size decreases with subsequent sub-divisions, clusters obtained
during sub-divisions are inherently more homogenous as the reach-
ability threshold required to generate these clusters are more stringent.
While this inherent property of density clustering neither can com-
pletely offset the multiple comparison problem, nor eases the impact of
type I errors in small clusters, it is nevertheless noteworthy that voxels
belonging to same cluster are identical in terms of the probability of
being infarcted (or not) in the dataset. Finally, while application of
dimensionality reduction techniques such as principle component
analysis might have strengthened the statistical reliability of high-di-
mensional analyses, it could have – at least theoretically – limited the
strength of a detailed analysis benefiting from all available data points,
and biased the results towards the more commonly infarcted regions of
the brain.

We hypothesize that infarct clusters identified at different hier-
archical levels correspond to end-arterial perfusion territories. In pa-
tients with an atherosclerotic or embolic arterial occlusion, brain re-
gions/voxels supplied by same arterial branches tend to infarct
together, and such voxels are presumably more likely to aggregate in
the same cluster. Indeed, mother clusters formed and further sub-
divided in hierarchical subdivision, follow the expected territories of
cerebral arterial supply branches (Table 2, and Figs. 26). The mother/
main clusters generated on the top hierarchical level with high reach-
ability threshold (loosely intra-connected clusters) correspond to major
artery branch supply territories; whereas, cluster subdivisions at lower
hierarchies with much more strict thresholds may represent supply
territories of smaller end-arterial branches. While smaller (main) clus-
ters along arterial border zones may represent watershed infarcts due to
occlusion of proximal larger arteries, gradual delineation of these sub-
clusters from arterial border zone mother clusters – upon application of
stricter thresholds – suggests that watershed perfusion territories mostly
presented as larger (mother)clusters, which were then further sub-
divided into smaller (main) sub-clusters representative of distal end-
arterial supply territories; for example subdivisions of the right MCA-
PCA border zone (mother cluster #6.61 on Fig. 4B). Having said that,
the extent of sub-division and identification of smaller end-arterial
supply territories are nevertheless limited by the presence of adequate
subjects in our dataset.

Notably, the majority of tiny (and smaller main) clusters tend to
localize to lenticulostriate regions, which are supplied by (small) deep
perforator vessels and are common regions for lacunar infarcts
(Fig. 2A). Lacunar infarcts of basal ganglia as well as white matter T2
hyperintensities presumably have vascular origin, and represent cere-
bral small vessel ischemic disease (Kloppenborg et al., 2017). It has
been suggested that lacunar infarcts in the deep white matter are due to
arteriolosclerosis or endothelial damage; whereas, lacunar infarcts in
the basal ganglia represent thrombo-embolic occlusion of perforating
arteries (Wardlaw et al., 2013a; Wardlaw et al., 2013b). Regardless of
arteriolosclerosis or thrombo-embolic mechanism of (smaller) lacunar
infarcts, the resultant ischemic lesions tend to represent end-arterial
supply territory of small perforator arteries, and likely represented by
tiny clusters in Figs. 2b, 3a, and 4a.

The supply territories of the main cerebral arteries are generally
demarcated based on consensus from the infarct distribution in patients
suffering from large vessel occlusion. Nowinski et al. have combined
the anatomical information from Talairach atlas with consensus driven
arterial perfusion maps to devise a three-dimensional atlas of 7 brain
blood supply territories (Berman et al., 1980, 1984; Hayman et al.,
1981; Nowinski et al., 2006). Delineation of supply territories for the
smaller distal arterial branches is particularly challenging given the
anatomical variation in branching pattern of cerebral arteries between
individual subjects. In this study, we have used a data-driven approach
to parcellate the MNI-152 brain space into (sub)clusters, where voxels
are prone to infarct simultaneously, based on topographic distribution
of 793 infarct lesions. The hierarchical clustering organization of our

Table 2
Major arterial supply territories and corresponding cluster subdivision
depictions.

Left ACA Figs. 5, and 6
Right ACA Fig. 3a
Left ACA-MCA border zone Fig. 6b
Right ACA-MCA border zone Figs. 3a, and 4a
Left MCA Figs. 2a, and 3a
Right MCA Fig. 4a
Left MCA-PCA border zone Figs. 3e, and 5
Right MCA-PCA border zone Fig. 4b and c
Left PCA Fig. 3c and d
Right PCA Fig. 3c and d
Cerebellum Fig. 3b

ACA= anterior cerebral artery; MCA=middle cerebral artery;
PCA=posterior cerebral artery.
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atlas allows visualization of presumable supply territories at different
levels. The current atlas can potentially help with location-outcome
correlation, or devising regional thresholds for identification of infarct
core on CT perfusion scans. Nevertheless, the regional boundaries and
topographic distribution should be interpreted with caution given the
amount of anatomical variation in arterial supply pattern of the brain
between individual subjects, as pointed out previously.

One of the potential applications of the proposed atlas is location-
outcome correlation in stroke patients. The voxel-based le-
sion–symptom mapping (VLSM) offers a voxel-wise correlation analysis
with no priori (Payabvash et al., 2017b); however, VLSM analysis re-
quires a large sample size with a broad infarct lesion spread since only
voxels infarcted in at least 10 subjects can reliably be included in the
analysis (Payabvash et al., 2017b). In addition, integration of clinical
variables in voxel-wise analysis is challenging and generally require
more sophisticated regression models (Phan et al., 2010). An atlas-
based assessment of lesion topography, on the other hand, generally
requires smaller number of lesions for analysis, and location-based
variables can be integrated in multivariate models along with clinical
variables (Payabvash et al., 2010; Payabvash et al., 2012). The most
commonly used brain atlas for evaluation of infarct location in stroke
patients is ASPECTS, which was originally devised as a crude way for
identification of infarcts involving greater than one third of MCA ter-
ritory on non-contrast head CT scan (Barber et al., 2000). The anato-
mical boundaries of 10 cortical and deep gray matter regions in AS-
PECTS are vaguely defined; however, the atlas has widely been used for
assessment of infarct lesion location in both CT and MRI scans
(Payabvash et al., 2017a; Rosso et al., 2019), mainly due to familiarity
of stroke neurologists, and its easy application based on visual assess-
ment of brain scans. Other structural atlases of the brain are pre-
dominantly based on Talairach anatomical atlas (Talairach and
Tournoux, 1988). Such consensus-driven atlases are, nevertheless,
based on anatomical observations rather than a data-driven analysis,
and may not best represent the distribution of infarct lesions among
stroke patients. The next step in application of the proposed stroke-atlas
is to determine the functional correlates of each cluster, which can
potentially help with treatment triage and accurate prognostication in
patients presenting with acute stroke.

Another potential application for the proposed stroke atlas is cal-
culation of location-specific CT perfusion thresholds. Prior studies have
shown regional variation in the cerebral blood flow/volume thresholds
for prediction of infarct core in CT perfusion scans (Payabvash et al.,
2011). Overall, brain regions which are more vulnerable to hypo-
perfusion, have higher relative cerebral blood flow (rCBF) thresholds
for prediction of infarct core, since they tend to infract with lower
degrees of rCBF drop compared to less vulnerable brain regions
(Payabvash et al., 2011). By reverse co-registration of MNI-152 space to
CT perfusion maps, one can potentially calculate and apply region-
specific rCBF thresholds for prediction of infarct core in each of stroke
atlas clusters.

Topographic delineation of brain regions that are likely to infarct
together may also help with differentiation of ischemic infarct from
other pathologies presenting with restricted diffusion (e.g. hypercel-
lular metastasis) based on topographic distribution of suspicious lesions
(Zacharzewska-Gondek et al., 2017). Thus, those lesions with reduced
diffusion, which are not conforming to boundaries of stroke atlas, are
more likely representing non-infarct lesions such as hypercellular me-
tastases.

The proposed infarct clusters in this study are inherently limited by
our lesion dataset. Approximately 91% of the MNI-152 brain mask was
covered by large number of infarct lesions in our series. However, the
slim non-coverage area along edges of the brain mask is – at least in
part – due to susceptibility artifact distortion of DWI images along the
periphery of the brain, especially rectus gyri and inferior temporal gyri
(Fig. 2C). Also, an inherent limitation of hierarchical analysis – as an
unsupervised learning algorithm – is that, those sub-clusters formed at

higher hierarchical levels, and deeper subdivisions tend to be less sta-
tistically robust, which is an issue more related to the nature of analysis
rather than anatomical correlates of our findings. The manual seg-
mentation and co-registration process might also have contributed to
non-coverage rim. Another limitation of our study is the uneven topo-
graphic distribution of infarct lesions: overall, stroke patients with MCA
territory infarct and involvement of eloquent areas of the brain are
more likely to present to hospital and get scanned (Payabvash et al.,
2016). Presence of greater data points and concentration of infarct le-
sions may also explain why infarct clusters in MCA territories could be
identified at initial hierarchical steps (Figs. 26). Inclusion of infarcts in
acute and chronic phase also contributes to data heterogeneity in our
cohort. While acute phase infarcts lesions are inherently slightly ede-
matous and may overestimate regions of parenchymal damage, the
chronic phase infarcts – on the other hand – tend to have variable de-
grees of encephalomalacia and may underestimate the boundaries of
parenchymal damage. Finally, as detailed in the methods section,
during the process of subdividing mother clusters, a series of voxels
could not be assigned to any (sub-)cluster, which were referred to as
“orphan” voxels. While these voxels were assigned to specific mother
clusters, they had stochastic behavior during iterative sub-cluster as-
signment, and could not be included in any main or tiny sub-cluster.
While these may simply represent the lack of adequate sample size for
robust statistical assignment of these voxels, one may hypothesize that
these “orphan” voxels represent tiny end-arterial supply regions (e.g.
single-voxel tiny clusters).

5. Conclusion

Applying a data-driven hierarchical voxel-wise density clustering on
793 infarct lesions from 458 stroke patients, we have parcellated the
MNI-152 brain space into 182 regions (measuring 1 to 62.6 cm3), and
devised a stroke atlas delineating brain regions (voxels) likely to infarct
simultaneously. The statistical stability of the proposed regions was
confirmed by bootstrapping cluster analysis. Adjustment of the reach-
ability threshold allows us to tune the output from small, but prob-
abilistically homogenous regions, to large brain regions, with less
homogenous likelihood of simultaneous infarct. The proposed brain
parcellation map theoretically represent end-arterial perfusion terri-
tories that tend to infarct simultaneously. The atlas is made publicly
available, and can potentially be applied for infarct location-outcome
analysis, devising multivariate prognostic models in stroke patients, or
calculating region-specific CT perfusion thresholds for infarct core
prediction.

Disclosures

All authors report no conflict of interests.

Source of funding

None.

Declaration of Competing interest

None.

Acknowledgements

We would like to thank Dr. J. Benson for assistance and support
during data collection.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2019.101981.

Y. Wang, et al. NeuroImage: Clinical 24 (2019) 101981

10

https://doi.org/10.1016/j.nicl.2019.101981
https://doi.org/10.1016/j.nicl.2019.101981


References

Achtert, E., Böhm, C., Kriegel, H.-P., Kröger, P., Müller-Gorman, I., Zimek, A., 2006.
Finding Hierarchies of Subspace Clusters. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 446–453.

Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J., 1999. OPTICS: ordering points to
identify the clustering structure. In: ACM Sigmod record. ACM, pp. 49–60.

Barber, P.A., Demchuk, A.M., Zhang, J., Buchan, A.M., 2000. Validity and reliability of a
quantitative computed tomography score in predicting outcome of hyperacute stroke
before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early
CT Score. Lancet 355, 1670–1674.

Berman, S.A., Hayman, L.A., Hinck, V.C., 1980. Correlation of CT cerebral vascular ter-
ritories with function: I. Anterior cerebral artery. AJR Am. J. Roentgenol. 135,
253–257.

Berman, S.A., Hayman, L.A., Hinck, V.C., 1984. Correlation of CT cerebral vascular ter-
ritories with function: 3. Middle cerebral artery. AJR Am. J. Roentgenol. 142,
1035–1040.

Duan, L., Xu, L., Guo, F., Lee, J., Yan, B.P., 2007. A local-density based spatial clustering
algorithm with noise. Inf. Syst. 32, 978–986.

Ernst, M., Boers, A.M.M., Aigner, A., Berkhemer, O.A., Yoo, A.J., Roos, Y.B., Dippel,
D.W.J., van der Lugt, A., van Oostenbrugge, R.J., van Zwam, W.H., Fiehler, J.,
Marquering, H.A., Majoie, C., 2017. Association of computed tomography ischemic
lesion location with functional outcome in acute large vessel occlusion ischemic
stroke. Stroke 48, 2426–2433.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. Kdd 226–231.

Hahsler, M., Piekenbrock, M., Doran, D., 2017. Dbscan: fast density-based clustering with
R. J. Stat. Softw. 25, 409–416.

Hayman, L.A., Berman, S.A., Hinck, V.C., 1981. Correlation of CT cerebral vascular ter-
ritories with function: II. Posterior cerebral artery. AJR Am. J. Roentgenol. 137,
13–19.

Kerr, M.K., Churchill, G.A., 2001. Bootstrapping cluster analysis: assessing the reliability
of conclusions from microarray experiments. Proc. Natl. Acad. Sci. U. S. A. 98,
8961–8965.

Kloppenborg, R.P., Nederkoorn, P.J., Grool, A.M., De Cocker, L.J., Mali, W.P., van der
Graaf, Y., Geerlings, M.I., 2017. Do lacunar infarcts have different aetiologies? Risk
factor profiles of lacunar infarcts in deep white matter and basal ganglia: the second
manifestations of arterial disease-magnetic resonance study. Cerebrovasc. Dis. 43,
161–168.

Liew, S.-L., Anglin, J.M., Banks, N.W., Sondag, M., Ito, K.L., Kim, H., Chan, J., Ito, J.,
Jung, C., Khoshab, N., Lefebvre, S., Nakamura, W., Saldana, D., Schmiesing, A., Tran,
C., Vo, D., Ard, T., Heydari, P., Kim, B., Aziz-Zadeh, L., Cramer, S.C., Liu, J.,
Soekadar, S., Nordvik, J.-E., Westlye, L.T., Wang, J., Winstein, C., Yu, C., Ai, L., Koo,
B., Craddock, R.C., Milham, M., Lakich, M., Pienta, A., Stroud, A., 2018. A large, open
source dataset of stroke anatomical brain images and manual lesion segmentations.
Sci. Data 5, 180011.

Nowinski, W.L., Qian, G., Kirgaval Nagaraja, B.P., Thirunavuukarasuu, A., Hu, Q., Ivanov,
N., Parimal, A.S., Runge, V.M., Beauchamp, N.J., 2006. Analysis of ischemic stroke
MR images by means of brain atlases of anatomy and blood supply territories. Acad.
Radiol. 13, 1025–1034.

Payabvash, S., Kamalian, S., Fung, S., Wang, Y., Passanese, J., Kamalian, S., Souza, L.C.,
Kemmling, A., Harris, G.J., Halpern, E.F., Gonzalez, R.G., Furie, K.L., Lev, M.H.,
2010. Predicting language improvement in acute stroke patients presenting with
aphasia: a multivariate logistic model using location-weighted atlas-based analysis of

admission CT perfusion scans. AJNR Am. J. Neuroradiol. 31, 1661–1668.
Payabvash, S., Souza, L.C., Wang, Y., Schaefer, P.W., Furie, K.L., Halpern, E.F., Gonzalez,

R.G., Lev, M.H., 2011. Regional ischemic vulnerability of the brain to hypoperfusion:
the need for location specific computed tomography perfusion thresholds in acute
stroke patients. Stroke 42, 1255–1260.

Payabvash, S., Souza, L.C.S., Kamalian, S., Wang, Y., Passanese, J., Kamalian, S., Fung,
S.H., Halpern, E.F., Schaefer, P.W., Gonzalez, R.G., Furie, K.L., Lev, M.H., 2012.
Location-weighted CTP analysis predicts early motor improvement in stroke. A pre-
liminary study. 78, 1853–1859.

Payabvash, S., Taleb, S., Benson, J.C., McKinney, A.M., 2016. Interhemispheric asym-
metry in distribution of infarct lesions among acute ischemic stroke patients pre-
senting to hospital. J. Stroke Cerebrovasc. Dis. 25, 2464–2469.

Payabvash, S., Noorbaloochi, S., Qureshi, A.I., 2017a. Topographic assessment of acute
ischemic changes for prognostication of anterior circulation stroke. J. Neuroimaging
27, 227–231.

Payabvash, S., Taleb, S., Benson, J.C., McKinney, A.M., 2017b. Acute ischemic stroke
infarct topology: association with lesion volume and severity of symptoms at ad-
mission and discharge. AJNR Am. J. Neuroradiol. 38, 58–63.

Payabvash, S., Benson, J.C., Tyan, A.E., Taleb, S., McKinney, A.M., 2018. Multivariate
prognostic model of acute stroke combining admission infarct location and symptom
severity: a proof-of-concept study. J. Stroke Cerebrovasc. Dis. 27, 936–944.

Phan, T.G., Chen, J., Donnan, G., Srikanth, V., Wood, A., Reutens, D.C., 2010.
Development of a new tool to correlate stroke outcome with infarct topography: a
proof-of-concept study. Neuroimage 49, 127–133.

Rorden, C., Brett, M., 2000. Stereotaxic display of brain lesions. Behav. Neurol. 12,
191–200.

Rosso, C., Blanc, R., Ly, J., Samson, Y., Lehéricy, S., Gory, B., Marnat, G., Mazighi, M.,
Consoli, A., Labreuche, J., Saleme, S., Costalat, V., Bracard, S., Desal, H., Piotin, M.,
Lapergue, B., 2019. Impact of infarct location on functional outcome following en-
dovascular therapy for stroke. J. Neurol. Neurosurg. Psychiatry 90, 313–319.

Talairach, J., Tournoux, P., 1988. Co-Planar Stereotaxic Atlas of the Human Brain. 3-
Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme.

Wang, Y., Li, T.Q., 2013. Analysis of whole-brain resting-state FMRI data using hier-
archical clustering approach. PLoS One 8, e76315.

Wang, Y., Msghina, M., Li, T.Q., 2016. Studying sub-dendrograms of resting-state func-
tional networks with voxel-wise hierarchical clustering. Front. Hum. Neurosci.
10, 75.

Wardlaw, J.M., Smith, C., Dichgans, M., 2013a. Mechanisms of sporadic cerebral small
vessel disease: insights from neuroimaging. Lancet Neurol. 12, 483–497.

Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., Fazekas, F., Frayne, R., Lindley,
R.I., O’Brien, J.T., Barkhof, F., Benavente, O.R., Black, S.E., Brayne, C., Breteler, M.,
Chabriat, H., Decarli, C., de Leeuw, F.E., Doubal, F., Duering, M., Fox, N.C.,
Greenberg, S., Hachinski, V., Kilimann, I., Mok, V., Oostenbrugge, R., Pantoni, L.,
Speck, O., Stephan, B.C., Teipel, S., Viswanathan, A., Werring, D., Chen, C., Smith, C.,
van Buchem, M., Norrving, B., Gorelick, P.B., Dichgans, M., 2013b. Neuroimaging
standards for research into small vessel disease and its contribution to ageing and
neurodegeneration. Lancet Neurol. 12, 822–838.

Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T.,
Beckmann, C., Jenkinson, M., Smith, S.M., 2009. Bayesian analysis of neuroimaging
data in FSL. Neuroimage 45, S173–S186.

Zacharzewska-Gondek, A., Maksymowicz, H., Szymczyk, M., Sąsiadek, M., Bladowska, J.,
2017. Cerebral metastases of lung cancer mimicking multiple ischaemic lesions - a
case report and review of literature. Pol. J. Radiol. 82, 530–535.

Y. Wang, et al. NeuroImage: Clinical 24 (2019) 101981

11

http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0005
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0005
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0005
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0010
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0010
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0015
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0015
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0015
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0015
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0020
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0020
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0020
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0025
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0025
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0025
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0030
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0030
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0035
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0035
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0035
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0035
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0035
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0040
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0040
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0045
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0045
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0050
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0050
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0050
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0055
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0055
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0055
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0060
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0060
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0060
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0060
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0060
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0065
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0065
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0065
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0065
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0065
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0065
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0065
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0070
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0070
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0070
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0070
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0075
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0075
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0075
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0075
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0075
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0080
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0080
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0080
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0080
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0085
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0085
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0085
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0085
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0090
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0090
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0090
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0095
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0095
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0095
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0100
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0100
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0100
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0105
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0105
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0105
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0110
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0110
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0110
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0115
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0115
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0120
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0120
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0120
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0120
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0125
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0125
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0130
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0130
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0135
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0135
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0135
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0140
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0140
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0145
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0145
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0145
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0145
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0145
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0145
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0145
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0145
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0150
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0150
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0150
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0155
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0155
http://refhub.elsevier.com/S2213-1582(19)30331-6/rf0155

	Stroke atlas of the brain: Voxel-wise density-based clustering of infarct lesions topographic distribution
	Introduction
	Methods
	Data acquisition
	Infarct lesion segmentation and coregistration
	Distance measure
	Density clustering
	Data analysis and cluster construction
	Bootstrapping analysis for assessment of cluster reliability

	Results
	Discussion
	Conclusion
	Disclosures
	Source of funding
	mk:H1_14
	Acknowledgements
	Supplementary data
	References




