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Abstract

Objectives. Viral respiratory infections cause considerable
morbidity and economic loss. While rhinoviruses (RV) typically
cause little more than the common cold, they can produce severe
infections and disease exacerbations in susceptible individuals,
such as those with asthma. Variations in the regulation of key
antiviral cytokines, particularly type I interferon (IFN-a and IFN-b),
may contribute to RV susceptibility. To understand this variability,
we compared the transcriptomes of high and low type I IFN
producers. Methods. Blood mononuclear cells from 238 individuals
with or without asthma were cultured in the presence or absence
of RV. Those samples demonstrating high or low RV-stimulated
IFN-a production (N = 75) underwent RNA-sequencing. Results.
Gene expression patterns were similar in samples from healthy
participants and those with asthma. At baseline, the high IFN-a
producer group showed higher expression of genes associated
with plasmacytoid dendritic cells, the innate immune response and
vitamin D activation, but lower expression of oxidative stress
pathways than the low IFN-a producer group. After RV
stimulation, the high IFN-a producer group showed higher
expression of genes found in immune response biological
pathways and lower expression of genes linked to developmental
and catabolic processes when compared to the low IFN-a producer
group. Conclusions. These differences suggest that the high IFN-a
group has a higher level of immune system readiness, resulting in
a more intense and perhaps more focussed pathogen-specific
immune response. These results contribute to a better
understanding of the variability in type I IFN production between
individuals.
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INTRODUCTION

Rhinoviruses (RV) remain the most common
respiratory virus causing common colds, even during
the SARS-CoV-2 pandemic.1 While RV infection is
seemingly innocuous in most healthy people, it can
cause complications in vulnerable groups with
chronic respiratory diseases such as cystic fibrosis,
idiopathic pulmonary fibrosis, chronic obstructive
pulmonary disease and asthma.2 Indeed, RV causes
more asthma exacerbations than the influenza
virus.3 RV infection worsens airway inflammation
and may predispose to secondary bacterial
infections, though whether these are due to
abnormal host immune defence, to RV-induced
immunopathology or to both remains unclear.4

Rhinoviruses-stimulated airway structural cells
and circulating leukocytes from people with
asthma may produce insufficient amounts of type I
interferons (IFN-a and IFN-b), as reviewed recently,5

although not all investigators have been able to
confirm these findings.6,7 IFN production appears
to vary with asthma severity8 and between
different inflammatory phenotypes,9 suggesting
that IFN insufficiency may be characteristic of
specific asthma subtypes, rather than being
common to all with asthma. Recent study has
linked both high and low IFN production to acute
wheezing in children with respiratory illness,
further supporting variable IFN responses to viruses
in asthma patients.10

Antiviral immune responses depend on pathogen
pattern receptors, such as melanoma
differentiation-associated gene 5 (MDA-5), retinoic
acid-inducible protein I (RIG-1) and various Toll-like
receptors (TLRs) that recognise specific viral
molecular patterns and induce type I IFN
production. While all nucleated cells produce IFN-a
and IFN-b, plasmacytoid dendritic cells (pDC) have
the greatest capacity to produce these cytokines and
are central to antiviral immune responses.11

Optimal IFN-a and IFN-b production is critical
for the antiviral immune response, as too little or
too much IFN has adverse health consequences.12

Hence, type I IFN production needs to be tightly
regulated, involving multiple checkpoints and
complex patterns of gene expressions.13 At a
molecular level, the interferon regulatory factor
(IRF)7 is a major hub regulating type I IFN
production,14 while at a cellular level, pDC are
recognised for their capacity to rapidly produce
large amounts of IFN-a, with recent publications
highlighting key mechanisms.15,16

Although such studies have shed important light
on type I IFN biology, it is also important to
understand how IFN-a production varies between
individuals. Investigating differences between people
exhibiting efficient and weak antiviral responses may
provide important insights into infection
susceptibility. Differences occurring before and
during infection may contribute to efficient/weak
antiviral responses. While a variety of researchers
have made important observations concerning
antiviral immune response variability,17–23 these
studies have not examined RV, which is known to
induce distinct host responses relative to other
viruses.24 To address this important knowledge gap,
the primary study aimswere to define the folllowing:

1. In the absence of RV stimulation which
transcriptional variations differentiate high IFN-a
and low IFN-a producers, and

2. During RV stimulation which transcriptional
variations differentiate high IFN-a and low IFN-a
producers.

The secondary study aim was to determine
whether transcriptional variations differed between
those with asthma and healthy participants in
unstimulated and RV-stimulated conditions.

We made use of samples obtained during our
recent study of the immunological and clinical
variables associated with cold frequency in 301
individuals.25 RV-stimulated peripheral blood
mononuclear cells (PBMC) showed a very broad
range of IFN-a production in these individuals.
From these samples, we selected a subsample of
75 individuals with contrasting high IFN-a and low
IFN-a production in order to perform differential
gene expression analysis in these ‘extreme
phenotypes’. Because the study groups differed in
mean body mass index (BMI), statistical methods
were used to assess whether BMI might be
affecting gene expression.

RESULTS

Marked variability in RV-stimulated IFN-a
production

Cells cultured without RV stimulation elicited no
detectable IFN-a production (below the 25 pg mL�1

detection limit), whereas RV stimulation of PBMC for
24 h elicited a very broad range of IFN-a production
across 238 participants with European ancestry
(Figure 1; median 1005.2 pg mL�1; IQR 560.7,
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1690.6). In order to provide more detailed analysis of
gene expression patterns, we focussed on the
extreme phenotypes of IFN-a production: 75
participants with the highest IFN-a and lowest IFN-a
production were selected from asthma and
healthy groups to contrast differences in whole-
genome transcriptomes (Figure 2). The analysis
was restricted to participants with European
ancestry, in order to minimise confounding by
ancestral background. Four samples did not pass
quality control during RNA sequencing or
principal component analysis (PCA) including one
control asthma IFN-a-low sample, one control
healthy IFN-a-high sample, one RV healthy IFN-a-
high sample and one RV healthy IFN-a-low
sample. These four samples were excluded from
RNA sequencing, thereby reducing the total
number of samples used in the complete analysis
from 150 to 146 (Supplementary table 1). Further
details regarding study design are shown in
Figure 2.

Clinical and molecular features of the high
and low IFN-a participants

The only criteria used to select samples for
transcriptome analysis were high or low IFN-a
production (Figure 2) and the presence or absence
of asthma. It is noteworthy that the IFN-a-low
groups had higher BMI (24.0 and 27.0 kg m�2 vs

23.0 and 24.0 kg m�2; P = 0.008) than the IFN-a-
high group (see Supplementary table 1). There
were age differences between the four groups
(P = 0.042): the asthma IFN-a-low group was
oldest (median age 47 years), whereas the asthma
IFN-a-high group was youngest (median age
27 years) with the two healthy groups in between
(healthy IFN-a-high median 32 years; healthy IFN-
a-low median 34 years). Minor differences in sex
ratios were observed between groups, but these
were not statistically significant. There were no
significant differences in asthma control, asthma
severity or self-reported respiratory infection
frequency between IFN-a-high and IFN-a-low
groups (Supplementary table 2).

Gene expression signatures of IFN-a
producer groups are not determined by BMI

As the IFN-a-low groups had significantly higher
BMI than the high IFN-a producer groups, this raised
a concern that BMI differences could confound the
analysis. We used statistical two-way ANOVA
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Figure 1. Variation in RV-stimulated IFN-a production. Frequency

distribution of RV-stimulated IFN-a production in 238 PBMC samples

tested in two biological replicates. RV-stimulated samples with low IFN-a

production (lowest 15% of IFN-a production) produced less than

414 pg mL�1 IFN-a (orange-shaded), and samples with high IFN-a

production (highest 15% of IFN-a production) produced more than

2200 pg mL�1 IFN-a (green-shaded). The black dotted line presents the

frequency distribution fitted to a Gaussian distribution. The y-axis shows

relative frequency of counts in each IFN-a value range.

150 with 
asthma

IFN-α production 
measured in 
RV16-stimulated 
PBMC samples

18 High IFN-α
producers with 

asthma

Whole genome 
transcriptome 
sequenced from 
unstimulated and 
RV16-stimulated 
PBMC samples

19 High IFN-α
producers without 
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Figure 2. Study design. Of the 301 study participants, 238 had self-

identified European ancestry. Samples for gene expression analysis

comprised those in the lowest 15% and highest 15% IFNa

production within the asthma group and those within the lowest

15% and highest 15% IFNa production within the healthy group.

When RNA quality was suboptimal, samples did not proceed to

RNAseq.
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testing to identify which differentially expressed
genes (DEGs) between high and low IFN-a producer
groups were likely confounded by BMI. The
participants were divided into two groups with BMI
below or at/above 25 kg m�2, the threshold for
normal weight and overweight condition. The
resulting interaction between IFN-a producer
groups and BMI groups identified the ability of BMI
to confound the signatures of IFN-a producer
groups. We observed that only a small fraction of
genes show a significant interaction between BMI
and IFN-a producer groups (baseline – 2%, RV
treatment – 5%) and are likely to behave differently
in obese and normal weight samples; however,
majority of genes are used reliably to differentiate
gene expression between high and low IFN
producer groups (Supplementary figure 1). Further
details on the DEGs that associate with BMI
regardless of IFN-a producing ability are listed in
Supplementary figure 2.

High IFN-a producers have more circulating
plasmacytoid dendritic cells and produce
more TNF

As pDC are the most potent IFN-a-producing cells
in the circulation, variations in blood pDC
numbers are likely to impact on IFN-a production
in response to RV stimulation. Hence, we
compared pDC quantity and cytokine production
by RV-stimulated PBMC across the 75 control
samples stratified by IFN-a production and
presence or absence of asthma. We have
previously shown that the gene expression of C-
type lectin domain family 4 member C (CLEC4C)
can be used to quantify circulating pDC in whole
blood.26 As expected, CLEC4C gene expression in
whole blood was significantly lower in the IFN-a-
low groups signifying lower quantities of the IFN-
a-producing pDC (Figure 3; P-value < 0.001).

We also assessed production of other cytokines
by RV-stimulated PBMC. The production of the
TLR8-stimulated pro-inflammatory cytokine TNF
was also lower in the IFN-a-low groups (Figure 3;
P-value = 0.006), whereas the production of
another TLR8-activated pro-inflammatory cytokine
IL-12 was similar in all four groups.

Whole-genome transcriptomes in different
study groups

The whole-genome transcriptomes were
compared across the 75 participants stratified by

IFN-a production and the presence or absence of
asthma. PCA transcriptomes indicated a marked
difference between unstimulated and RV-
stimulated samples (not shown), and a modest
grouping of samples by IFN-a producer groups
across PC1 [Figure 4 unstimulated (a), RV-
stimulated (b)]. Because PCA revealed no apparent
distinction between asthmatic and non-asthmatic
samples, it seemed reasonable to undertake a
pooled analysis of the IFN-a-high and IFN-a-low
groups, regardless of asthma status, to address
factors associated with variations in IFN-a
production – the primary objective of the study.

Baseline gene expression profiles differ
between high and low IFN-a producer
groups

We next performed a separate analysis of the
transcriptomes using unstimulated and RV-
stimulated PBMC from the IFN-a-high and IFN-a-
low producer groups. With a cut-off of false
discovery rate (FDR) q-value < 0.05 and log fold-
change > 1 of gene expression, unpaired
differential gene expression analysis in the
unstimulated samples returned 39 genes with
high expression (Supplementary table 3) and 10
genes with low expression (Supplementary
table 4) in the IFN-a-high group compared to the
IFN-a-low group. The heatmap visualisation in
Figure 5 reveals a major subcluster of genes with
high expression that have consistently high
expression in the IFN-a-high group and low
expression in the IFN-a-low group.

Sample clustering with Ward hierarchical cluster
analysis positions asthma samples randomly,
which supports our results from the PCA
(Figure 4) that asthma status does not have a
major impact on differential gene expression in
our samples. We searched the manually annotated
records in the protein knowledgebase UniProt27

and PubMed (NIH, USA) for any additional
literature supporting the understanding of the
functions of the DEG products. Common
functional groups that arose from the literature
are annotated for each gene in Supplementary
tables 3 and 4.

In comparison with the IFN-a-low group, the
genes with high expression in the IFN-a-high
group were most often related to immune
function, whereas the genes with low expression
were most often related to oxygen transport. The
immune-related genes included those associated
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with the complement system (C1QA, C1QB, C1QC,
C3, CD93), antigen presentation (CLEC4C, CPVL,
RNASE1, ASGR2), B-cell chemokine (CXCL13),
immune regulation (IDO1, CHI3L1, UBD, VCAN),
macrophage and pDC surface markers (CLEC4C,
MS4A4A, MS4A6A). Three potassium channel

encoding genes (KCNJ10, KCNJ15 and KCNMA1)
and a transcription factor gene ETV3L associated
with vitamin D activation also had high expression
in the IFN-a-high samples.

Several genes with high expression in IFN-a-high
have been associated with allergy [CD9328;

Figure 3. CLEC4C gene expression in whole blood (a) and cytokine production in PBMC by study group (b, c). Individual datapoints are overlaid

with median (bold line) and interquartile range markers (thin lines) for each group. Statistically significant Kruskal–Wallis ranks sum tests between

the four groups and significant post hoc Mann–Whitney U-tests are indicated as ***P < 0.001; **P < 0.01; *P < 0.05.

Figure 4. PCA of samples. (a) Unstimulated samples and (b) RV-stimulated. Green indicates high and orange indicates low IFN-a producer

samples. Round shapes indicate asthma and triangle shapes healthy samples. Three samples (one unstimulated and two RV-stimulated) were

found suboptimal and were excluded from subsequent analyses.
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AOC129; FXYD630], asthma risk [CHI3L131], airway
remodelling [VCAN32; KRT533] and airway
obstruction [PALD134]; however, no distinct
pattern in asthma samples can be shown in
relation to these genes.

A group of oxygen transport genes that have
low expression encodes haemoglobin subunits
(HBA1, HBA2, HBB, HBG2) and an enzyme
involved in haem biosynthesis (ALAS2). The gene
group forms a subcluster with low expression in
most IFN-a-high samples. Four other genes with
low expression have a role in wound healing
(MET, DPYSL3), stress response (HSPA1B) and as
inflammatory markers (HSPA1B and NR4A2).

RV-stimulated gene expression differs
between high and low IFN-a producers

We next assessed differential gene expression in
RV-stimulated PBMC. With a cut-off of FDR q-
value < 0.05 and log fold-change > 1, unpaired

differential gene expression analysis returned
55 genes with high expression (Supplementary
table 5), and 73 genes with low expression
(Supplementary table 6) in the IFN-a-high group.
Like the clustering analysis of the unstimulated
samples (Figure 5), the RV-stimulated PBMC
samples show expression profiles that cluster
primarily by IFN-a-producer group, rather than by
the presence or absence of asthma as presented in
Figure 6.

This clustering analysis reveals three distinct
clusters of genes with similar expression patterns
(Figure 6). The gene cluster in the middle contains
the upregulated genes, including IFN genes. The
expression of those genes is uniformly high in the
IFN-a-high group and low in the IFN-a-low group.

In contrast, the genes with low expression
separate into two main clusters at the top and
bottom of the heatmap. The expression of those
genes is consistently low in the IFN-a-high group
samples but is more varied in the IFN-a-low group

Figure 5. Differential gene expression in 73 unstimulated samples. Gene expression of the DEGs in unstimulated PBMC samples IFN-a-high

group vs IFN-a-low group. Log2-transformed gene expression is presented as a difference from the median red denoting high expression and blue

low expression. Samples are hierarchically clustered with the Ward method and genes with the weighted pair group method with arithmetic

mean. Samples are colour-coded for asthma status and IFN-a producer group.
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samples. The top gene cluster contains several
subclusters of genes with high expression in
distinct IFN-a-low sample clusters. In contrast, the
entire bottom cluster of genes has high expression
in only one IFN-a-low sample cluster consisting of
mostly non-asthma samples. Some clustering with
asthma and healthy samples is evident, and these
sample subclusters have a specific gene subcluster
expression pattern.

We searched the manually annotated records in
the protein knowledge database UniProt and any
additional literature available for the function of
the DEG products. The most common relevant
functions are annotated for each gene in
Supplementary tables 5 and 6.

As expected, IFNB1, IFNL1 and IFNW1 had
high expression in the IFN-a-high samples
(Supplementary table 4). Including those genes,
33 out of the 56 most genes with high expression
are related to immune function, and two have
supporting roles in the antiviral immune response:
breakdown of viral lipid membrane [ELOVL735]
and nucleic acid metabolism (UPB1). Interestingly,
several genes with low expression in IFN-a-high
group have antibacterial functions, including BPI,
HP, HAMP, LTF, LCN2, PGLYRP1 and STAB1.

The other immune-related genes with high
expression have a known cytokine (IL18, IL31RA,
CXCL9, FLT), antibacterial [DEFB1; ACOD1;
AQP936], antiviral (DEFB1), chemokine (CCL18,
CCL19, CCL23, CXCL13) or antigen presentation
(CD1D, FCGR1B) function.

Conversely, under RV stimulation, cells from the
IFN-a-high group showed low expression of gene
products related to structural or extracellular
matrix (ECM) function. Three matrix
metalloproteinases (MMP9, MMP7, MMP8)
involved in ECM breakdown were prominent,
while the matrix metalloproteinase inactivator
TIMP3 showed only low expression. SERPINE1 and
COL23A1 are also associated with ECM
organisation. The gene products of COL23A1,
GREM1, STAB1, CEACAM8, CEACAM6, DSC1,
FLRT2, ITGA11 and TIMP3 have a role in cell-cell
or cell-ECM adhesion. Similarly, SEMA4C, PDGFC,
MMP9, MMP7, MMP8 and CEACAM6 upregulate
cell migration, whereas PODN, CYP1B1, SERPINE1
and DPYSL3 downregulate cell migration. The
gene products of PDGFC, CEACAM6 and GREM1
upregulate cell proliferation, whereas PODN and
CD9 downregulate cell proliferation. Also, GPC4,
MET and SDC2 may be involved in cell
proliferation.

Three genes had high expression in both
unstimulated and RV-stimulated samples, while
seven genes showed only low expression. UBD,
which was highly expressed, encodes an ubiquitin-
like protein that tags proteins for degradation
and regulates TNF-mediated NFKB signalling and
dendritic cell (DC) activation/maturation. CXCL13
and PPFIA4 genes were highly expressed; they
encode a B-cell chemokine and focal adhesion
regulator, respectively. IFN-a-high samples showed
low expression of the haemoglobin subunits
(HBA1, HBA2, HBB, HBG2) and haem biosynthesis
enzyme (ALAS2), cytoskeleton remodelling
(DPYSL3) genes and MET, a gene encoding a
transmembrane receptor involved in cellular
proliferation and fibrosis.

Biological pathway analysis comparing
differentially expressed genes in the IFN-a
high and low producers

Gene set enrichment analysis (GSEA) was used to
search for functional enrichment within the DEG
sets. Figure 7a presents the gene ontology (GO)
pathways associated with DEGs from
unstimulated samples for the IFN-a-high group
compared to the IFN-a-low group. The pathways
with high expression predominantly reflect
upregulation of multiple immune functions,
whereas the pathways with low expression are
much more varied in their function. A network
representation visualises shared genes in selected
pathways (Figure 7c), demonstrating considerable
gene overlap within both up- and downregulated
pathways.

Several downregulated pathways were enriched
in the list of DEGs. Prominent among these
important pathways were oxidative stress
response genes, with high statistical significance,
driven by a relatively small number of genes,
including haemoglobin subunits (HBA1, HBA2,
HBB) and inflammatory markers (HSPA1B and
NR4A2). Together, the downregulated gene
functions and the enriched GO pathways indicate
a differential state of cellular stress between the
IFN-a producer groups, such that the cells from
high IFN-a producing individuals showed efficient
downregulation of oxidative stress gene
expression, whereas a subset of samples from low
IFN-a producing individuals exhibited high
expression of oxidative stress genes. The oxidative
stress pathway was not enriched in the RV-
stimulated samples.
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Figure 6. RV-stimulated differential gene expression. Gene expression of the DEGs in 73 RV-stimulated PBMC samples IFN-a-high group vs IFN-a-

low group. Log2-transformed gene expression is presented as a difference from the median red denoting high expression and blue low

expression. Samples are hierarchically clustered with the Ward method and genes with the weighted pair group method with arithmetic mean.

Samples are colour-coded for asthma status and IFN-a producer group.
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As expected, the significantly upregulated GO
pathways during RV stimulation relate to activation
of antiviral immune responses (Figure 7b), whereas
the genes with low expression are involved in cell
proliferation, cell-cell communication and cell

migration, which is reflected in the enriched
pathways.

A selection of a representative up- and
downregulated pathways is presented in a network
shown as Figure 7d. The RV-stimulated pathways

Figure 7. Gene ontology pathways. (a, b) Gene ontology pathways that are enriched in the set of DEGs in unstimulated (a) and RV-stimulated

(b) PBMC samples of IFN-a-high group in contrast with IFN-a-low group. FDR, false discovery rate; NES, normalised effect size; size, number of

genes found in the pathway. Pathways are sorted by significance on the horizontal axis and effect on the vertical axis as indicated by the dots.

Size of the dot is relevant to the number of genes found in the pathway and colour to the effect size. (c, d) Associations between selected

downregulated (blue) and upregulated (red) gene ontology pathways in unstimulated (c) and RV-stimulated (d) PBMC samples. Pathways are

enriched in the DEGs in the samples of IFN-a-high group in contrast with IFN-a-low group. Pathways with least overlap in function were selected.

Line thickness reflects the number of shared genes.
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show high interconnectivity and several shared
genes between the upregulated pathways, whereas
the downregulated pathways share less genes and
are less connected.

Validation of the DEGs using microarray
results from a separate cohort

To validate the results from the differential gene
expression analysis, we accessed a similar cohort
of RV-stimulated PBMC samples from a separate
cohort of 17 asthma samples and 17 controls
collected in 2014, as previously reported.37 The
comparison between the validation dataset and
the current dataset is shown in Supplementary
tables 1 and 2.

We used the microarray results from the
validation cohort to confirm the association
between the expression of the DEGs and IFN-a
production. Linear regression was used to test
associations between gene expression and IFN-a
production as IFN-a production in the validation
dataset was lower than in the current study, and
there were insufficient numbers to restrict the
analysis to high and low IFN-a producers. Because
of lower numbers of genes analysed by the
microarray experiment, only 11 out of the 45
unstimulated DEGs from the main study were
detected in the validation microarray (Figure 8a),
and 36 out of the 129 RV-stimulated DEGs were
detected in the validation microarray (Figure 8b).
After correcting for multiple testing, the
unstimulated DEG CLEC4C gene expression was
validated as significantly associated with IFN-a
production in the validation cohort and RV-
stimulated DEGs IFNW1 and GCOM1 gene

expression was validated as significantly associated
with IFN-a production (Supplementary table 7).

DISCUSSION

The primary aim of this study was to examine
transcriptional variations associated with RV-
induced IFN-a production. Having shown the
broad range of IFN-a production in a large group
of study participants, we focussed on the
extreme phenotypes, contrasting whole-genome
transcriptomes in the 15% with the highest or the
15% with the lowest IFN-a production. While
others have comprehensively profiled variability in
antimicrobial immune responses,17 a strength of
the current study was the large cohort in which
weak and strong IFN-a producers were identified
prior to transcriptomic analysis. Previous studies
have not comprehensively examined variations in
the RV-induced immune response, which is
particularly important, given the frequency with
which RV induces exacerbations of asthma and
other respiratory illnesses and its predominance
relative to other common respiratory viruses.

Contrary to our expectation, we saw only modest
differences in gene transcription patterns between
those with asthma and healthy participants. A
subgroup of people with both asthma and low IFN-a
production showed high expression of two gene
clusters (Figure 6). This supports the notion that only
a subgroup of people with asthma have specific
alterations in IFN-a production and antiviral
immunity, rather than this being a general
characteristic of all peoplewith asthma.8,9

The unstimulated samples were used as a baseline
measurement with the potential to reveal biological

9501 9336

Validation 
Cohort RV-stimulated 

DEGs

P < 0.001
IFNW1
GCOM1

9526 3411

Validation
Cohort

Unstimulated 
DEGs

P < 0.005
CLEC4C

(a) (b)

Common 
DEGs

Common 
DEGs

Figure 8. DEGs from the main study that are detected in the validation dataset. Unstimulated condition diagram (a) and RV-stimulated condition

diagrams (b) show the DEGs that are significantly associated with IFN-a production in the validation cohort.
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factors predicting the strength of IFN-a response. The
high and low IFN-a-producing groups demonstrated
multiple DEGs, enriched in immune-related genes
and GO pathways. The DEGs expressed by specific
immune cells may point towards differences in the
function of those cells or merely quantities.
Conventional DC are essential for detecting invading
pathogens and activating and directing the adaptive
immune response, while pDC have a specialised role
as potent IFN-a producers.11,37 The pDC-associated
gene CLEC4C regulates antigen presentation and
type I IFN production, while its consistent expression
profile enables its use for pDC quantification.26

CLEC4C had higher expression in unstimulated
samples in the IFN-a-high group than in the IFN-a-low
group in whole blood samples and in the PBMC
samples used for whole transcriptome analysis
(Figures 3 and 5). This was confirmed in the
validation study in which CLEC4Cwas the only DEG in
unstimulated samples significantly associated with
IFN-a production (Figure 8a). Thus, CLEC4C
expression appears as a key variable predicting the
magnitude of subsequent RV-induced IFN-a
production.

Other antigen-presenting cell (APC)-associated
genes, including CD93, CPVL, IDO1, MS4A4A and
VCAN, also had higher expression in the high IFN-a
producer group in unstimulated samples
supporting the close relationship between APC and
an efficient IFN-a response. While MS4A4A is found
on the surface of alternatively activated M2
macrophages,38 MS4A4A also forms part of a type I
IFN signature in early rheumatoid arthritis.39 Thus,
our finding of high MS4A4A expression in the high
IFN-a producer group may be a consequence of
systemic inflammatory signals, rather than fitting
into a simple M1/M2 paradigm. The endosome
protein encoded by ASGR2 is important for APC
function for sampling the extracellular
environment by mediating the endocytosis and
lysosomal degradation of glycoproteins.40

Moreover, the complement system is increasingly
recognised to play an important role in antiviral
immunity,41 and many of the genes with high
expression in the IFN-a-high group were members
of the complement system whose genes are
enriched in the innate immune response GO-
pathway. Notably, others have reported that this
GO pathway contains multiple genes whose
expression shows a high degree of inter-individual
variability.17

The RV-stimulated samples were used to
examine RV infection in vitro. A triggered

antiviral response results in a substantial increase
in the expression of genes involved in defence
against the pathogen. The larger amount of type I
IFN produced in response to RV and the IFN genes
with higher expression in the IFN-a-high group
compared to IFN-a-low group reflect that. The
higher expression of multiple Th1 and antiviral
immune response genes in the IFN-a-high group
than the IFN-a-low group further indicates a more
extensive antiviral response. Notably, the IFN-a-
high group also showed higher TLR8-induced TNF
production. Given that TLR8-induced cytokine
production is dominated by TNF and IL-12
production, rather than IFN-a production, this
suggests the IFN-a-high group has a greater
capacity to respond to viruses and viral nucleic
acids that extends beyond IFN-a production. The
difference in developmental and metabolic
process pathways between the two groups also
supports the notion the IFN-a-high group devotes
their transcriptome to a robust antiviral immune
response and suppresses non-critical pathways,
whereas the IFN-a-low group transcriptome
retains the transcription of those other functions.

Of the 56 genes with higher expression in the
IFN-a-high group, ten IFN and three non-IFN
genes correspond to significant cytokine
expression quantitative trait loci (eQTL) genes.20

One of these genes with high expression was IL18,
a TLR8-induced cytokine that activates type 1
cytokine production in natural killer cells.42 The
association of IL18 with immune variation has
previously been documented: an IL18 eQTL
modulates influenza-induced IFNb production by
DC20; IL-18 binding protein (IL-18BP) restricts IL-18
availability and is inversely associated with
cytokine production.17 During experimental RV
infection, IL-18 appears protective, with IL-18
concentrations in nasal and bronchial lining fluid
inversely proportional to infection severity, both
in healthy people and those with asthma.43 Our
own findings described herein support the
conclusion that IL-18 production is an important
component of effective host defence against
severe rhinovirus infections and offers an
attractive target for future research.

The high IFN-a producer group showed lower
RV-associated expression of multiple antibacterial
genes such as the antibacterial peptides
bactericidal permeability increasing protein (BPI),
hepcidin antimicrobial peptide (HAMP) and
lactotransferrin (LTF). The IFN-a-low group
upregulated genes for lactotransferrin and several
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haem biosynthesis and haemoglobin components,
which are important in binding iron. Bacteria
require iron for survival, and binding iron to
those molecules is a powerful antibacterial
mechanism.44 We speculate that this might reflect
an immune response that is unspecific to
pathogen type, whereas high IFN-a producers
respond with a more highly focussed antiviral
response. There are clearly complex interactions
between viruses and bacteria in the lung.45

Rhinoviruses are known to induce degradation of
antimicrobial peptides and impair macrophage
antibacterial responses.46,47

Outside the immediate immunological
functions, cells from high IFN-a producers also
showed efficient downregulation of the oxidative
stress pathway at baseline, whereas a subset of
low IFN-a producers exhibited upregulation of the
oxidative stress pathway. Oxidative stress typically
results from external factors such as cigarette
smoke or intrinsic factors including reactive
oxygen species (ROS) produced in the context of
inflammation. Exogenous oxidants can reduce IFN-
a production by pDC, while mitochondrial reactive
oxygen species can inhibit TLR7 function48,49;
hence, oxidative stress might be a factor
constraining virus-induced IFN production.
Oxidative stress is known to be present in asthma
and correlates with clinical severity,50,51 which
might contribute to the weak RV-induced IFN-a
production reported in some studies. Addressing
oxidative stress in asthma might be beneficial by
promoting a stronger antiviral immune response.

The groups showed differential expression of
genes related to nutrient availability and
function. The high IFN-a producer group showed
higher baseline expression of ETV3L, a vitamin D-
associated transcription factor52 and higher RV-
stimulated expression of CYP27B1, and the
protein encoded by this gene converts 25-OH
vitamin D3 to its active form. The expression of
these genes indicates that the vitamin D
availability may be necessary for a strong antiviral
response. In contrast, TCN1, a vitamin B12 binding
protein, was downregulated in IFN-a-high RV-
stimulated samples. By downregulating the B12
binding protein, high IFN-a producers may be
making more B12 available.53

Interestingly, Khoo and colleagues identified
molecular phenotypes with some similarities to
those identified herein in their study of upper
airway specimens collected from children with
acute asthma exacerbations.10 In their cluster

analysis, they identified two distinct molecular
phenotypes, one characterised by high IRF7 and
high IFN expression, and a second characterised
by low IRF7 expression, growth factor signalling
and downregulation of IFN.10 Clinical features
differed between these two phenotypes. There
are a number of differences in study design, and
Khoo and colleagues measured gene expression in
upper airway cells collected from acutely unwell
children without in vitro stimulation, whereas our
study assessed circulating immune cells collected
when participants were relatively well; gene
expression was assessed in both stimulated and
unstimulated cells. Nonetheless, we think that the
two studies provide important complementary
findings.

Association tests between gene expression and
IFN-a production in the validation dataset
confirmed CLEC4C as an important baseline gene
and confirmed that RV-stimulated IFNW1 and
GCOM1 are significantly associated with IFN-a
production. GCOM1 codes for GRINL1A complex
locus 1 that interacts with the N-methyl D-
aspartate (NMDA) receptor in the nervous
system.54 There is some evidence that NMDA-type
glutamate receptors are expressed on lymphocytes
and neutrophils and that its activation has
functional consequences.55 In the central nervous
system, interactions have been described between
type I IFN function and NMDA receptors,56 though
whether this is relevant in relation to RV requires
further investigation. The GCOM1 gene has been
reported to be involved with transcription
elongation, and because of its nature as a
complex transcription unit, several transcriptional
variants are produced that could potentially have
a wide range of functions.57

The study groups were not matched for BMI,
age and gender, which may have influenced the
findings in this study. However, our analysis
indicated that only a handful of genes showed a
significant interaction between IFN-a producer
group and BMI. Piasecka et al.58 showed that age
influences influenza-induced IFN-a production,
but we found little evidence in the current study
that age was affecting RV-induced IFN-a
production, although we acknowledge that the
participants did not cover a wide age range. Sex
hormones influence antiviral immunity59,60 and
we recently observed that age is associated with
respiratory infection frequency in women but not
men, implying a role for sex hormones in antiviral
immunity.25 Since the ratio of men and women in
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each of the groups was similar in that study and
the current study, we think it is unlikely that
gender imbalance had a major influence on our
key findings.

For the differential gene expression analysis, we
chose to combine the asthma and healthy groups
because IFN-a production was similar in both groups
and asthma was not a significant factor in our
principal component analysis. Despite this, our gene
expression findings are in line with previous studies
of healthy individuals.17,20 Finally, to validate our
results, we accessed a similar cohort of asthma and
control samples gene expression data performed
with microarray technology. However, gene matches
to DEGs were limited because of the restricted
sensitivity of the microarray technology compared to
RNAseq. Because of the study design, it would have
been impractical to collect a second cohort with high
and low producers, and as the validation samples are
closer to the IFN-a-low group in their IFN-a
production than IFN-a-high, the number of false
negatives may have increased in the validation
results.

Collectively, these results show that at baseline,
high IFN-a responders express essential
components of the innate immunity (especially
pDC-related CLEC4C) at a higher level than the
low IFN-a responders. During the antiviral
immune response, high IFN-a producers devote
more of their transcriptome to the production of
antiviral cytokines and effector proteins while
downregulating expression of genes encoding
antibacterial proteins and cellular processes, such
as development and metabolism pathways.
Differences between the high and low IFN-a
antiviral response can be partly attributed to host
factors regulating oxidative stress and availability
of vitamin D and B12. This suggests that the high
and low IFN-a groups have varying levels of
immune system readiness and capacity to translate
this into a pathogen-specific immune response.
Our findings described herein contribute to a
better understanding of the inter-individual
variability in type I IFN production in the context
of respiratory virus infections, vaccination, asthma
and autoimmune disease.

METHODS

Participants

An asthma case–control study was designed to recruit 300
participants, but actually recruited 301. Details of the study

cohort and participant characteristics were described
recently.25 The experiments described herein relate to PBMC
samples from the subset of 238 participants with European
ancestry (Figure 1), selected in order to minimise genetic
variations related to ancestry. RV-induced IFN-a production
was measured and two contrasting IFN-a producing groups
were selected for more detailed analysis of gene expression,
comprising the samples from the highest 15% or lowest
15% of IFN-a production in the European subset. Samples
in the high IFN-a producer group were obtained from 18
participants with asthma and 19 healthy participants, while
samples in the low IFN-a producer group were obtained
from 19 participants with asthma and 19 healthy
participants, comprising a total of 75 participants. The high
and low IFN-a producer groups will henceforth be referred
to as IFN-a-high and IFN-a-low groups.

To validate the results, we used samples from a separate
cohort recruited in 2015.37 We had access to samples from
18 healthy participants and 17 participants with asthma
from this latter study. One healthy sample that was part of
both cohorts was excluded for the validation test reducing
the number of healthy samples to 17. Characteristics of the
two cohorts are presented in Supplementary table 1. Both
studies received ethical clearance from the University of
Queensland (project 2008000037) and Metro South Human
Research Ethics Committees (Reference HREC/07/QPAH/146),
and all participants gave written informed consent. The raw
data are available from Gene Expression Omnibus
repository (accession number GSE99858).

Cell cultures and ELISA

Peripheral blood mononuclear cells were isolated and
freshly stimulated with RV16 or the TLR8 agonist VTX-2337
(1 lM; Sapphire Bioscience, Waterloo Australia) for 24 h as
described in detail elsewhere.25,37 Control cells were
cultured in media alone with no added stimuli. IFN-a, TNF
and IL-12 concentrations in culture supernatants were
measured with enzyme-linked immunosorbent assay (ELISA;
pan-specific IFN-a, Mabtech Ab, Sweden; IL-12 (p70), BD
OptEIA, BD Biosciences, USA; and TNF BD Biosciences, USA)
as described recently.25

Gene expression quantification

For the current study, RNA in PBMC samples was preserved
in RNAprotectTM (Qiagen, Hilden, Germany) and stored at
�80°C. Samples were extracted for total RNA and
sequenced at Macrogen Inc. (Seoul, South Korea) with
TruSeq mRNA kit using the NovaSeq6000 platform, with a
minimum of 20 million, 100 bp paired-end reads per
sample. Two PBMC RNA samples were sequenced per
individual: one unstimulated (baseline) and one RV-
stimulated. The data are available from Gene Expression
Omnibus repository (accession number GSE166292).

The Genome Informatics Group at QIMR Berghofer,
Queensland, Australia, aligned the sequence reads.
Sequence reads were trimmed for adapter sequences using
Cutadapt [version 1.1161] and aligned using STAR [version
2.5.2a62] to the GRCh37 assembly with the gene, transcript
and exon features of Ensembl [release 8963] gene model.
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Quality control metrics were computed using RNA-SeQC
[version 1.1.864], and gene expression levels were quantified
using RSEM [version 1.2.3065].

Gene expression of the pDC marker CLEC4C26 was
quantified in whole blood for the main cohort using
relative quantitative RT-PCR as described.25

RNA from the validation samples was extracted, and
transcriptional profiling was performed using Illumina
Human HT-12 microarrays (SanDiego, CA, USA) at the
microarray facility at the Diamantina Institute, University of
Queensland as described.37 Both RV and unstimulated
PBMC samples were profiled. Illumina BeadStudio summary
probe and summary control probe profiles were read into
R66 using the read.ilmn() function available in the limma
package.67 Background correction and normalisation were
performed using the neqc() function68 available in limma,
which uses the normal exponential convolution model for
background correction followed by quantile normalisation.
Distribution of probes for each array was assessed using
boxplots, before and after normalisation, and no outlying
arrays were identified. Probes that are not expressed were
filtered out prior to analysis using a threshold of probes
that are expressed in at least three arrays according to the
detection of P-values of 5%. 44 samples and 10 907 probes
were included for further association analysis.

Differential gene expression analysis

EdgeR package69 was utilised for the discovery of DEGs in
the IFN-a-high group compared with the IFN-a-low group.
Library size was corrected using counts per million (CPM),
which involves dividing each sample gene count by the
total number of mapped reads. Trimmed mean of M-values
was used to normalise differences in RNA composition
between samples with the function calcNormFactors() from
the edgeR package. Function glmQLFit() fits a quasi-
likelihood negative binomial generalised log-linear model
to count data to identify DEGs. Significant genes were
filtered with multiple testing corrected FDR < 0.05 and log
fold-change > 1. RV-stimulated and unstimulated samples
were tested separately.

Biological pathway analysis

Identification of significantly enriched biological pathways
was performed using GSEA70 focussing on DEGs between
IFN-a-high and IFN-a-low groups in unstimulated and RV-
stimulated samples. Fold change in gene expression was
used for ranked list of input to GSEA, and GO pathways
with FDR < 0.25 were considered as biological pathways
significantly related to the DEGs as recommended by
GSEA.70

Statistical analysis

All statistical analyses were performed with R (version
3.4.466). Variables were tested for normality and
consequently treated as nonparametric variables.
CreateTableOne()71 function in the R package tableone was
used to create the demographics table of the study group
and perform statistical tests. The difference in sample

distribution was tested with a nonparametric Mann–
Whitney U-test. Linear regression was used to test
association. A P-value < 0.05 was considered statistically
significant after multiple testing adjustment where
necessary. To determine the genes most likely associated
with differences in BMI, two-way ANOVA was first used to
exclude interactions between IFN-a producer groups and
groups with BMI below/above 25 kg m�2. Then, least
absolute shrinkage and selection operator (LASSO)
regression analysis was used to test BMI association with
gene expression.

Graphs

Boxplots and before–after plots were created with
GraphPad Prism software (version 7, La Jolla, USA). GO-
pathway networks were generated in Cytoscape interface
[San Diego, USA72], and other graphs were created with R
using packages ggfortify,73 ggplot2,74 Pheatmap75 and
dendsort.76
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