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Abstract

Motivation: Genome Architecture Mapping (GAM) was recently introduced as a digestion- and ligation-free method
to detect chromatin conformation. Orthogonal to existing approaches based on chromatin conformation capture
(3C), GAM’s ability to capture both inter- and intra-chromosomal contacts from low amounts of input data makes it
particularly well suited for allele-specific analyses in a clinical setting. Allele-specific analyses are powerful tools to
investigate the effects of genetic variants on many cellular phenotypes including chromatin conformation, but re-
quire the haplotypes of the individuals under study to be known a priori. So far, however, no algorithm exists for
haplotype reconstruction and phasing of genetic variants from GAM data, hindering the allele-specific analysis of
chromatin contact points in non-model organisms or individuals with unknown haplotypes.

Results: We present GAMIBHEAR, a tool for accurate haplotype reconstruction from GAM data. GAMIBHEAR aggre-
gates allelic co-observation frequencies from GAM data and employs a GAM-specific probabilistic model of haplo-
type capture to optimize phasing accuracy. Using a hybrid mouse embryonic stem cell line with known haplotype
structure as a benchmark dataset, we assess correctness and completeness of the reconstructed haplotypes, and
demonstrate the power of GAMIBHEAR to infer accurate genome-wide haplotypes from GAM data.

Availability and implementation: GAMIBHEAR is available as an R package under the open-source GPL-2 license at
https://bitbucket.org/schwarzlab/gamibhear.

Contact: roland.schwarz@mdc-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome Architecture Mapping (GAM) is a novel digestion- and li-
gation-free experimental technique for assessing the 3D chromatin
structure from sequencing a collection of thin cryosectioned nuclear
profiles (NuPs) (Beagrie et al., 2017). Chromatin contacts between
DNA loci can be inferred from the frequency at which loci are cap-
tured in the same NuP. One advantage of GAM over competing
methods, such as Hi-C (Lieberman-Aiden et al., 2009), is that GAM
only requires several hundreds of cells to obtain high-resolution con-
tact maps (Beagrie et al., 2020; Fiorillo et al., 2020; Kempfer and

Pombo, 2019). This makes GAM particularly useful for the study of
chromatin contacts in rare biological materials, such as human biop-
sies. Recently, there has been increasing interest in the allele-specific
analysis of chromatin contacts, for which haplotyping, i.e. phasing
of single nucleotide variants (SNVs) is key (Cavalli et al., 2019;
Rivera-Mulia et al., 2018), but so far no algorithm exists for haplo-
type reconstruction from GAM data.

De novo phasing is traditionally achieved through read-based
methods such as HapCut, WhatsHap or HapCHAT (Bansal and
Bafna, 2008; Beretta et al., 2018; Edge et al., 2017; Patterson et al.,
2015). In these methods, variants of the Minimum Error Correction
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(MEC) problem are used with varying error distributions and insert
lengths (Bansal and Bafna, 2008). MEC views the given data (a frag-
ments by SNV sites matrix of observed allele states) as potentially
erroneous and asks for the least invasive way to correct the observa-
tions to enable conflict-free phasing. The MEC problem is computa-
tionally hard under a variety of conditions (Bafna et al., 2005;
Cilibrasi et al., 2005). As a heuristic, HapCut converts MEC to a
maximum cut problem and originally allowed for only single base-
pair errors (Bansal and Bafna, 2008). Selvaraj et al. (2013) later
leveraged chromosome territories (Meaburn and Misteli, 2007) and
extended HapCut to Hi-C data by accommodating Hi-C specific h-
trans errors. H-trans errors are haplotype switch errors that occur
when a genomic region interacts with another genomic region
located on the other homologous chromosomal copy (in trans).
HapCut2 now includes population-based statistical phasing (Bansal,
2019) and implements a variety of different error models to accom-
modate different sequencing technologies (Edge et al., 2017).

Alternative formulations to the phasing problem seek to parti-
tion the observed fragments (Duitama et al., 2010), or the aggre-
gated co-occurrence frequencies of SNVs (Tourdot and Zhang,
2019), into two classes corresponding to the two haplotypes by min-
imizing a measure of inconsistency. To facilitate haplotype recon-
struction from GAM data, we here also use an aggregation step and
formulate the problem on co-occurrence evidence derived from the
raw GAM NuPs. This formulation is equivalent to finding a ground
state to the well-known spin glass system from physics, which is
equivalent to a maximum cut problem (Tourdot and Zhang, 2019).

The resulting algorithm GAMIBHEAR (GAM-Incidence Based
Haplotype Estimation And Reconstruction) employs a graph repre-
sentation of the co-occurence of SNV alleles in NuPs for whole-gen-
ome phasing of genetic variants from GAM data. GAMIBHEAR
accounts for the GAM-specific probabilities in capturing parental
chromosomal segments as part of the random cryosectioning pro-
cess. We assess the performance of GAMIBHEAR on the hybrid
mouse embryonic stem cell line F123 with known haplotype struc-
ture. Despite the sparsity of GAM data, GAMIBHEAR allows for
accurate, dense, genome-wide haplotype reconstruction.
GAMIBHEAR is available as an efficient R package with parallel
implementations of the most compute-intensive tasks and is avail-
able at https://bitbucket.org/schwarzlab/gamibhear.

2 Materials and methods

2.1 Definitions, problem statement and objective
Our goal is to reconstruct haplotypes from GAM data. A sequenced
GAM dataset consists of reads from many nuclear profiles (NuPs).
Each NuP is the result of random sectioning of the nucleus and cap-
tures ultra-sparse local sequence information, where local refers to
genomic loci in close proximity in the 3D arrangement of the gen-
ome, including but not limited to loci proximal in linear distance.
Thus, reads from single NuPs cover a small proportion of the whole
genome with consecutive stretches of genomic DNA that reflect
chromatin looping in and out of a thin nuclear slice (illustrated in
Fig. 2B). Our main assumption here is that alleles of any two hetero-
zygous SNVs captured in a nuclear slice are likely to originate from
the same parental copy, and that this likelihood decreases with
increasing genomic distance between the two SNVs.

We assume that the set of heterozygous SNVs is given and that
the SNV alleles have been determined per NuP. Let N be the number
of NuPs and M be the number of heterozygous SNVs in the genomic
region of interest (e.g. a chromosome or chromosome arm; sites
with homozygous SNVs are ignored). Then the problem input is a
ternary N �M matrix D with Dij ¼ 1 if the reference allele is
observed in NuP i at SNV site j, Dij ¼ �1 if the alternative allele is
observed, and Dij ¼ 0 if there is no unique observation (e.g. due to
lack of coverage or if both alleles are observed in the same NuP).

The goal is to reconstruct the two haplotypes (allele states on the
same parental copy). Formally, a haplotype is a vector h 2 f�1; 1gM

with hj ¼ 1 if the reference allele is found at site j and hj ¼ �1 for

the alternative allele. One of the two haplotypes h determines the
other one as �h.

The GAM input data in principle contains the information to
infer h. Consider the relation between SNV sites j and k in NuP i.
The two sites can be in a ‘flip’ relation, where the alternative (alt) al-
lele (-1) of one site is observed with the reference allele (þ1) of the
other site (product Dij �Dik ¼ �1), and a ‘stay’ relation, where both
SNVs show either the reference or alternative allele (product
Dij �Dik ¼ 1).

We thus compute the M�M evidence matrix A :¼ DTD; which
contains the accumulated counts of the stay-flip relations summed
over all NuPs, i.e. Ajk ¼

PN
i¼1 Dij �Dik, such that positive values in-

dicate more stay observations (Ajk > 0: ‘stay’ between sites j and k;
j; k ¼ 1; . . . ; M) and negative values indicate more flip observations
(Ajk < 0: ‘flip’ between sites j and k). An equal number of observed
stays and flips leads to zero entries (Ajk ¼ 0).

The goal of the haplotype reconstruction algorithms we develop
here is to solve h using the information contained in A: If Ajk > 0,
then we should have hj ¼ hk, and if Ajk < 0, then hj ¼ �hk.
However, the information in A may be conflicting when considering
transitivity: Consider three sites j;k; l with Ajk > 0; Akl > 0;
Ajl < 0. Thus, decisions need to be made on how to resolve conflict-
ing information in the evidence matrix A.

We formulate the problem as follows: Given the M�M matrix

A, we seek h 2 f�1;1gM to maximize FðhÞ :¼
P

j< khjAjkhk:

This formulation encourages hj and hk to take the same sign if
Ajk > 0 and different signs if Ajk < 0. This maximization problem
is equivalent to finding an exact ground state for a spin glass in
physics and is known to be NP-hard in general and can be cast as a
maximum cut problem on a graph induced by A (Tourdot and
Zhang, 2019). Here we propose heuristic algorithms that make use
of known properties of the evidence matrix A (potentially proxim-
ity-scaled; see below) and evaluate them against a dataset with a
known correct solution.

Before we state two such algorithms, let us first relax our notion
of what we accept as a solution. Above, we defined a (fully resolved)

haplotype as a vector h 2 f�1;1gM with hj ¼ 1 if the reference allele

is found at site j and hj ¼ �1for the alternative allele. However, the

available data may not be sufficient to fully resolve the haplotype.
Where no phasing information is available, we allow partial solu-
tions (‘blocks’) as follows. Let J : ¼ ðJ1; J2; . . . ; JKÞ be a parti-
tion (disjoint union) of f1; . . . ;Mg into K blocks. Then a solution of
the GAM haplotype reconstruction problem for input matrix D
with partition J is a collection of K binary vectors

h1 2 f�1;1gJ1 ; . . . ; hK 2 f�1; 1gJK . Each of the K blocks is solved
independently, and no statement is made about the connection be-
tween these blocks. The blocks are often intervals, but may be arbi-
trary subsets of all sites, especially for GAM data. Obviously,
solutions with fewer independent blocks are more desirable.

2.2 Haplotype reconstruction algorithms
2.2.1 Neighbour phasing

We first consider a baseline phasing strategy that leverages the most
reliable short-range haplotype information on neighbouring SNVs
only (‘neighbour phasing’). In the above notation, we only consider
the first off-diagonal of A, i.e. Aj;ðjþ1Þ for j ¼ 1; . . . ;M. Essentially,

this resolves possible conflicting information by ignoring a large
fraction of the available data, and only considering a single path be-

tween any two sites j � k: j! jþ 1! � � � ! k. The reconstructed

haplotype starts (arbitrarily) with the reference allele, thus h1 ¼ 1.

Once hj is determined, we set hjþ1 :¼ hj�sign(Aj;ð;jþ1Þ), i.e. we stay or

flip according to the sign of Aj;ðjþ1Þ. In case of a tie or when SNV j

and jþ 1 are never co-observed in the same NuP (Aj;ðjþ1Þ ¼ 0), we

start a new independent block where hjþ1 ¼ 1. Solutions produced

by neighbour phasing consist of blocks that are intervals. The
resolved blocks can be expected to be correct with high probability,
but also short, and therefore of limited use.
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2.2.2 Graph phasing with optional proximity scaling

We extend the local proximity of SNVs from immediate neighbours
to larger genomic windows using a graph-based approach (Fig. 1).
To improve computational efficiency each chromosome is divided
into windows of a fixed number L of SNV sites with half a window
size overlap. Phasing is carried out on each window independently
and results per window are subsequently reconciled (see below). To
process a window, we restrict the N �M input matrix D ¼ ðDijÞ to
the window’s sites and only consider the reduced N � L matrix D
and the derived L� L evidence matrix A ¼ ðAjkÞ. We systematically
evaluated different windows sizes in terms of runtime, memory
usage and phasing completeness and accuracy. We settled on L ¼
20 000 SNVs as the default, as it causes only a marginal reduction in
accuracy while improving completeness and drastically reducing
computational demands (see Supplementary Note S6).

As we assume that the reliability of phasing information within a
NuP decreases with genomic distance, we include an option to scale
the information in A element-wise by a weight matrix W ¼ ðWjkÞ,
where Wjk depends on the genomic distance djk between sites j and
k. We use a simple exponential decay model, where Wjk ¼
C � expð�k djkÞ for djk in a certain range ½Dmin;Dmax�, and Wjk ¼ 1
for djk < Dmin and Wjk ¼ 0 for djk > Dmax. The choice of appropri-
ate parameters C > 0; k > 0 and 0 � Dmin < Dmax is discussed
below. In the following, A represents the proximity-scaled evidence
matrix (Ajk  Wjk � Ajk).

At this point, there are four potential reasons for Ajk ¼ 0: First,
sites j and k may never co-occur in any NuP. Second, they may never
be considered in the same window of L sites. Third, their genomic
distance may be larger than Dmax. Fourth, an equal number of
observations of stay and flip relations may be encountered between
sites j and k.

The non-zero entries in A induce an undirected weighted graph.
Its L vertices are the sites of the current window. An edge between
sites j and k exists with weight Ajk if Ajk 6¼ 0. Two sites in the same

connected component of this graph are typically connected by many
paths. Consider a single arbitrary path between sites j and k. The
number of negative-weighted edges along the path determines the
haplotype assignment: if the number is even, then hk ¼ hj; if it is
odd, then hk ¼ �hj: Different paths between the two sites can be
conflicting in their haplotype assignment. However, if the graph is
reduced to a tree (or forest in case of more than one connected com-
ponent), there is a unique path between each pair of sites (in the
same connected component). Because the absolute values jAjkj indi-
cate strength of direct evidence for the relation between sites j and k,
we compute a maximum spanning tree (MaxST) of each connected
component based on absolute edge weights jAjkj using Kruskal’s al-
gorithm. Recall that the problem is solved on (potentially dense
graphs of) windows, so the required running time is OðL2logLÞ for
each window. The MaxST approach has the property that the result-
ing path between any two sites j and k maximizes the minimum
weight of the path’s edges among all possible paths between j and k
(Hu, 1961), so we construct the graph by maximizing the weakest
evidence link between each pair of sites of the window, which
appears to be a reasonable heuristic for the given problem. The com-
puted MaxST then determines the haplotypes (or set of haplotype
blocks in case of a forest of MaxSTs) for the current window.

To infer haplotypes across the whole chromosome, the MaxSTs
of overlapping windows must then be joined into a chromosome-
wide graph. For this, we join the (overlapping) MaxSTs of all win-
dows into a new graph consisting of all M SNV sites as nodes and
the union of edges of all MaxSTs. Because each node is in at most
two MaxSTs, the number of edges in the union is bounded by
2ðM� 1Þ. In order to solve possible disagreements stemming from
the results of overlapping windows in this sparse graph, we again de-
termine a MaxST (if necessary, on each connected component separ-
ately) in OðM logMÞ time to obtain a unique path between any two
connected sites.

For the output, each connected component defines an independ-
ent block. The haplotype of the leftmost SNV site h1 (with smallest
genomic coordinate) in each block is arbitrarily set to h1 :¼ 1, and
the other states hj are computed according to the number of nega-
tive-weighted edges on the unique MaxST path between the first site
and j.

Including phasing information from non-adjacent SNV pairs will
improve completeness and yield larger, potentially chromosome-
spanning haplotype blocks. In the reconstructed haplotypes of the
graph phasing approach, blocks can be nested. The inclusion of
phasing information from more distant SNV pairs might comprom-
ise the overall accuracy of the results, however, the proximity scal-
ing is expected to keep the introduction of misleading information
to a minimum.

2.3 Performance measures
To assess the quality of the reconstructed haplotypes we compare
GAMIBHEAR estimates with the haplotypes of the F123 mouse em-
bryonic stem cell (mESC) line obtained from whole-genome
sequencing of the parental mouse strains (see Supplementary Note
S1). The overall quality of reconstructed haplotypes depends on
both the completeness of the reconstructed haplotype blocks as well
as the phasing accuracy of the SNVs contained.

In terms of completeness, we report the total proportion of
phased heterozygous SNVs next to the standard S50 (Lo et al.,
2011), N50 (Lander et al., 2001) and adjusted N50 (AN50; Lo
et al., 2011) metrics which give an impression of the median size (in
SNVs) and span (in bp) of the reconstructed haplotype blocks. To
enable comparisons with previous phasing approaches of the F123
cell line (Selvaraj et al., 2013) we report the metrics in percent of the
phasable variants (number of input variants) and phasable genome
(range between leftmost SNV and rightmost SNV per chromosome,
97.58% of the genome), respectively.

To evaluate accuracy, we report the Switch Error Rate (SER),
defined as the proportion of adjacent variant pairs that were phased
incorrectly out of all phased variant pairs. We also report the
adjusted Switch Error Rate (adjusted SER) to account for incom-
plete or fragmented phasing results, by penalizing unresolved

Fig. 1. Schematic overview of the graph phasing algorithm. The location of alterna-

tive alleles of heterozygous SNVs on the two parental chromosomes describes the

true haplotypes (top). NuPs 1–4 are sparse local samples of the true haplotype struc-

ture. At heterozygous SNV positions, either the alternative (red) or reference allele

(blue) can be observed. In overlapping windows, graphs of co-observed SNVs are

built over all NuPs. Edges are of either stay (orange) or flip (black) type and edge

weights correspond to the co-observation frequency (line width) and are optionally

proximity-scaled. A set of SNVs that is itself not co-observed with other SNVs in

the same window forms its own connected component in the graph (e.g. SNV 4 and

SNV 5 in NuP 3, window 1). MaxSTs (forests in case of multiple connected compo-

nents) are calculated per window and combined to yield a sparse but chromosome-

spanning graph. The MaxST of this sparse graph is used to assign alternative alleles

to the final reconstructed haplotypes (bottom). Connected components in the final

MaxST form separate, possibly nested haplotype blocks (red/pink). As the leftmost

SNV of each separate haplotype block is assigned to haplotype 1, SNVs 4 and 5 are

correctly phased relative to each other (stay relation), but assigned to the wrong

haplotype.
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transitions between adjacent variant pairs with 0.5 switch errors, to
account for, on average, a 50% chance of assigning the wrong
phase. Fragmented phasing occurs when the phasing graph is com-
posed of many small components with phasing information within
but not between components. Additionally, the global haplotype
agreement is reported, calculated by direct comparison of the recon-
structed and true haplotypes (i.e. alt-ref configurations). To be able
to relate the results to the size of the GAM dataset, we also report
the quality of haplotypes reconstructed from incrementally increas-
ing subsets of 100 NuPs chosen at random in ten iterations (Fig. 3).
All performance measures are given in averages across all 19 chro-
mosomes. For a more detailed description and motivation of the in-
dividual metrics please see Supplementary Note S4.

2.4 GAMIBHEAR implementation
The presented haplotype reconstruction algorithms are implemented
in the R package GAMIBHEAR. GAMIBHEAR is open source and
freely available under the GPL-2 license at https://bitbucket.org/
schwarzlab/gamibhear.

3 Results

3.1 Benchmark dataset
The F123 mouse embryonic stem cell line was derived from a hybrid
F1 mouse resulting from the cross of the two inbred, homozygous

mouse strains CAST (Mus musculus castaneus) and J129 (Mus mus-
culus domesticus J129). The F1 generation is thus heterozygous at
all loci for which their parents have different alleles. As the parental
mouse strains are both fully sequenced, the haplotypes of the F123
cell line were derived from SNV sets called on the parental strains
(see Supplementary Note S1). Its known haplotype makes the F123
cell line an ideal model for benchmarking phasing algorithms.

Using the novel GAM method, 1281 single NuPs were generated
from the F123 mESC cell line (available at 4D Nucleome
Consortium data portal accession number 4DNBSTO156AZ), out of
which 1123 passed quality control (unique 4DN identifiers provided
in Supplementary Data). We extracted on average 305 377 reads
from 1123 NuPs, covering 0.171% (60.167) of the 18 150 228 het-
erozygous SNVs per nuclear slice (Fig. 2A); exemplary data of gen-
omic regions captured in a single NuP is shown in Figure 2B. Out of
all F123 SNVs, 11 741 055 (64.69%) were observed at least once,
7 605 321 SNVs (41.9%) were observed at least twice (Fig. 2C).

For more details on F123, the generation of the benchmark hap-
lotypes and the data preprocessing see Supplementary Notes S1–S3.

3.2 Exponential proximity scaling
Our method includes the option of exponentially downweighting
evidence information Ajk with increasing genomic distance (see
Section 2.2.2). To validate this assumption and to choose optimal
decay parameters, we examined the empirical probability p of two
alleles coming from the same haplotype in the F123 data based on

Fig. 2. GAM captures local phasing information. (A) Histogram of the number of observed SNVs per NuP in the F123 dataset (fraction of all SNVs at top, mean ¼ 0.171%,

red line). (B) Example of read counts supporting the CAST (orange, downwards) and J129 (red, upwards) alleles in a single NuP on chromosome 19, visualizing the sparsity of

GAM data. Inset depicts physical capturing of respective genomic regions in a slice (grey area) by cryosectioning in a GAM experiment. (C) Cumulative fraction of SNV obser-

vation frequencies. 64.69% of SNVs are observed at least once, 41.9% of SNVs are observed at least twice across all NuPs. (D) The fraction of correct phasing information

decreases exponentially with increasing genomic distance of observed SNV pairs. The fit of the exponential curve to the fraction of correct phasing information of SNV pairs

with genomic distance between 1 bp and 10 Mb is shown in red. The inset shows the decrease of correct phasing information on a logarithmic scale.
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their genomic distance d and fit an exponential function p ¼
C � e�k�ðd�DminÞ using non-linear least squares. For this model we only
considered pairs of sites within the interval ½Dmin;Dmax�¼ [1 bp,
10 Mb], where the decay in phasing information is most pronounced
(Fig. 2D). The distance can be individually assigned by the user and
probabilities 1 and 0 are assumed below Dmin and above Dmax re-
spectively. Parameter C ¼ 1 then describes the co-observation prob-
ability at a genomic distance of 1 bp with an exponential decay
parameter of k ¼ 3:173 � 10�7. The simple exponential dependency
well describes the empirical distribution (Fig. 2D) and thus appears
to be a good model for the reliability of the raw evidence as a func-
tion of genomic distance. In the following, we evaluate our graph
phasing approach with and without proximity scaling.

3.3 Performance of GAMIBHEAR
3.3.1 High quality haplotype reconstruction from GAM data

We evaluated the quality of the haplotypes reconstructed with
GAMIBHEAR in terms of completeness and accuracy by comparing
results to the true haplotypes of the F123 cell line (Table 1).

Neighbour phasing performance. The neighbour phasing algo-
rithm was built to exploit the most reliable short-range haplotype in-
formation of neighbouring co-observed SNVs, at the expense of
completeness. This conservative algorithm shows the lowest switch

error rate (SER) of the reconstructed haplotypes (0.76%, Fig. 3A),
demonstrating strong local phasing information in GAM data.
However, although over 95% of input SNVs were phased into adja-
cent haplotype blocks of at least size 2, the number of independent
blocks is high (on average 79 965 blocks per chromosome), their
size is small (Fig. 3C) and thus only 83% of possible transitions be-
tween neighbouring SNVs could be phased (Fig. 3D). Median haplo-
type blocks connect less than 11 SNVs (S50, 0.00188% of the
phasable SNVs) and span less than 742 bp (N50, 0.00063% of the
phasable chromosome), showing drastically low completeness. This
low completeness is evident in the stark contrast between SER
(0.76%) and adjusted SER (6.61%), confirming that neighbour-
phasing yields small locally constrained but accurate phasing blocks
(Fig. 3A). These locally accurate haplotypes confirm the presence of
a strong local phasing signal in GAM data, but do not yield accurate
phasing genome-wide. This algorithm shows the lowest global
haplotype accuracy of 85.87%.

Graph phasing performance. The additional higher-order phas-
ing information considered by the graph phasing algorithm substan-
tially improves the completeness of the reconstructed haplotypes
independent of proximity scaling (Fig. 3C). Over 99.9% of input
SNVs were phased into haplotype blocks, over 99.9% of them into
one main haplotype block (S50), spanning more than 99.99% of the
phasable genome (N50) and phasing 99.96% of transitions

Fig. 3. Quality of reconstructed haplotypes after neighbour phasing (orange), basic graph phasing (light blue) and proximity-scaled graph phasing (blue) for an increasing

number of NuPs. Lines show the median value, shaded areas indicate the interquartile range of results across all chromosomes. (A) Local accuracy (SER): in graph phas-

ing, SER decreases with an increasing number of NuPs as more information becomes available. Neighbour phasing in contrast shows a low SER independent of sample

size (dashed orange line) due to a small number of phased transitions which are accurate. Adjusted SER penalizes unphased transitions and shows this difference: neigh-

bour phasing performance (solid orange line) is substantially lower, graph phasing performance is unchanged (SER and adjusted SER lines overlap). Proximity-scaled

graph phasing shows lowest adjusted SER overall. (B) Global Accuracy (haplotype agreement) improves with increasing sample size and proximity scaling further

improves performance. (C) Completeness (AN50): graph phasing reconstructs dense, nested chromosome-spanning blocks even for low sample sizes (top), independent of

proximity scaling. Neighbour phasing yields a large amount of small unconnected adjacent blocks, which are never nested, thus N50¼AN50 (bottom). (D) Completeness

(% transitions phased): percentage of transitions phased relative to all known SNVs (red) and all SNVs observed at least once in the full dataset (black, see Fig. 2C). The

number of observed SNVs and thus phasable transitions increases with increasing number of NuPs (dashed black line). Graph phasing predicts 99.96%, neighbour phas-

ing predicts 83.02% of observed transitions.
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(Fig. 3D). Adjusting the span of the largest block by the fraction of

SNVs phased within yields an AN50 value of over 99.9% (Fig. 3C).
The graph phasing algorithm thus reconstructs dense chromosome-
spanning haplotypes.

Considering larger SNV windows increases the risk of integrat-
ing incorrect phasing information from co-observed SNV pairs

located on homologous chromosome copies. Consequently, the ac-
curacy of reconstructed haplotypes is lower compared to strict
neighbour phasing. The basic graph phasing approach yielded

results with �5% SER (Fig. 3A) and over 95% global accuracy
(Fig. 3B). To improve accuracy while maintaining completeness we

introduced proximity scaling and successfully reduced SER to �2%
and increased global accuracy to ca 98% (Fig. 3A and B) with the
exception of a few outliers (Supplementary Fig. S2). Those outliers

are caused by a single switch error occurring within a haplotype
block, which inverts the assignment of subsequent alleles, formally

reducing global accuracy while maintaining SER and high, reliable
local accuracy. Since the graph phasing resulted in highly complete
haplotypes with a very low number of haplotypes blocks (on average

76 blocks per chromosome), the SER adjusted for unphased transi-
tions only showed negligible changes compared to the unadjusted

SER (adjusted SER: unscaled: 5.43%, scaled: 2.10%).
In conclusion, proximity-scaled graph phasing shows best per-

formance overall and reconstructs accurate, chromosome-spanning

haplotypes.

3.3.2 Performance at lower SNV density

To show the effect of SNV density on the quality of haplotype
reconstructions, we subsampled the F123 SNV set ( �8 SNVs per

1 kb) to resemble human SNV density ( �1–1.5 SNVs per 1 kb,
1000 Genomes Project Consortium et al., 2015) and evaluated the
resulting haplotypes reconstructed using the best-performing prox-

imity-scaled graph phasing algorithm (see Supplementary Note S7).
GAMIBHEAR reconstructed accurate, dense, chromosome-

spanning haplotypes: 99.96% of input SNVs were phased, of which
99.95% are within the main, chromosome-spanning haplotype

block. This block spans 100% of the phasable genome (97.56% of
the full genome). The median global accuracy of 96.64% and the
switch error rate of 4.84% show that the quality of the recon-

structed haplotypes in a subsampled dataset is only slightly lower
compared to the haplotypes reconstructed from the full dataset,

indicating that the algorithmic approach is largely independent of
SNV density and thus applicable to human data. GAMIBHEAR
thereby showed greatly improved resolution at a slightly reduced

global accuracy compared to HaploSeq on comparably down-
sampled data ( �32% of input SNVs phased; 98.9% global accur-

acy) (Selvaraj et al., 2013) (Supplementary Note S9).

3.3.3 Time and memory usage

Phasing 11 741 055 heterozygous variants from the full 1123 NuP
GAM dataset took approximately 1.5 h and 16 GB (largest chromo-
some 1: ca. 14 min, 0.9 GB) using the neighbour phasing algorithm,
ca. 5 h and 30 GB using the basic/proximity-scaled graph phasing al-
gorithm (largest chromosome 1: ca. 27 min, 26 GB) with default set-
tings on a desktop PC with 64 GB of RAM without parallelization.
However, computation can be carried out in parallel on multiple
chromosomes for a further speed increase using the ‘cores’ option.
Reconstructing haplotypes from the dataset subsampled to human
SNV density using the best performing proximity-scaled graph phas-
ing algorithm took 38 min and 20 GB for the whole genome (largest
chromosome 1: ca. 3 min, 12 GB). For more details see
Supplementary Note S6.

3.4 Comparison with existing methods
We compare GAMIBHEAR to the haplotype assembly methods
WhatsHap (wMEC solver) (Patterson et al., 2015) and HapCHAT
(k-constrained MEC solver) (Beretta et al., 2018), both designed for
reconstructing haplotypes from long reads. For this, we converted
GAM NuPs into pseudo-long reads by adapting the ternary input
matrix D (see Section 2.2 and Supplementary Note S8). WhatsHap
has a maximum coverage threshold of 23 reads which is exceeded in
the F123 GAM data on a small number (0.0073%) of SNVs. This
resulted in the read selection heuristic of WhatsHap to select only
69 of 1087 pseudo long reads (6.35%), thereby retaining only
11 039 SNVs (1.17% of input SNVs). In conclusion, coverage con-
straints in WhatsHap prevent its direct application to GAM data.
Recently, HapCHAT was introduced to address this shortcoming by
merging reads that are likely to originate from the same chromo-
some copy before read selection. In HapCHAT 1087 pseudo long
reads were thus merged into 691 reads, 63 of which were selected
for subsequent phasing, covering 604 358 SNVs (64.18% of input
SNVs). From these, HapCHAT reconstructed a chromosome span-
ning haplotype block, with a global accuracy of 81.36% and an SER
of 11.38% (compared to a global accuracy of 98.03% and SER of
1.98% using GAMIBHEAR). The MEC cost was reported as
307 734. This shows that in addition to the differences in coverage,
the unique properties of GAM data prevent direct application of
long-read MEC solvers for phasing. For details see Supplementary
Note S8.

4 Discussion

The phasing problem has been extensively studied and approaches
to solve it are typically specific to and optimized for certain experi-
mental designs and datatypes, such as Hi-C (Edge et al., 2017) and
long reads (Beretta et al., 2018; Patterson et al., 2015). Although
both GAM and Hi-C capture the spatial proximity of SNVs in the

Table 1. Comparison of quality measures for the neighbour phasing algorithm, basic and proximity-scaled graph phasing algorithm for the

full dataset.

Neighbour phasing Graph phasing (basic) Graph phasing (proximity-scaled)

% phased SNVs 95.94% (60.25) 99.97% (60.004)

% phased transitions 83.02% (60.575) 99.96% (60.00602)

S50 absolute 10.84 SNVs (60.5) 617 561.5 SNVs (6149 018)

S50 percent 0.00188% (60.00062) 99.94% (60.010)

N50 absolute 741.74 bp (640.54) 126 454 374 bp (632 645 641)

N50 percent 0.00063% (60.00021) > 99.99% (60.00003)

AN50 absolute 741.74 bp (640.54) 126 374 367 bp (632 623 080)

AN50 percent 0.00063% (60.00021) 99.94% (60.010)

Global accuracy 85.87% (63.53) 95.13% (60.57) 94.28% (68.45)

SER 0.76% (60.13) 5.42% (60.50) 2.09% (60.26)

Adjusted SER 6.61% (60.18) 5.43% (60.50) 2.10% (60.26)

Note: The mean of per-chromosome values is reported, standard deviation in brackets. Percent phased SNVs and transitions are reported in relation to

observed SNVs. For a per chromosome report of accuracy results see Supplementary Note S5.
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nucleus, the coverage and error distributions of the GAM cryosec-
tioning process are sufficiently different from those of Hi-C that
existing MEC solvers are not directly applicable. In Hi-C, phasing
information is contained in ligated chimeric reads of genomic loci
harbouring at least two SNVs, which can be very distant in linear
genomic space but typically from the same chromosomal haplotype.
In contrast, in GAM, phasing information is contained in NuPs,
which yield individual short reads of both haplotypes and only
maintain haplotype fidelity locally. Thus, in contrast to Hi-C, where
h-trans errors remain rare, GAM NuPs frequently switch haplo-
types. A Hi-C dataset furthermore consists of millions of reads, of
which only a small percentage is useful for phasing as they rarely
cover two SNVs or more (Giorgetti et al., 2016). In contrast, a
GAM experiment has in the order of 103 NuPs, but a GAM NuP
covers many SNVs (Fig. 2B). A single NuP therefore contains many
long stretches of haplotype-resolved SNVs that allow ‘neighbour
phasing’, which is not available with Hi-C and which shows that
phasing with Hi-C and GAM data are two distinct computational
problems.

In addition, SNV coverage in GAM data varies greatly and non-
uniformly, which interferes with MEC solvers for long-read data
that are fixed parameter tractable in the coverage and thus require
the maximum coverage per SNV to be low (Patterson et al., 2015).
To ascertain these differences, we tested GAM data on the long-read
MEC solvers WhatsHap and HapCHAT. HapCHAT only yielded
SERs > 10%, owing to differences in the underlying technologies:
long reads are not affected by haplotype switches but will frequently
include single-nucleotide sequencing errors; GAM data, however,
shows frequent switches in observed haplotypes, affecting all follow-
ing SNVs. Due to these fundamentally different data characteristics,
MEC solvers designed for haplotype assembly from long reads yield
unsatisfying results when employed on GAM data. We did not at-
tempt to transform GAM data for use with HapCut2, as it has been
well known and stated by the authors that the performance of
HapCut2 strongly depends on the correct error model being used
and no such model exists for GAM data (Edge et al., 2017).

The closest comparable dataset was provided by Selvaraj et al.
(2013), who reconstructed F123 haplotypes using HaploSeq, com-
bining Hi-C data with the HapCUT phasing algorithm. The largest
chromosome-spanning blocks from GAMIBHEAR and HaploSeq
both span over 99.99% of the phasable genome. The largest block
from GAMIBHEAR includes >99.9% of observed variants com-
pared to about 95% of observed variants using HaploSeq, a slight
improvement due to the large genomic span covered by GAM NuPs.
When downsampling the F123 SNV set to human SNV density,
HaploSeq and GAMIBHEAR are still able to generate chromosome-
spanning, accurate haplotype blocks, however, only 32% of SNVs
are phased in the largest block by HaploSeq, while 99.95% of
phased SNVs are contained in the largest haplotype block by
GAMIBHEAR (Supplementary Note S9).

Although GAMIBHEAR shows high completeness given its input
data even at low coverage, the sparsity of the GAM data itself hin-
ders overall completeness. While in the Hi-C data of Selvaraj et al.
(2013) 99.6% of variants were covered by at least one read, in the
GAM dataset only 64.69% of variants are captured. While the
sparsity of GAM data does not challenge the generation of accurate
3D chromatin contact maps (Beagrie et al., 2017), advances in the
GAM experimental protocol might overcome this drawback in the
future to improve phasing results. Additionally, incorporation of
statistical phasing could expand the reconstructed haplotypes to
uncovered SNVs.

Our proximity scaling model improves the haplotype reconstruc-
tion accuracy by taking genomic distances between SNVs into ac-
count. The observed decline in phasing information with increasing
distance between SNVs is likely due to the formation of highly inter-
acting genomic regions and organizational chromatin structures
such as self-interacting TADs (Mb scale) and higher order
metaTADs (Fraser et al., 2015; Razin et al., 2016; Ulianov et al.,
2016). The MaxST obtained through this proximity-scaled weighted
graph discards potential noise and assigns more importance to more
likely co-observations of SNVs within neighbouring genomic

regions. This runs the theoretical risk of breaking phasing blocks in
situations where the only connecting variants were distant in genom-
ic coordinates. In our analysis, no phasing blocks were broken due
to proximity scaling of edge weights.

In summary, GAMIBHEAR enables accurate phasing of GAM data
with average SERs ( �2%) comparable to those obtained with Hi-C
(�1.4%) (Chaisson et al., 2019; Selvaraj et al., 2013). While dedicated
experimental techniques such as StrandSeq can yield dramatically lower
SERs (Chaisson et al., 2019), application of additional experimental
techniques to resolve haplotypes more accurately is often not warranted
or not feasible due to limited material or costs involved. While
GAMIBHEAR is ultimately intended to be used on human data, no
GAM dataset of sufficient size is yet available on human samples. In
the meantime, the F123 cell line is well-suited to accurately measure
phasing performance due to its known haplotype structure before
adapting the algorithm to the characteristics of human genomes.
Application of our proximity-scaled graph phasing algorithm on F123
GAM data downsampled to human SNV density suggests that the re-
construction of haplotypes is suitable and well applicable for the use in
human data as well.

5 Conclusion

Understanding the effect of genetic variation on chromatin conform-
ation and gene regulation is a key question in genomics research.
Large consortia, such as the 4D Nucleome project (Dekker et al.,
2017), are now bundling resources to address open questions in this
field and thus allele-specific analyses of chromatin conformation
and other sources of genomic variation are moving increasingly into
the spotlight (Cavalli et al., 2019). The recently established GAM
method (Beagrie et al., 2017) offers a unique opportunity towards
high-resolution allele-specific analyses of chromatin contacts in
humans, and GAMIBHEAR provides the necessary algorithmic
advances towards generating highly accurate, chromosome-span-
ning haplotypes from GAM data on human samples in the future.
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