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Abstract: Rapid and effective acquisition of crop growth information is a crucial step of precision
agriculture for making in-season management decisions. Active canopy sensor GreenSeeker (Trimble
Navigation Limited, Sunnyvale, CA, USA) is a portable device commonly used for non-destructively
obtaining crop growth information. This study intended to expand the applicability of GreenSeeker
in monitoring growth status and predicting grain yield of winter wheat (Triticum aestivum L.). Four
field experiments with multiple wheat cultivars and N treatments were conducted during 2013–2015
for obtaining canopy normalized difference vegetation index (NDVI) and ratio vegetation index
(RVI) synchronized with four agronomic parameters: leaf area index (LAI), leaf dry matter (LDM),
leaf nitrogen concentration (LNC), and leaf nitrogen accumulation (LNA). Duration models based
on NDVI and RVI were developed to monitor these parameters, which indicated that NDVI and
RVI explained 80%, 68–70%, 10–12%, and 67–73% of the variability in LAI, LDM, LNC and LNA,
respectively. According to the validation results, the relative root mean square error (RRMSE) were
all <0.24 and the relative error (RE) were all <23%. Considering the variation among different wheat
cultivars, the newly normalized vegetation indices rNDVI (NDVI vs. the NDVI for the highest N
rate) and rRVI (RVI vs. the RVI for the highest N rate) were calculated to predict the relative grain
yield (RY, the yield vs. the yield for the highest N rate). rNDVI and rRVI explained 77–85% of the
variability in RY, the RRMSEs were both <0.13 and the REs were both <6.3%. The result demonstrates
the feasibility of monitoring growth parameters and predicting grain yield of winter wheat with
portable GreenSeeker sensor.
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1. Introduction

Wheat (Triticum aestivum L.) is increasingly important in consequence of its role as a staple calories
output, in particular for the Chinese population [1,2]. Due to a further growing population with a
constant or even decreasing planting area, crop cultivation management aiming at high production and
sustainability of natural resources is required. Narrowing the gap between potential and current yield
in developed and developing countries is the main goal for modern crop production [3]. Therefore,
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accurately monitoring crop growth status based on remote sensing and proximal sensing should
be an effective technical approach for improving economic benefits and reducing environmental
pollution [4,5].

Leaf area index (LAI), dry matter, and nitrogen (N) are the main growth indicators for crop
growth status monitoring and yield prediction [6–8]. However, the traditional destructive methods for
measuring biophysical and biochemical parameters of crop are laborious and time consuming. Among
various indirect methods for measuring plant N nutrient status, chlorophyll meter is most widely
used [9]. Yuan et al. [10] established prediction models of plant nitrogen accumulation and nitrogen
nutrition index using chlorophyll meter values. In 2018, Padilla et al. [9] concluded that chlorophyll
meters are suitable for on-farm use to provide rapid assessment of crop N status. Nevertheless,
the chlorophyll content is measured only on a single point of leaf, and N concentrations are not
homogeneous either within a leaf [11] or crop canopy [12]. Therefore, canopy remote sensing provides
new chance for monitoring crop growth and nutrition status.

Remote sensing has been widely applied for crop production management, rapidly and
non-destructively monitoring crop growth and N status at small- or large-scale application by using
spectral vegetation indices [13,14]. However, satellite-based measurements are often limited by cloudy
weather, low temporal and spatial resolution, and satellite remote sensing data is difficult to obtain for
common farmers. Unmanned aerial vehicles (UAVs) based remote sensing is a promising approach
to overcome the limitations of ground and satellite remote sensing; it is also a promising alternative
for precision crop management [15–17]. Nonetheless, such systems are still new and mainly used
in research domain, with several challenges to overcome [15,16]. In the meantime, active canopy
sensors (ACS), unrestricted by weather conditions, remain an important tool for monitoring crop
growth and N status. Active canopy multispectral sensors are highly suitable for site-specific crop
management (SSCM), comparing to passive sensors easily influenced by environmental conditions and
hyperspectral sensors with high price [18,19]. GreenSeeker (Trimble Navigation Limited. Sunnyvale,
CA, USA) is an active crop canopy sensor with two wavelengths (red, 671 nm and near-infrared
(NIR), 780 nm), which is widely used to monitor crop growth and nutrient conditions in recent years.
Osborne [20] used GreenSeeker to estimate growth and N status in spring wheat, and found that the
NDVI significantly correlated with biomass, N concentration and plant N uptake as well as grain yield.
Cao et al. [21] found that GreenSeeker-NDVI was exponentially related to N uptake in winter wheat,
whereas the correlation between N uptake and RVI was linear.

Vegetation index, like normalized difference vegetation index (NDVI) and ratio vegetation index
(RVI), can help enhance the interpretation ability of remote sensing data, and has been widely used
as a remote sensing means in land use cover detection [22], vegetation cover density evaluation [23],
crop identification [24] and crop growth monitoring [25–27]. Among various vegetation indices, NDVI
and RVI have been proposed and used for decades, and were most widely used in monitoring plant
chlorophyll [28], N content [26], and disease [29,30]. In yield prediction, Lopresti et al. [31] developed
the relationship between the moderate-resolution imaging spectroradiometer (MODIS) NDVI data
and wheat yield. He et al. [32] studied on double-cropping rice in Southern China and found that
the relative yield estimation model based on integral vegetation index derived from canopy sensors
could accurately predict grain yield. In general, crop growth indices and yield prediction models have
been established based on vegetation indices, but these models varied greatly in different crops and
production regions, and the reliability and usability of the model are also affected by different types
of sensors. Moreover, yield variability is even greater under different varieties and eco-sites, and the
yield prediction models based on traditional vegetation index appears more uncertain [33].

Therefore, the objectives of this study were: (1) to quantitate relationships of growth parameters
(e.g., LAI, LDM, LNC, LNA) with canopy vegetation index in winter wheat, and (2) to calibrate optimal
model based on newly normalized vegetation index for predicting grain yield in wheat-rice cropping area
of China. This study will provide a technical support for sensor-based crop growth status monitoring
and promote the application of remote sensing technology in practical agricultural production.
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2. Materials and Methods

2.1. Experimental Design

Four field experiments were conducted with different N application rates (0–375 kg·ha−1) [34]
and varieties at Rugao Experimental Station (32◦27′ N, 120◦76′ E), Xuzhou Experimental Station
(34◦48′ N, 117◦13′ E) and Huai’an Experimental Station (33◦60′ N, 118◦88′ E) in Jiangsu province of
China, as shown in Figure 1, detailed information about four experiments was summarized in Table 1.
A randomized complete block design with three replications was used in all experiments. The N
fertilizer used was urea with 46% N. The distribution of total N before sowing and at stem elongation
was 50% and 50%. Phosphorus and potassium fertilizers, as monocalcium phosphate Ca(H2PO4)2 and
potassium chloride (KCl), were applied before sowing at rates of 135 kg·ha−1 (P2O5) and 190 kg·ha−1

(K2O). Among the four field trials, experiments 1–3 provided the calibration dataset and experiment 4
served as the validation dataset.
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Station in Jiangsu province of China.

Table 1. Basic information about four field experiments.

Experiment
NO. Location Variety N Rate

(kg·ha−1) Sampling Stage/Date Soil Characteristics

Experiment 1
2013–2014

Rugao (32◦27′

N, 120◦76′ E)
Xumai-30

Ningmai-13

N0 (0)
N1 (75)
N2 (150)
N3 (225)
N4 (300)

Feekes 4 (14 February)
Feekes 5 (24 February)
Feekes 6 (9 March)
Feekes 7 (15 March)
Feekes 8 (27 March)
Feekes 9 (4 April)
Feekes 10 (10 April)
Feekes 10.2 (15 April)

Soil type = Loam soil
Soil pH = 6.4
OM = 23.15 g·kg−1

Total N = 1.45 g·kg−1

Available P = 47.10 mg·g−1

Available K = 112.50 mg·g−1

Experiment 2
2013–2014

Xuzhou (34◦48′

N, 117◦13′ E)
Xumai-30
Jimai-13

N0 (0)
N1 (90)
N2 (180)
N3 (270)
N4 (375)

Feekes 4 (4 March)
Feekes 6 (20 March)
Feekes 7 (2 April)
Feekes 10 (12 April)
Feekes 10.2 (24 April)

Soil type = Loam soil
Soil pH = 6.5
OM = 24.50 g·kg−1

Total N = 1.35 g·kg−1

Available P = 45.10 mg·g−1

Available K = 116.00 mg·g−1

Experiment 3
2014–2015

Huai’an (33◦60′

N, 118◦88′ E)

Ningmai-13
Yangfumai-4
Huaimai-20

N0 (0)
N1 (120)
N2 (225)
N3 (330)

Feekes 5 (16 March)
Feekes 7 (31 March)
Feekes 10 (12 April)
Feekes 10.2 (20 April)

Soil type = Loam soil
Soil pH = 6.3
OM = 22.35 g·kg−1

Total N = 1.30 g·kg−1

Available P = 46.20 mg·g−1

Available K = 110.50 mg·g−1

Experiment 4
2014–2015

Rugao (32◦27′

N, 120◦76′ E)

Ningmai-13
Yangfumai-4
Huaimai-20

N0 (0)
N1 (120)
N2 (225)
N3 (330)

Feekes 4 (9 February)
Feekes 6 (8 March)
Feekes 7 (19 March)
Feekes 8 (28 March)
Feekes 10 (8 April)
Feekes 10.3 (18 April)

Soil type = Loam soil
Soil pH = 6.4
OM = 23.55 g·kg−1

Total N = 1.55 g·kg−1

Available P = 44.80 mg·g−1

Available K = 110.50 mg·g−1



Sensors 2019, 19, 1108 4 of 18

2.2. Sample Collection and Measurement

Wheat canopy spectra was measured using a handheld GreenSeeker® Model 505 (Trimble
Navigation Limited, Sunnyvale, CA, USA) active optical sensor, which included near-infrared
(780 ± 6 nm) and red light (671 ± 6 nm). All measurements were taken on sunny days and no
wind or breeze; the carried sensor probe was passed over the crop at a height of approximately 0.8 m
above wheat canopy. The sensor path was parallel to the seed rows with the beam of light being
perpendicular to the seed row. Each cell consisted of three rows, and each row had the measurement
of five replications, with the average values used to represent each plot.

As soon as the canopy reflectance was collected, sampling was carried out synchronously. Detailed
sampling dates for each experiment were shown in Table 1. In order to examine the performance at
different growth stages, the data were classified into two groups based on Feekes growth stages 4–7
(before canopy closure) and 8–10 (after canopy closure) [35]. Fresh plants were collected from each
plot and then separated into green leaf blades (leaves) and culm plus sheath (stems), green leaf blades
were used to determine LAI with a LI-3000 portable area meter (Li-Cor, Lincoln, NE, USA), then all
of the samples were heated for 30 min at 105 ◦C to halt metabolic processes, and dried at 80 ◦C in a
forced-draft oven until a constant weight was reached. After dry matter was determined, samples
were ground in a Wiley mill, passed through a 1 mm sieve, stored in plastic bags at room temperature
until further chemical analysis. Each sample with 0.2 g weight were digested to determine the N
concentration using a continuous-flow auto-analyzer (Bran + Luebbe, Hamburg, Germany).

Grain yield was determined by harvesting plants manually for a 2 m2 area in each plot and
adjusting to a moisture content of 12.5%.

2.3. Data Processing and Analysis

2.3.1. Spectral Data

Two commonly used spectral indices were determined in this study: NDVI Equation (1) and RVI
Equation (2), and the measurements were based on the average spectral value of each plot:

NDVI = (NIR− R)/(NIR + R) (1)

RVI = NIR/R (2)

where NIR is the reflectance of near infrared wave band, R is the reflectance of red band.

2.3.2. N Indicators

For the N indicators, LDM (t·ha−1) was used to represent dry matter of canopy leaves and LNC
(N%LDM) represent N concentration of canopy leaves. LDM and LNC were multiplied to calculate
leaf N accumulation (LNA, kg·ha−1) during a specific growth stage [36], as shown in Equation (3):

LNA = LDM× LNC× 1000 (3)

2.3.3. Relative Grain Yield

In order to minimize the spectra variation among different wheat cultivars and eco-sties, relative
NDVI (rNDVI, Equation (4)) [37] and relative RVI (rRVI, Equation (5)) were calculated to predict the
relative grain yield (RY, Equation (6)):

rNDVI = NDVIi/NDVImax (4)

rRVI=RVIi/RVImax (5)

RY = Yi/Ymax (6)
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where NDVIi and RVIi are the measured NDVI and RVI, NDVImax and RVImax represent the measured
NDVI and RVI values of the highest N rate plots. Yi is the measured grain yield, Ymax represents the
grain yield of the highest N rate plots.

2.3.4. Model Construction and Evaluation

The datasets from Experiments 1–3 (Table 1) were used to construct monitoring models,
irrespective of the year, eco-site and cultivar, and the models were calibrated using the dataset from
Experiment 4, R2, relative error (RE) and relative root mean square error (RRMSE; Equation (7)) were
used in the model construction and calibration with Origin 2018 Pro software (Origin Lab Corporation,
Northampton, MA, USA). Curves were drawn with Origin 2018 Pro software. The analysis of variance
(ANOVA) was done using IBM SPSS 25 software (IBM Corporation, Armonk, NY, USA).

RRMSE(%) =

√
∑n

i=1 (Pi −Oi)
2

n
× 100

Oi
(7)

where n is the number of samples, Oi is the observed value, Pi is the predicted value derived from the
model, and Oi is the mean observed value.

3. Results

3.1. Variation in Agronomic Parameters

The LAI in the calibration dataset ranged from 1.16 to 9.47 (CV = 49.24%) across growth stages
and site-years (Table 2), while LDM was 0.56–3.90 t·ha−1 (CV = 41.86%) (Table 2), and LNC was
17.52–43.12 g·kg−1 (CV = 18.56%) (Table 2), LNA was 14.99–142.37 kg·ha−1 (CV = 48.66%) (Table 2).
The analysis showed that LAI and LDM were more variable during Feekes growth stages 4–7
(CV = 43.02% and 39.44%, respectively) than stages 8–10 (CV = 38.97% and 34.16%, respectively), and
LNC showed more variable during Feekes stages 8–10 (CV = 20.66%) than stages 4–7 (CV = 15.97%),
while LNA during the two stages was similar (CV = 43.92% and 44.88%, respectively) (Table 2). In the
analysis of variance, varieties had no significant influence on four agronomic parameters, while the
treatment of N rates was significant (Table 3). Years had no significant influence on LAI and LNC,
but significant influence on LDM and LNA, this may be caused by manual random sampling error
(Table 3). The interaction of N rates and years, N rates and varieties had no significant effect on
each parameter (Table 3). These results indicated that wheat growth was significantly affected by N
application rate; in addition, the large variability in N-related parameters establishes the suitability of
the dataset for evaluating the performance of GreenSeeker sensor.

Table 2. Statistical analysis of LAI, LDM, LNC, and LNA at different growth stages across eco-sites
and seasons.

Parameter Growth Stage Calibration Data Validation Data

N Range SD CV (%) N Range SD CV (%)

LAI
Feekes 4–7 94 1.16–6.63 1.29 43.02 36 0.68–5.74 1.56 54.82
Feekes 8–10 84 1.26–9.47 2.00 38.97 36 3.16–8.34 1.41 22.74
All stages 178 1.16–9.47 1.97 49.24 72 0.68–8.34 2.25 49.60

LDM
(t·ha−1)

Feekes 4–7 94 0.56–3.04 0.60 39.44 36 0.45–2.11 0.47 39.37
Feekes 8–10 84 0.84–3.90 0.78 34.16 36 1.24–3.50 0.56 25.56
All stages 178 0.56–3.90 0.79 41.86 72 0.45–3.50 0.72 42.75

LNC
(g·kg−1)

Feekes 4–7 94 18.54–43.12 0.50 15.97 36 2.54–3.91 0.32 9.88
Feekes 8–10 84 17.52–41.53 0.60 20.66 36 1.89–3.16 0.33 13.46
All stages 178 17.52–43.12 0.56 18.56 72 1.89–3.91 0.51 17.81

LNA
(kg·ha−1)

Feekes 4–7 94 14.99–104.56 21.00 43.92 36 14.12–67.52 14.77 38.77
Feekes 8–10 84 16.97–142.37 30.71 44.88 36 26.62–99.54 17.93 32.67
All stages 178 14.99–142.37 28.00 48.66 72 14.12–99.54 18.44 39.67

LAI: leaf area index; LDM: leaf dry matter; LNC: leaf nitrogen concentration; LNA: leaf nitrogen accumulation. N,
sampling number; Mean: average value; SD: standard deviation; CV: coefficient of variation.
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Table 3. Variance analysis of LAI, LDM, LNC, and LNA in different varieties (V), years (Y), and N
rates (N).

Parameter df
LAI LDM (t·ha−1) LNC (g·kg−1) LNA (kg·ha−1)

MS F-Value MS F-Value MS F-Value MS F-Value

V 4 8.39 2.21 1.28 2.11 0.14 0.43 649 0.81
Y 1 6.74 1.73 10.71 ** 19.03 0.11 0.34 5767 ** 7.59
N 4 53.58 ** 19.44 7.12 ** 15.16 8.20 ** 61.74 16,595 ** 39.42

V × Y - - - - - - - - -
V × N 14 1.02 0.3 0.07 0.17 0.03 0.22 46.55 0.13
Y × N 3 3.24 1.19 0.11 0.26 0.06 0.43 57.11 0.16

V × Y × N - - - - - - - - -

LAI: leaf area index; LDM: leaf dry matter; LNC: leaf nitrogen concentration; LNA: leaf nitrogen accumulation;
df: degree of freedom; MS: mean square; Wheat varieties include Xumai-30, Ningmai-13, Jimai-13, Yangfumai-4
and Huaimai-20; Years are 2013 and 2014; N rates include N(0)–N(4); ** F-test: statistical significance at the 0.01
probability level. Different wheat varieties were used in 2013 and 2014, thus V × Y and V × Y × N cannot
be evaluated.

3.2. Estimating Leaf Area Index

Crop growth indicators, e.g., LAI, reflect main biophysical processes and growth status [38].
Experimental data indicate that NDVI was exponentially related to LAI (R2 = 0.80; p < 0.01) across
all eco-sites and growth stages (Figure 2A). The NDVI became saturated at 0.87, or when the LAI
value was 6. Across all crop growth stages, eco-sites and seasons, LAI increased rapidly with raising
NDVI, while RVI and LAI was more linearly related (R2 = 0.80; p < 0.01) (Figure 2B), and the effect
of saturation was not obvious. NDVI and RVI explained 67% and 70% (p < 0.01) of LAI variability at
Feekes growth stages 4–7, 79% and 78% (p < 0.01) at stages 8–10, respectively (Table 4).
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Table 4. Coefficient of determination between NDVI, RVI and wheat agronomic parameters at different
stages in experimental fields across site-years.

Agronomic
Parameter

Feekes Growth Stage NDVI RVI

Equation R2 Equation R2

LAI
4–7 E 0.67 ** L 0.7 **

8–10 E 0.79 ** P 0.78 **
All stages E 0.8 ** P 0.8 **

LDM (t·ha−1)
4–7 E 0.67 ** L 0.73 **

8–10 E 0.54 ** P 0.52 **
All stages E 0.7 ** P 0.68 **

LNC (g·kg−1)
4–7 E 0.07 * P 0.06 *

8–10 E 0.64 ** E 0.71 **
All stages E 0.1 * E 0.12 *

LNA (kg·ha−1)
4–7 E 0.68 ** L 0.75 **

8–10 E 0.69 ** P 0.7 **
All stages E 0.73 ** P 0.67 **

LAI: leaf area index; LDM: leaf dry matter; LNC: leaf nitrogen concentration; LNA: leaf nitrogen accumulation.
E: exponential equation; L: linear equation; P: power equation; Q: quadratic equation. * F-test: statistical significance
at the 0.05 probability level. ** F-test: statistical significance at the 0.01 probability level.

The duration model was a good alternative for estimating LAI. The general models across growth
stages were validated using a separate dataset. These two models performed similarly (R2 ≥ 0.92,
RRMSE < 0.14 for both) (Table 5). The coefficients of determination were significant at p = 0.01, with
most of the scatter plots located close to the 1:1 line (Figure 3).

Table 5. Validation of the GreenSeeker indices for estimating LAI, LDM, LNC, and LNA at different
wheat growth stages.

Agronomic
Parameter

Feekes
Growth Stage

NDVI RVI

R2 RRMSE RE(%) R2 RRMSE RE(%)

LAI
4–7 0.96 ** 0.1426 10.13 0.91 ** 0.1630 11.07

8–10 0.77 ** 0.1094 10.32 0.77 ** 0.1264 13.06
All stages 0.93 ** 0.1305 9.95 0.92 ** 0.1079 9.08

LDM
(t·ha−1)

4–7 0.94 ** 0.1491 11.06 0.96 ** 0.1679 13.28
8–10 0.62 ** 0.0640 9.47 0.67 ** 0.0730 12.42

All stages 0.92 ** 0.1129 12.65 0.93 ** 0.1269 14.14

LNC
(g·kg−1)

4–7 0.18 * 0.1964 12.27 0.14 0.1701 12.37
8–10 0.35 ** 0.2678 24.84 0.41 ** 0.3322 29.90

All stages 0.27 ** 0.2401 21.74 0.20 ** 0.2358 22.64

LNA
(kg·ha−1)

4–7 0.93 ** 0.1392 10.31 0.92 ** 0.1395 10.05
8–10 0.73 ** 0.0953 12.13 0.75 ** 0.0979 11.14

All stages 0.96 ** 0.0890 8.48 0.96 ** 0.0913 8.96

LAI: leaf area index; LDM: leaf dry matter; LNC: leaf nitrogen concentration; LNA: leaf nitrogen accumulation. *
F-test statistical significance at the 0.05 probability level. ** F-test statistical significance at the 0.01 probability level.
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In all, 96% and 91% of LAI variability was explained by the NDVI and RVI models during Feekes
growth stages 4–7 (RRMSE = 0.1426 and 0.1630, respectively), whereas only 77% was explained by
each vegetation indices during stages 8–10 (RRMSE = 0.1094 and 0.1264, respectively) (Table 5).

3.3. Estimating Aboveground Dry Matter of Leaves

Leaf dry matter (LDM) is an important indicator of crop growth. Across the entire growth stages,
NDVI explained 70% of the LDM variability (Figure 4A). The model showed that LDM increased with
raising NDVI, slowly during early stages but then progressively faster. The NDVI became saturated at
~0.87, corresponding to an LDM of ~3 t·ha−1. RVI explained 68% of the variability in LDM (Figure 4B),
but the saturation effect was not obvious. NDVI and RVI explained 67% and 73% of the LDM variability
at Feekes growth stages 4–7, but only 52–54% at stages 8–10 (Table 4).
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The duration model offered a good alternative for estimating LDM. The NDVI and RVI performed
similarly, explaining 92% and 93% (p < 0.01) of the variability in the LDM (RRMSE = 0.1129, 0.1269),
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respectively, with most of the scatter plots were close to the 1:1 line (Table 5; Figure 5). At Feekes
growth stages 4–7, 94% and 96% of LDM variability was explained by the NDVI and RVI models, with
RRMSE values of 0.1491 and 0.1679, respectively. In contrast, at Feekes growth stages 8–10, only 62%
and 67% of the LDM variability was explained by the NDVI and RVI models, with RRMSE values of
0.0640 and 0.0730, respectively (Table 5).
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3.4. Estimating N Concentration of Leaves

N concentration is an important nutritional indicator related directly to crop growth status.
In-season monitoring of N content is essential to optimize N fertilizer and, thus, reduce environmental
risks linked to excess N inputs. In this study, NDVI and RVI were weakly related to LNC, and the
relationship was exponential, with R2 = 0.10 and 0.12 (p < 0.05), respectively (Table 4). Moreover, NDVI
and RVI were weakly related to LNC at early stages, explaining 7% and 6% of the variability in LNC at
Feekes growth stages 4–7 (Table 4; Figure 6). The R2 value was significantly improved at later growth
stages, explaining 64% and 71% of the variability in LNC during stages 8–10 (Table 4; Figure 6).
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The validation results indicated that 27% and 20% of the variability in LNC were explained by
NDVI and RVI across growth stages, respectively, with similar RRMSE values (Table 5). At Feekes
growth stages 4–7, 18%, and 14% of the variability was explained by NDVI and RVI, with RRMSE
values of 0.1964 and 0.1701, respectively (Table 5; Figure 7). At stages 8–10, 35% and 41% was explained
by the two models, with RRMSE values of 0.2678 and 0.3322, respectively (Table 5; Figure 7). Thus,
stages 8–10 explained more of the variability in leaf N concentration, but with higher RRMSEs.
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3.5. Estimating N Accumulation of Leaves

Leaf N accumulation (LNA) significantly influences grain yield and quality. Furthermore, LNA
provides integrated information on N content and LDM and thus is an important parameter to
consider when monitoring N nutrition and growth status. In this study, LNA was estimated using
the GreenSeeker sensor dataset across all growth stages. NDVI was exponentially related to LNA
(R2 = 0.73) (Figure 8A) and Feekes growth stages 4–7 and 8–10 explained 68% and 75% of its variability,
respectively (Table 4). NDVI became saturated at ~0.87, or when LNA reached ~90 kg·ha−1 (Figure 8A).
RVI explained 67% of the variability, with a strong relationship (Figure 8B). In fact, RVI was more
linearly related to N uptake and was not subject to an obvious saturation effect (Figure 8B). Besides,
the relationship between RVI and LNA was stronger during Feekes growth stages 4–7 (R2 = 0.75) than
stages 8–10 (R2 = 0.70) (Table 4).

Validation results indicated that both NDVI and RVI models explained 96% of the variability in
LNA (RRMSE = 0.0890 and 0.0913), across all growth stages (Table 5; Figure 9), 93% and 92% during
Feekes growth stages 4–7 (RRMSE = 0.1392 and 0.1395) but only 73% and 75% during stages 8–10
(RRMSE = 0.0953 and 0.0979) (Table 5). Thus, Feekes growth stages 4–7 explained more variability in
LNA, but with higher RRMSEs.
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3.6. Relationship between Vegetation Index and Relative Grain Yield

Based on the relationship between NDVI values and grain yield of winter wheat, we attempted to
establish a regression model. In this study, the newly normalized vegetation indices rNDVI and and
rRVI explained 71–81% of the variability in the relative yield (RY) at Feekes growth stages 4–7. Both
rNDVI and rRVI explained 90% of the variability at Feekes growth stages 8–10 (Table 6). Across whole
growth stages, rNDVI and rRVI explained 77–85% of the variability in RY (Table 6; Figure 10).
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Table 6. Coefficient of determination between rNDVI, rRVI, and wheat yield at different stages in
experimental fields across site-years.

GROWTH Stage rNDVI rRVI

Regression Equation R2 Regression Equation R2

Feekes 4–7 RY = 3.14rNDVI2 − 3.69rNDVI + 1.54 0.81 ** RY = 0.60rRVI2 + 0.002rRVI + 0.38 0.71 **
Feekes 8–10 RY = 3.87rNDVI2 − 4.98rNDVI + 2.08 0.9 ** RY = 0.72rRVI + 0.27 0.9 **
All stages RY = 3.47rNDVI2 − 4.27rNDVI + 1.79 0.85 ** RY = 0.44rRVI2 + 0.16rRVI + 0.39 0.77 **

** F-test statistical significance at the 0.01 probability level.
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Figure 10. Quantitative relationships of rNDVI (A) and rRVI (B) to RY in wheat varieties under varied
N rates across all growth stages.

The validation results indicated that the rNDVI and rRVI models explained 62% and 69% of the
variability in the relative yield across growth stages (RRMSE = 0.1267 and 0.1070), respectively (Table 7;
Figure 11). Only 40% and 50% of the variability were explained by the rNDVI and rRVI models at
Feekes growth stages 4–7 (RRMSE = 0.1618 and 0.1334), while the corresponding values for stages 8–10
were 89% and 90% (RRMSE = 0.0720 and 0.0779) (Table 7).
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Table 7. Validation results of the GreenSeeker indices for estimating wheat yield at different growth
stages.

Growth Stage rNDVI rRVI

R2 RRMSE RE (%) R2 RRMSE RE (%)

Feekes 4–7 0.4 ** 0.1618 10.55 0.5 ** 0.1334 10.54
Feekes 8–10 0.89 ** 0.0720 6.42 0.9 ** 0.0779 5.29
All stages 0.62 ** 0.1267 5.93 0.69 ** 0.1070 6.29

** F-test statistical significance at the 0.01 probability level.

4. Discussion

Crop growth parameters, such as LAI, LDM, LNC and LNA, can properly reflect crop growth
status and provide data basis for site-specific crop management. In contrast to conventional destructive
sampling, remote sensing technology has opened up a new approach to obtain crop growth information
due to its fast and non-destructive characteristics. The GreenSeeker active canopy sensor offers a
good alternative for acquiring crop growth information with its advantages of simple operation and
quick measurement.

Based on the experimental data of this study, a strong exponential relationship (R2 = 0.80) was
found between NDVI and LAI across all seasons and growth stages, these results were in agreement
with Richardson et al. [39], who used canopy hyper-spectral data to simulate the GreenSeeker sensor,
and found the exponential equation was equally good for estimating the LAI with NDVI (R2 = 0.83)
across the entire growth stages. Goswami et al. [40] found NDVI correlated strongly with LAI
(R2 = 0.70) but showed saturated when LAI > 2. In this study, the NDVI became saturated similarly
when the LAI exceeded a critical value of 6, despite the LAI value induced NDVI to become saturated
differs due to different varieties and eco-sites. A logarithmic relationship between RVI and LAI was
found in wheat using satellite imagery [41]. In this study, RVI was more linearly related to LAI, this
may be caused by the differences in radiation transfer characteristic between two distinct platforms.
In all, both NDVI and RVI had robust relationships with LAI.

Many studies focused on the relationship between aboveground biomass and NDVI or RVI [42–44],
while few defined the relationship between leaf biomass and these two indices. Our results showed
that NDVI and RVI are closely related to LDM. This can be explained by the fact that GreenSeeker is a
canopy sensor and is mainly used to sense the upper canopy layer [45], which is better represented by
LDM. The NDVI showed saturated at Feekes 8–10 when the LDM was greater than ~3 t·ha−1, while
the saturated phenomenon was not obvious in RVI. However, the relationship between RVI and LDM
became more scattered at later growth stages, which was similar to previous studies [26,46].

For monitoring LNC, GreenSeeker sensor showed a relatively poor performance at early growth
stages (R2 = 0.06−0.07), while the R2 values greatly increased at Feekes 8–10 (R2 = 0.64−0.71).
Cao et al. [43] also found that at early growth stages (e.g., panicle initiation and stem elongation),
the R2 values between N concentration of rice plants and vegetation indices were in the range of only
0.03–0.12, but the performances of these indices improved after heading stage (R2 = 0.28−0.36). Some
related studies have also confirmed this phenomenon [26,47]. Basyouni et al. [25] considered that
GreenSeeker readings were less correlated with leaf N concentration at early stages due to plants small
size and background noise. These factors demonstrate the challenges in obtaining accurate estimates of
crop N concentration using canopy sensors. Moreover, despite the influence of soil background during
the early growth stages of plants, the biomass of plants dominates canopy reflectance, due to its faster
production than N uptake before heading stage [13,48,49], which increases the difficulty of monitoring
N concentration. Studies using hyperspectral remote sensing showed preferable performance in
estimating plant N concentration. Using a handheld hyperspectral sensor, Daniela et al. [50] proposed
a vegetation index that is able to predict N concentration (R2 = 0.65) in rice crops. Based on aerial
hyperspectral remote sensing, Cilia et al. [51] found an integrated index, Modified Chlorophyll
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Absorption Ratio Index/Modified Triangular Vegetation Index 2 (MCARI/MTVI2), performed well in
estimating maize plant N concentration (R2 = 0.59) and NNI (R2 = 0.70). In all, new approaches and
further studies are needed to develop reliable models for estimating N concentration of crops.

Contrary to LNC, LNA showed strong relationship with vegetation indices (VIs) across entire
growth stages (R2 = 0.67−0.73), and the validation results were acceptable (RRMSE = 8.9−9.1%).
Relevant studies also showed that VIs can be used for monitoring LNA [43,47], implying the possibility
of monitoring crop nitrogen status using a portable canopy sensor. However, the sensitivity of NDVI
decreased at Feekes growth stages 8–10, due to the saturation effect when LNA reached ~90 kg·ha−1,
corresponding to the LDM of ~3 t·ha−1. This also indicates that the saturation effect of NDVI in
predicting LNA is mainly caused by the excessive LDM. Nguy-Robertson et al. [52] found that NDVI
was most sensitive to LAI below 2, while RVI was most sensitive to LAI above 2, they suggest
combining VIs to benefit from different sensitivities of VIs along crop growth stages. This may be the
way to avoid the saturation effect, further studies are needed to evaluate the potential of this method
in monitoring LDM and LNA.

Previous studies have shown the feasibility of estimating grain yield with remote sensing data in
wheat, rice, barely, maize, and soybean [37,53–55]. Liu et al. [37] analyzed the quantitative relationship
between rice grain yield and canopy NDVI at key growth stages, and the R2 values ranged from
0.56–0.62. Feng et al. [54] also found that the correlation coefficient between NDVI and wheat grain
yield was in the range of 0.31–0.82 from jointing to filling stages. However, these prediction models
varied widely due to different cultivars and eco-sites. In this study, the newly normalized vegetation
indices rNDVI and rRVI were calculated to minimize the impact of the above situation. Preferable
performance was obtained according to the analysis, rNDVI and rRVI showed strong relationship
with RY (R2 = 0.77−0.85), and the accuracy of the models at Feekes 8–10 (R2 = 0.9) were better than
Feekes 4–7 (R2 = 0.71−0.81). Freeman et al. [56] found that the yield was most reliably estimated using
the NDVI value at booting stage, other estimation models were also developed at heading and filling
stages [54,57,58]. These findings are basically consistent with the results of this study. Futhermore,
validation of the models at Feekes 8–10 using a separate experiment dataset showed that the R2

value were both >0.89 and RRMSEs were both <7.8% (Table 7), which indicated that the performance
of the yield prediction models based on newly normalized vegetation indices (rNDVI and rRVI) is
better than previous studies [32,37,54,59]. In general, the universality of yield estimation model is
susceptible to various factors, such as crop varieties, plant densities, fertilizers and water conditions,
these factors should be considered comprehensively to improve the reliability and practicability of
model in the future.

No matter LAI, LDM, or LNA, the duration models of these growth indices showed saturated
at later growth stages, and the saturation phenomenon mainly appeared in NDVI based models.
According to some studies, visible light has a low transmittance through leaves and, therefore, only
detects the characteristics of the top layers of the crop canopy after canopy closure, whereas NIR
light has a higher transmittance and can thus detect leaves below the top layers of the canopy [13].
Vegetation index NDVI, using NIR and red reflectance, will only increase slightly after a large increase
in NIR reflectance, resulting in a saturation effect [55]. The normalization effect embedded in the
calculation of NDVI also contributes to the potential saturation of this index; this can be avoided to
some extent by using a vegetation index (NIR/R) [42], as demonstrated by this study. Red-edge-based
indices, due to the similar light transmittance characteristics of the red-edge wavelength and NIR
bands, can reduce the saturation effects in some degree [42]. Our results suggest that the performance
of the GreenSeeker sensor may be further improved by adding a red-edge band.

Additionally, only five cultivars with N treatments were used in this study, and the sampling
frequency and interval are also limited. Additionally, experiment sites were restricted in Jiangsu
province, China, where cultivars and environments are relatively analogous. These factors affected the
universality of monitoring models, further studies with diverse cultivars, nitrogen levels, and eco-sites
are needed to solve these problems, and to improve the performance of the models.
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5. Conclusions

Active canopy sensors are highly suitable for real-time diagnosing crop growth. In this study,
the performance of GreenSeeker in estimating growth indices and yield potential of winter wheat
was evaluated in Jiangsu province, China. The analysis indicated that NDVI and RVI performed
well in estimating LAI, LDM, and LNA across entire growth stages, with highest R2 values reached
0.8, 0.7, and 0.73, respectively. The performance of GreenSeeker in monitoring LNC was relatively
poor at Feekes 4–7 (R2 = 0.06−0.07) but greatly improved at later growth stages (R2 = 0.64−0.71).
The newly normalized vegetation indices (rNDVI and rRVI) were developed to predict grain yield and
correlated well with relative yield, with R2 values reached 0.9 and RRMSE below 0.078 at Feekes 8–10.
In summary, Greenseeker and sensor-based models for monitoring growth status and predicting grain
yield have the advantages of simple structure and easy operation in site-specific crop management, and
this study enriches the theoretical basis and technical approach of real-time crop growth information
acquisition for precision agriculture. Further research with multiple cultivars and eco-sites should be
conducted to improve these models and enhance the practicability of GreenSeeker in field production.
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