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Abstract: We report new structured perovskite solar cells (PSCs) using solution-processed TiO2/Au
nanorods/MgO composite electron transport layers (ETLs). The proposed method is facile, convenient,
and effective. Briefly, Au nanorods (NRs) were prepared and introduced into mesoporous TiO2 ETLs.
Then, thin MgO overlayers were grown on the Au NRs modified ETLs by wet spinning and pyrolysis
of the magnesium salt. By simultaneous use of Au NRs and MgO, the power conversion efficiency of
the PSC device increases from 14.7% to 17.4%, displaying over 18.3% enhancement, compared with
the reference device without modification. Due to longitudinal plasmon resonances (LPRs) of gold
nanorods, the embedded Au NRs exhibit the ability to significantly enhance the near-field and far-field
(plasmonic scattering), increase the optical path length of incident photons in the device, and as
a consequence, notably improve external quantum efficiency (EQE) at wavelengths above 600 nm
and power conversion efficiency (PCE) of PSC solar cells. Meanwhile, the thin MgO overlayer also
contributes to enhanced performance by reducing charge recombination in the solar cell. Theoretical
calculations were carried out to elucidate the PV performance enhancement mechanisms.

Keywords: perovskite solar cells; Au nanorods; longitudinal plasmon resonance; transverse plasmon
resonance; MgO passivation layer; plasmon enhancement

1. Introduction

Perovskite solar cells (PSCs) have made great progress during the recent decade, due to their
appropriate band structure, uncomplicated production process, low cost, excellent light absorption,
great carrier diffusion length, and ambipolar diffusion [1–3]. Since organometal halide perovskites
were first introduced by Miyasakaet al. in 2009 [4], the power conversion efficiency (PCE) of PSCs has
risen rapidly from 3.8% to current certified 25.2% [5]. To date, a comparable PCE to that of traditional
single crystalline or polycrystalline silicon photovoltaic (PV) devices has been realized with PSCs,
indicating intense prospects of commercialization.

To promote the PCE of PSC solar cells, vigorous investigators have explored and established
diversified device engineering approaches, such as interface modification, morphology optimization,
defect and contact passivation, device structure design, light management, etc. [6–12]. It is well known
that the organic–inorganic lead halide perovskites efficiently make use of the visible light spectrum
of the solar energy from 350 to 750 nm. However, the usage efficiency of photons with energy out
of this electromagnetic wavelength region is impoverished, which restricts the PV performance of
PSCs. Therefore, various tactics to promote the light absorption of perovskite semiconductor material
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over all the visible spectral regions are taken by researchers [10,13]. Effective light management can
be accomplished by the reduction of reflection losses at the cell surface and trapping of light in the
absorbing layer [14,15]. In the past decade, plasmonic nanostructures have been intensively pursued
to improve the efficiency of a wide range of solar cells, including polymer solar cells, dye-sensitized
solar cells, and heterojunction solar cells [16–19].

Recently, researchers have reported that the introduction of insulative metal oxide-coated
spherical-shaped noble metal particles into PSC solar cells can promote PV efficiency [11,12,20–24].
The PV performance improvements could be associated with a collective effect of localized surface
plasmon resonance (LSPR) promoted light absorption, decreased exciton binding energy [20],
plasmonic-induced photon recycling [21], and hot-electron injection [22]. By use of the Fermi
golden rule to the plasmon coupling with band electrons, microscopic calculations demonstrate that
the device efficiency increase can be induced by the light absorption channel and the reduction of
exciton binding energy in PSCs metalized with core−shell nanoparticles. Both absorption and electrical
channels of the plasmon PV effect work for device efficiency enhancement [23,24]. To date, however,
there is no direct experimental testimony that the PV performance improvement is associated with
LSPR-enhanced light absorption. In addition, traditional gold and silver nanoparticles are not efficient
in boosting the light absorption of widely reported lead-based perovskite semiconductors, owing
to their high absorption coefficient in the wavelength region of 500–650 nm [2,25]. By comparison,
perovskite semiconductors bear lower light capture in the lower frequency or longer wavelength
region. The absorption coefficient considerably declines with the increase in the wavelength from 650 to
800 nm, and the absorption almost vanishes when the wavelength is longer than 800 nm due to the
steep absorption edge [26]. In contrast to the usually used spherical-shaped noble metal nanomaterials,
the geometrically anisotropic rod-like structures are likely to present anisotropic conductivity to electron
migration between the transverse and longitudinal directions [27]. The transverse resonance absorption
peak of rod-like structure can promote the direct employment of the visible light. Longitudinally, it can
boost the optical scattering, increase the optical path length, and promote the possibility of photon
harvesting, especially for the near-infrared light (NIR) [28]. Therefore, it is expected that the LSPR effect
of metal nanorods can effectively utilize photon energy chiefly through both far-field scattering and
near-field improvement, thus promoting the PV performance of PSC devices [29]. The investigation of
novel plasmonic nanostructures with appropriate and predesigned size and shape is demanded to
make this field move forward.

In this contribution, for the first time, we utilize a novel nanostructure of an Au nanorod-MgO
overlayer to promote the light-harvesting and PV performance of PSCs. Au NRs were synthesized
and introduced onto mesoporous TiO2 films. Successively, MgO passivation layers were grown on
the gold NR modified mesoporous TiO2. Differing from conventional metallic nanospheres, these Au
NRs are gifted with strong absorption and scattering efficiencies in a wide wavelength region between
600 and 800 nm. In such structure-engineered TiO2/Au NRs/MgO electrodes, the nanorod focuses the
incident light, causing effective intensification in both near-field and scattering cross-sections, which
enhance the photocurrent of PSCs. Moreover, the thin MgO overlayer also contributes to better PV
performance by reducing charge recombination in the device. By embedding Au NRs/MgO in the PSC
device, we observed prominent EQE enhancements at the NIR frequencies. As a result, the energy
conversion efficiency of the perovskite solar cell increased from 14.7% to 17.4%, demonstrating over
18.3% enhancement, compared with the reference device without modification. The PV performance
enhancement mechanisms were investigated using numerical simulations. The theoretical calculations
correspond well with our experimental results.



Nanomaterials 2020, 10, 1830 3 of 15

2. Materials and Methods

2.1. Materials

All chemicals were ordered from Sigma-Aldrich (Shanghai, China) or Alfa Aesar (Shanghai,
China), unless otherwise stated. They were used as received without further purification.

2.2. Synthesis of Gold Nanorods (Au NRs)

Au NRs were synthesized through a seed-mediated growth approach with slight modification,
as previously reported [30]. Specifically, a 500 µL portion of hydrogen tetrachloroaurate-(III)
(HAuCl4·4H2O) aqueous solution (0.01 M) was mixed with 0.7289 g cetyltrimethylammonium bromide
(CTAB) in deionized (DI) water (20 mL), and then 1.2 mL of fresh ice-cold NaBH4 (0.01 M) solution
was rapidly added with gentle mixing for 2 min. The synthetic pale yellow-brown colored solution
was kept at 25 ◦C at least 2 h before the next step, and the obtained seed solution can be stable for a
few days.

A 2.0 mL volume of HAuCl4 (0.01 M), 0.27 mL of AgNO3 (0.01 M), and 1.4578 g of CTAB were
mixed in 40 mL of DI water by gentle stirring at 25 ◦C. After the addition of 0.32 mL of freshly
prepared L-Ascorbic acid solution (0.1 M), the growth solution changed from dark yellow to colorless.
Subsequently, 96 µL of seed solution was added to the growth solution, and the mixed solution
was left quietly at least 6 h at 25 ◦C. The Au NRs were separated and washed for several times by
re-centrifugation at 4000 rpm to remove superfluous CTAB and other possible impurities, and then
dispersed in ethanol.

2.3. Device Fabrication

Fluorine-doped tin oxide (FTO)-coated slides (Pilkington TEC 15, Xiamen, China) were patterned
by etching with Zn powders and 2 M HCl. The etched slides were then cleaned with liquid detergent,
acetone, ethyl alcohol, and DI water for 15 min, sequentially, to remove the organic or inorganic
residues, and were finally dried in a vacuum oven (Yiheng, Shanghai, China). Isopropyl titanate
(200 µL) and anhydrous ethanol (5 mL) were mixed to prepare a clear precursor sol. The formed
precursor sol was spin-coated onto the primed FTO substrate at 4500 rpm for 30 s, followed by
annealing at 500 ◦C to form a compact TiO2 layer (c-TiO2). Diluted TiO2 pastes were prepared by
mixing TiO2 paste (Dyesol 18NR-T, Queanbeyan, Australia) and anhydrous ethanol (weight ratio:
1:3.5), and the resulting pastes were stirred overnight. The mesoporous TiO2 (p-TiO2) layer was formed
on the c-TiO2 layer by spin-coating diluted TiO2 pastes at 2000 rpm for 45 s. The layer was then
sintered at 500 ◦C for 30 min in air. After the samples cooled down to the room temperature, 75 µL
of Au NRs solution (0.20 mg mL−1) was first spin-coated onto the p-TiO2 film’s surface, followed by
heating at 100 ◦C for 30 min on a hotplate in air. The MgO insulative film was formed on the Au NRs
coated p-TiO2 layer by spin-coating Mg(CH3COO)2 dissolved in DI water (0.045 M) at 4000 rpm for
30 s, then heated at 400 ◦C for 1 h. The perovskite MAPbI3 (MA = CH3NH3) layer was grown by a
spin-coating process using a γ-butyrolactone (GBL)/dimethylsulphoxide (DMSO) solution of CH3NH3I
and PbI2 [6,7]. The perovskite precursor solution was prepared by mixing CH3NH3I (0.1975 g) powders
and PbI2 (0.5785 g) in GBL (700 µL) and DMSO (300 µL) at room temperature overnight. The formation
of the absorber precursor layers involved spin-coating the perovskite precursor solution at 2000 and
4000 rpm for 20 and 50 s, respectively. At the second spin-coating step, anhydrous chlorobenzene
(CB) antisolvent was dripped onto the center of the sample. The perovskite precursor coated sample
was heated on a hot plate at 100 ◦C for 30 min. The hole transport layer (HTL) was deposited by
spin-coating a spiro-OMeTAD solution with 0.0723 g spiro-MeOTAD, 28.8 µL of 4-tert-butylpyridine,
and 17.5 µL of Li TFSI (520 mg Li TFSI in 1 mL of acetonitrile) dissolved in 1 mL of CB at 4000 rpm
for 30 s [31]. Finally, a 100 nm thick Ag electrode with an active area of 0.1 cm2 was formed on the
Spiro-OMeTAD-coated film by thermal evaporation.



Nanomaterials 2020, 10, 1830 4 of 15

2.4. Characterization

The surface morphologies of Au NRs and Au NRs modified p-TiO2 films were recorded by a
high-resolution field emission scanning electron microscope (FESEM, Hitachi S4800, Tokyo, Japan). The
absorption spectra of p-TiO2-based perovskite absorbers with various modifications were examined
and characterized by means of ultraviolet−visible light (UV−vis) spectrometer (Hitachi, U-3010, Tokyo,
Japan). Photoluminescence (PL) spectra were measured using a HORIBA JobinYvon fluoromax-4
fluorescence spectrophotometer (Edison, NJ, USA) with an excitation wavelength of 508 nm at room
temperature. The external quantum efficiency (EQE) spectra were recorded with the Optical Power
Meter (Newport 2936-R, Irvine, CA, USA). The J–V characteristics were measured with the source meter
controlled by a computer (Keithley model 2440, Solon, OH, USA) under simulated solar illumination
(AM1.5G/100 mW/cm2, Newport solar simulator, Irvine, CA, USA) in the air. The electrochemical
workstation (PG30.FRA2 Autolab, EcoChemie, Utrecht, The Netherlands) was used to measure
electrochemical impedance spectroscopy (EIS) curves of the PSCs.

3. Results and Discussion

A series of devices with basic configuration (glass/FTO/c-TiO2/p-TiO2/CH3NH3PbI3/spiro-OMeTAD/

Ag) were fabricated and modified with and without Au NRs and/or MgO. The current density versus
voltage (J–V) curves from the four types of fabricated PSC devices are shown in Figure 1a. Table 1
lists the summary of PV performance parameters of PSCs, including open-circuit voltage (VOC),
short-circuit current density (JSC), fill factor (FF), and PCE. Figure 1b,d shows FESEM images of
as-deposited gold NRs and the top surface morphology of the porous TiO2 layer modified with Au
NRs, respectively. From both figures, the average size of Au NRs is about 12 nm in diameter and
40 nm in length, the Au nanorods have an aspect ratio of about 3.3, and Au NRs are distributed on the
top surface of the p-TiO2 as shown in Figure 1d. The Au nanorods show a transverse SPR band at
519 nm and a longitudinal SPR band at 665 nm, while Au spheres with a diameter of 20 nm display an
SPR peak at 520 nm, as shown in Figure 1c.
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Table 1. Photovoltaic parameters of the PSCs based on m-TiO2 with and without Au nanorods (NRs)
and/or MgO.

Parameters VOC (V) JSC (mA/cm2) FF PCE (%)

Control 1.02 20.10 0.72 14.7
With pure Au NRs 1.01 18.51 0.68 12.7

With pure MgO 1.04 21.30 0.74 16.4
With Au NRs/MgO 1.04 22.35 0.75 17.4

As can be seen from Table 1, the reference device without Au NRs or MgO coatings shows a
PCE value of 14.7% with a VOC of 1.02V, JSC of 20.10 mA/cm2, and FF of 0.72. By incorporating
bare Au NRs between the p-TiO2 and perovskite layers, the performance of the device degraded
notably and displayed a PCE value of 12.7% with a VOC of 1.01 V, JSC of 18.51 mA/cm2, and FF of 0.68.
Both short-circuit current density and fill factor values decreased prominently, after the addition of Au
NRs alone. Compared to the case of the control device, the device modified by pure MgO exhibited
a PCE of 16.4%, the value of VOC, JSC, and FF increased a little. The champion cell performance
was obtained for the cell modified with both Au NRs and MgO. This cell manifested an open-circuit
voltage of 1.04 V, a short-circuit current density of 22.35 mA/cm2, and a fill factor of 0.75, resulting
in the highest PCE of 17.4%. Compared with the reference device, the PCE enhancement for the
device incorporating both Au NRs and MgO mainly comes from the greatly improved short-circuit
photocurrent JSC (20.10 to 22.35 mA/cm2) and the fill factor (0.72 to 0.75), while the open-circuit voltage
VOC is only slightly changed.

It can be seen that the main performance difference between these four kinds of devices is the
short-circuit photocurrent and the fill factor from Table 1. The JSC and the fill factor of the PSC device
incorporated only Au NPs degraded a lot, which can be associated with two factors. The bared gold
NRs can play as charge carrier recombination or trapping sites for photon-induced carriers due to
the lower conduction energy level of the Au than that of the TiO2 [32,33]. On the other hand, the Au
NRs are possibly corroded by the halides during the thermal annealing treatment of the perovskite
precursor films, leading to the metal migration or diffusion into the perovskite material, and thus,
causing destructive and irreversible alterations to the perovskite active layers and consequently,
seriously impacting the solar cell performance [33,34]. From Table 1, the PV performance of the device
with pure MgO modification showed enhanced VOC values, especially JSC and FF values compared
with the reference device. The increase in the Voc parameter can be chiefly ascribed to the much higher
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conduction band energy level of MgO than that of TiO2. The condition could induce a positive shift of
the TiO2 conduction band towards that of MgO and achieve a higher quasi-Fermi level under solar
light irradiation and a higher open-circuit voltage [35]. Besides, the ultrathin MgO overlayer could
play as a tunneling barrier that obstructs the recombination receded from TiO2 to the hole transport
material in the solar cell, thus, high Jsc and FF parameters were obtained. Obstruction of charge
carrier recombination is also testified by the following electrochemical impedance spectroscopy (EIS)
measurement data. As a result, by simultaneously applying Au NRs and MgO coating in the PSC,
the solar cell performance was further improved, and the PSC cell using both Au NRs and MgO
overlayer is better than the other three kinds of PSC devices.

As a promising wide bandgap semiconductor and good tunneling and spintronics material, MgO
has been widely reported to change the surface state of metal oxide electrodes and reduce interfacial
carrier recombination in solar cells [35–37]. In our work, in addition to the roles reported in the
previous literature, MgO coating also worked as an insulative shell to screen gold nanorods, keeping
gold nanorods intact and maintain their structural and thermal stability during the annealing treatment
of the perovskite precursor films [33]. The wide bandgap MgO overlayer prevented the gold NRs on
the porous TiO2 from etching or metal migrating during fabricating perovskite active films. The metal
ion diffusion into the absorber layer will have a detrimental effect on device performance and cause
leakage current. The MgO coating also blocked the direct contact between gold and the perovskite
semiconductor, or the hole conductor material in the PSC, suppressing undesired electron–hole
recombination routes within the solar cell. From Table 1, compared with the PSC cell with pure MgO
modification, the PSC cell containing both Au NRs and MgO coating displayed analogous VOC and
FF values, but a remarkably higher short-circuit current. The increase in photocurrent in the latter
device compared to the former device suggested that localized surface plasmon resonance (SPR) and
electrical effects of Au NRs enhance the PV response of the solar cells [11,38–40].

In order to explore the optical and electrical effects of gold NRs on the PV performance of PSC
devices, optical absorption and steady-state PL spectra of the TiO2 electron transport layer (ETL) and
absorber samples were measured. Figure 2a shows the UV–vis spectra of FTO/c-TiO2/p-TiO2 samples
without or with Au NRs and MgO modification. All the ETL specimens exhibit an analogous light
absorption, illustrating that the introduction of Au NRs or MgO into the porous TiO2 ETL had no
obvious negative effect on the transparency of the TiO2 ETL. Figure 2b exhibits the UV–vis spectra of
perovskite absorber samples without or with Au NRs and MgO modification. No obvious change
was observed in the absorption spectra of the four types of absorber specimen, even in the region of
specific absorption wavelengths linked with gold NRs shown in Figure 1c, which is in good agreement
with the previously reported results [20,21]. The consequence can be understood by considering the
extremely high absorption coefficient of the Pb based perovskite and the small amounts of the added
gold NRs or MgO.

On the other hand, the charge carriers produced in the perovskite absorber of the plasmonic
PSC are likely to transport and collect more efficiently. Steady-state PL characterizations are effective
in exploring the carrier transporting properties and recombination of light-excited electrons and
holes of the solar cells. PL spectra of perovskite absorbers without or with Au NRs and MgO
modification are shown in Figure 2c. All absorber samples display an emissive peak at around
761 nm. The PL peak position almost remained constant for the four absorbers, however, their PL
intensities and quenching changed a lot. Particularly, the absorber specimen with bare Au NRs
displayed the strongest fluorescence signal, and the corresponding perovskite solar cell prospectively
showed a higher recombination rate of carriers than the devices based on the other absorber specimens.
Nevertheless, compared to the control sample, a significantly enhanced PL quenching was detected for
both kinds of absorber samples with MgO overlayer, testifying that electron extraction from perovskite
to TiO2 ETLs with MgO modification was more efficient than the case to the pristine TiO2. Compared
with that of the reference absorber without any modification, the fluorescence intensity becomes less
and less intense from the absorber with pure MgO to the one containing gold nanorods and MgO.
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The much lower PL intensity for the latter sample demonstrates that simultaneously incorporating
Au NPs and MgO onto porous ETLs plays a dominant role in promoting the charge transfer and
blocking the recombination between photogenerated electrons and holes. The perovskite layer grown
on the MgO/Au NRs/ETL/FTO substrate displays the most intense PL quenching behavior. The most
strongly quenching characteristic suggests the speediest charge transfer, the most efficient electron
extraction and the least charge accumulation, and thus, the highest JSC value and the best photovoltaic
performance [41]. This result is consistent with the PV performance parameter values analyzed in the
J–V curves of the fabricated PSC devices.
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EIS characterizations were also performed to study the interface charge transport and
recombination in PSC devices. Figure 3 displays the Nyquist plots of the PSCs based on porous
TiO2 without and with Au NRs or MgO modification. EIS measurements were carried out at
a bias voltage of 0.9 V and in the dark. The whole perovskite solar cell can be regarded as a
leaking capacitor [42]. The dimension of the semicircle in the Nyquist plot typically symbolizes the
magnitude of the recombination resistance at the interface of the ETL/perovskite layer and ETL/hole
transport layer. As can be seen from Figure 3, the PSC cell with bare gold nanorods shows the
smallest semicircle, indicating the lowest recombination resistance. The control device displays
the second-lowest recombination resistance. With the pure MgO modification, the diameter of the
semicircle dramatically increases, indicating extremely higher recombination resistance in the device



Nanomaterials 2020, 10, 1830 8 of 15

with pure MgO modification than that of the control cell and the PSC with bare Au NRs. The
PSC device containing both Au NRs and MgO exhibits the second-largest recombination resistance.
Its recombination resistance is a little smaller than that of the PSC with bare MgO. The increase
in recombination resistance after using TiO2/Au NRs/MgO or TiO2/MgO composite ETLs caused a
significant decrease in current loss via interfacial carrier recombination, and thus, promoted the JSC

and the FF parameters for the corresponding PSCs as shown in Table 1.
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dark conditions at a 0.9 V applied bias.

EQE spectra were characterized to further investigate the photoelectric conversion capacity in the
modified PSCs. The EQE can be factorized into three components enabling the origin of photocurrent
loss to be examined. The element is related to the efficiency of photon harvesting by the perovskite
absorber, charge injection from the excited absorber to the TiO2 ETL, and charge collection from the
TiO2 electrode to the external circuit [43]. Thus, it is more appropriate than J–V measurements for
probing optical and electrical responses of PSCs. The EQE spectra of PSCs modified with and without
Au NRs and/or MgO are shown in Figure 4a. From the figure, the generation of photocurrent begins at
∼800 nm, corresponding with the bandgap of perovskite CH3NH3PbI3. In order to examine the positive
contribution of gold NRs/or magnesium oxide to the photocurrent, relative EQE variations are exhibited
in Figure 4b for different wavelengths. For an incident photon with a wavelength (λ), when the
relative EQE enhancement is positive, the presence of the modification improved the efficiency of the
device, compared to the unmodified reference device. Negative EQE variation values mean that fewer
photons were absorbed or fewer charge carriers were separated and collected by the modified PSC
device. It is found that the relative EQE variation for the PSC using bare Au NRs is negative over the
wavelength region from 310 to 790 nm. In this case, the presence of bare NRs is actually deleterious to
the performance of the PSC device, yielding PV cells with lower power generation than the references
in the spectral range. The negative performance observed for bare Au NRs has been attributed to
the reasons that the bared gold NRs can work as charge carrier recombination or trapping sites for
photon generated carriers and cause destructive alterations to perovskite absorbers. The obtained
EQE result for the PSC using bare Au NRs corresponds well with the decrease in the JSC data given
in Table 1. EQE of the PSC with pure MgO modification was clearly improved in the wavelength
region from about 400 to 600 nm when compared with that of the reference device. In contrast, for
the PSC cell containing both Au NRs and MgO overlayer, the relative EQE variation curve presents
positive values almost in the whole spectral range from 310 to 750 nm. The EQE enhancements are
dominant at long wavelengths, significantly displaying two positive maxima at 620 nm and 709 nm,
respectively. The characteristic EQE enhancement profile closely matches the Au NR extinction
spectrum in Figure 1c. The positions of the maxima in long wavelengths could be associated with the
longitudinal SPR bands of the colloid Au NRs immobilized on Au- and MgO-modified PSC devices.
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The positive EQE enhancement values could be partly attributed to the favorite radiation scattering
into the PSC absorber mediated by the local SPR [18]. In the case of simultaneous inclusion of Au
NRs and MgO coating, the incident radiation and the scattering light from colloidal Au NRs lead to
constructive interference of the light waves combined at the interface of the perovskite absorber and
TiO2 ETL. Additionally, the EQE enhancement can be also ascribed to the hole blocking effect of MgO,
which reduced the charge recombination in the modified device. Although multipolar scattering, such
as quadrupolar contributions, can be very efficient [44], their effect at shorter wavelengths is very
complicated in consideration of the mechanisms of interband transition. From Figure 4a,b, the trend in
EQE enhancement for differently structured PSC devices agrees well with ours with that from J–V
measurement and analysis shown in Figure 1a and Table 1.
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Figure 4. (a) External quantum efficiency (EQE) curves of the control (reference) device and the PSCs
with Au NRs or MgO overlayer. (b) EQE enhancements of PSCs with Au NRs and MgO overlayer:
EQE enhancement: ∆EQE/EQEref (∆EQE, the difference between EQE values of the modified and the
reference devices).

To better understand the optical effect of Au NRs on the PV performance, Finite-difference
time-domain (FDTD) numerical simulations were performed to simulate the electromagnetic field
within the perovskite layer containing Au NRs. The finite integral technique (CST Microwave
Studio) was applied for the calculations [12,33,45]. The optical properties (refractive index, n, and
extinction coefficient, k) of the related materials are obtained from previous publications [25,46,47].
FDTD numerical simulations were performed for an Au naorod (40 nm in length and 11.6 nm in
diameter) embedded between TiO2 and perovskite layers. The Au nanorod is along the y-direction.
The incident light is a plane wave propagating at the normal incidence along the negative z-direction,
and the polarization direction is shown in the bottom-right corner of Figure 5. The electric-field
|E| enhancement factor distributions around the Au NR embedded between TiO2 and perovskite
layers at different wavelengths are exhibited in the figure. The enhancement factor is determined as
the proportion between the electric field within the TiO2 or perovskite layers with and without the
plasmonic NRs. As can be seen from Figure 5, the near-field enhancement factor around Au NR is
noticeable and changes with the wavelength of the incident light. The most prominent augmentation
typically occurs at the edge of the Au nanorod. The |E| enhancement factor of the local field is extremely
high and the strength dimension is most considerably large at 620 nm. The near-field enhancement
can be a result of coupling between individual plasmonic Au NRs and the interaction between Au NR
and TiO2/CH3NH3PbI3 in close proximity [48]. When metal and semiconductor nanomaterials are
very adjacent to each other, higher-order interactions and even energy transfer may occur [49].
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Figure 5. (a–h) Simulated field |E| enhancement factor distribution around Au NR (40 nm in length and
11.6 nm in diameter) at different wavelengths, (i) color scale and (j) yz plane. The local field-enhancement
factor distributions on yz planes at x = 0 nm. (k) Incident light beam propagation is along −z, and the
light polarized direction.

Precious metal NRs are exceptionally appealing for their high absorption and scattering efficiencies
in the NIR frequencies. The corresponding longitudinal plasmon resonances (LPRs) are sensitive to
the polarization of the incident excitation. Figure 6a,b shows the calculated absorption and scattering
cross-sections of an Au naorod (40 nm in length and 11.6 nm in diameter) and an Au sphere (20.06 nm
in diameter) with the same volume as the gold nanorod. The polarization direction of the incident
plane wave is the same as shown in Figure 5. The nanoorod is along the y-direction. From the
simulation, gold nanorods support tremendously higher absorption and scattering cross-sections than
Au spheres with the same volume as the Au NRs at NIR wavelengths (600–800 nm). Additionally, for
the Au NR, the absorption cross-section value is higher than the scattering cross-section value at a
fixed wavelength. The results are in good agreement with the previous work [50,51]. The insert in
Figure 6b shows an angular scattering diagram for the Au nanorod illuminated by a linear polarized
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plane wave with a wavelength of 620 nm in free space. Furthermore, the simulated transverse and
longitudinal plasmon resonances (LPSs) of the Au NRs are 508 nm and 665 nm, respectively, from the
absorption cross-section curve shown in Figure 6a. The scattering cross-section curve also displays an
LPS at 665 nm, as shown in Figure 6b. The calculated transverse plasmon resonance and LPS results
are very consistent with those from the measured absorbance spectra of Au NRs and spheres shown in
Figure 1c.
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Figure 6. Calculated absorption (a) and scattering (b) cross-sections of an Au NR (40 nm in length
and 11.6 nm in diameter) and sphere (20.06 nm in diameter) by a linear polarized plane wave in free
space. The insert is the scattering diagram for the Au NR at a wavelength of 620 nm. (c) Maximal field
intensity |E|2 enhancement factor around the Au NR at different wavelengths.

Figure 6c shows the dependence of the maximal electric-field intensity |E|2 enhancement factor
around Au NR embedded between TiO2 and MAPbI3 films on the wavelength of the incident light
beam. From the figure, the maximal |E|2 enhancement factor increases with the increase in the
wavelength from 400, reaches a maximum at 620 nm, and then drops down with the further increase
in the wavelength from 620 nm. The electric field’s intensity in the perovskite layer containing Au
NRs can be increased by close to 35 times than the incident light field at the wavelength of 620 nm,
where both the maximal absolute EQE value and one EQE enhancement peak took place as shown in
Figure 4a,b, respectively. This coincidence between the near-field enhancement peak and the position
of the maximal absolute EQE or the positive peak in EQE variations undoubtedly support that the
enhanced local electric field boosted the generation rate of electron–hole pairs and thereby upgraded
the PV performance of PSC solar cells followed by increases in photocurrent and power conversion
efficiency [21]. In our study, the nanorods are randomly distributed in the perovskite absorber, which
induces complexity in the effecting of LSPRs, but still will evidently enhance the optical response and
the EQE values at plasma resonances.
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We have mainly discussed the optical effect of Au NRs on the PV performance in the above
simulation sections. Actually, plasmons can contribute to modifying not only light absorption but
also local electricity inside a PSC cell metalized with core−shell nanoparticle [12,20–24]. Both optical
and electrical channels of plasmon mediation impact the device PV performance with the eventual
value being the subject of the trade-off between competing factors in complicated dependence of size,
shape, component, and material parameters of metal nanostructures and absorber semiconductors.
Microscopic calculations demonstrated that nonvertical interband transitions provide an effect unrelated
to photoabsorption, nevertheless, which can promote the device efficiency by adjusting its internal
electricity [23]. This electrical channel of the plasmon PV effect is ascribed to the decrease in the exciton
binding energy, which assists the progress of exciton dissociation at the interface with the TiO2 porous
electrode of a plasmonic PSC, resulting in the device PV performance enhancement.

4. Conclusions

We have investigated the synergistic effect of Au NRs and MgO on the PV performance of
CH3NH3PbI3 based PSCs. By the simultaneous use of Au NRs and MgO, the power conversion
efficiency of the PSC device increases from 14.7% to 17.4%, displaying an over 18.3% enhancement,
compared with the reference device without modification. It was found that the incorporated Au NRs
increased the absorption cross-section and scattering cross-section of the incident light, and prominently
promoted the near-field and the scattering efficiency chiefly by longitudinal plasmon resonances of
gold NRs. Moreover, the presence of MgO significantly increases the VOC of the device by reducing
charge recombination. The aforementioned conclusions are revealed by J–V curves, PL spectroscopy,
EIS spectrum, and EQE analysis. As the advantage of Au NR and MgO can be well-employed in
this study, the photovoltaic performance of the PSC cells was significantly enhanced. The study
suggests that the simultaneous use of Au NRs and MgO overlayer is an effective route in developing
high-performance perovskite-based photoelectric devices.
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