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Abstract

Migraine is a chronic neurological disorder characterized by attacks of moderate or severe

headache accompanying functionally and structurally maladaptive changes in brain. As

the headache days/month is often measured by patient self-report and tends to be over-

estimated than actually experienced, the possibility of using neuroimaging data to predict

migraine attack frequency is of great interest. To identify neuroimaging features that

could objectively evaluate patients' headache days, a total of 179 migraineurs were rec-

ruited from two data center with one dataset used as the training/test cohort and the

other used as the validating cohort. The guidelines for controlled trials of prophylactic

treatment of chronic migraine in adults were used to identify the frequency of attacks

and migraineurs were divided into low (MOl) and high (MOh) subgroups. Whole-brain

functional connectivity was used to build multivariate logistic regression models with

model iteration optimization to identify MOl and MOh. The best model accurately dis-

criminated MOh from MOl with AUC of 0.91 (95%CI [0.86, 0.95]) in the training/test

cohort and 0.79 in the validating cohort. The discriminative features were mainly located

within the limbic lobe, frontal lobe, and temporal lobe. Permutation tests analysis demon-

strated that the classification performance of these features was significantly better than

chance. Furthermore, the indicator of functional connectivity had a higher odds ratio than

behavioral variables with implementing a holistic regression analysis. The current findings

suggested that the migraine attack frequency could be distinguished by using machine-

learning algorithms, and highlighted the role of brain functional connectivity in revealing

underlying migraine-related neurobiology.
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1 | INTRODUCTION

Migraine is a neurological disorder characterized by attacks of moder-

ate or severe headache, and can be divided into episodic migraine

(attacks that occur ≤15 days/month) and chronic migraine (attacksJunya Mu and Tao Chen contributed equally to this work.
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that occur >15 days/month) (Dodick, 2018). Without effective treat-

ments, patients with episodic migraine would experience more head-

ache attacks and even develop chronic migraine (Lipton et al., 2015;

Lipton & Silberstein, 2015). Since attack frequency is a risk factor for

headache progression, it is possible that preventive medication may

reduce the risk of progression to chronic migraine (Dodick, 2018; Lip-

ton et al., 2007). The headache days per month is often evaluated in

the clinical contexts by patient self-report, which may rely on patient

memory (Houle et al., 2013; Niere & Jerak, 2004). However, memories

may be enhanced to various extents, causing the measurement of

headache days to become unreliable or inaccurate (i.e., recall head-

ache days may be higher than the actual headache days) (Berger et al.,

2018; Haywood et al., 2018). An objective measurement of headache

days per month might be helpful in the decision-making process of

providing preventive medication for migraine patients.

Migraine is mainly a disorder of brain function that involves the brain

regions of sensory discrimination of pain, affective-emotional processing,

cognitive processing, and pain modulation (Schwedt, Chiang, Chong, &

Dodick, 2015), which serve as an integrated network in its development

and maintenance (Liu et al., 2017). Functional magnetic resonance imag-

ing (fMRI) can be used to non-invasively acquire the data of brain activi-

ties, which would be useful to explore the central mechanisms underlying

migraine (Fox & Raichle, 2007). Synchronous fluctuations in the blood

oxygen-level-dependent (BOLD) signal measured by fMRI are deemed to

reflect functional connectivity, or functional communication between

brain regions (Rosenberg et al., 2016; Schwedt et al., 2015). Compared

with the analysis using only several predefined regions or networks of

interest, whole-brain functional connectivity analysis can ensure the opti-

mal use of the pattern information of the brain (Zeng et al., 2012). Neuro-

imaging studies have consistently shown the abnormal brain functional

network organization in patients with migraine (Liu et al., 2015; Maleki

et al., 2012; Schwedt et al., 2015; Yuan et al., 2013), and these connec-

tion patterns may sharp the cognition and behavior to individual differ-

ences in migraine vulnerability (Kucyi & Davis, 2015). Hence, it is possible

to locate the neuroimaging features in the brain functional network,

which could be used to objectively evaluate the headache days per month

(Fox & Raichle, 2007). Furthermore, the machine-learning-based predic-

tive model does not require months of journaling to determine prognosis,

and could help predict headache days for clinical settings without the

presence of patient-reported ratings.

In the current study, to identify neuroimaging features that could

objectively evaluate patients' attack frequency of migraine, we built a

multivariate logistic regression model by using the brain functional

connectivity data, in which a total of 179 migraineurs without aura

(MO) were recruited from two data centers with one dataset used as

the training/test cohort (N = 151) and the other used as the validating

cohort (N = 28).

2 | MATERIALS AND METHODS

All research procedures were approved by the West China Hospital

Subcommittee on Human Studies and the Medical Ethics Committee

of the Affiliated Hospital of Chengdu University of Traditional Chi-

nese Medicine and were conducted in accordance with the Declara-

tion of Helsinki. All participants gave written, informed consent after

the experimental procedures had been fully explained.

2.1 | Participants

Inclusion criteria for the migraine patients were according to the Inter-

national Classification of Headache Disorders third edition (beta ver-

sion) (2013): (a) migraine attacks last 4–72 hours (untreated or

unsuccessfully treated); (b) featuring at least two of the following char-

acteristics: unilateral location, pulsating quality, moderate to severe pain

intensity and aggravation by causing avoidance of routine physical

activity; and (c) there is nausea and/or vomiting, or photophobia and

phonophobia during migraine. Exclusion criteria were: (a) any physical

illness such as a brain tumor, hepatitis, or epilepsy as assessed

according to clinical evaluations and medical records; (b) existence of

other comorbid chronic pain conditions (e.g., tension type headache,

fibromyalgia, etc.); (c) existence of a neurological disease or psychiatric

disorder; (d) pregnancy; (e) use of prescription medications within the

last month; (f) alcohol, nicotine, or drug abuse; and (g) claustrophobia.

A total of 151 MO patients (age: 28.69 ± 0.83 years, 39 males

and 112 females) were recruited from the West China Hospital, and

these patients were used as the training/test cohort. Another 28 MO

patients (age: 31.43 ± 1.72 years, 8 males and 20 females) were rec-

ruited from the Chengdu University of Traditional Chinese Medicine

and the surrounding community, and were used as the validating

cohort. All patients were right-handed and were evaluated by a neu-

rologist. Patients were instructed to complete a daily headache diary

every evening before retiring. The diaries were returned to the

researchers at the end of a 4-week period. Telephone reminders were

given if diaries were not received within 2 days of the end of the

four-week period. During the 4 weeks before the MRI scans, patients

carefully rated the average headache intensity (0–10 scale, 10 being

the most intense pain imaginable), headache days and migraine attack

duration (hours) with the migraine diary. The Zung Self-Rating Anxiety

Scale (SAS) and Zung Self-Rating Depression Scale (SDS) were used to

quantify anxiety/depression-related symptoms of the patients. Analy-

sis of migraine diaries was performed by two blinded evaluators.

2.2 | Imaging acquisition

For the training/test cohort, MRI data acquisition was carried out in a

3.0 Tesla Signa GE scanner with an 8-channel phase head coil at the

Huaxi MR Research Center, Chengdu, China. The resting-state func-

tional images were obtained with echo-planar imaging (EPI) (30 contin-

uous slices with a slice thickness = 5 mm, TR = 2000 ms, TE = 30 ms,

flip angle = 90�, FOV = 240 mm × 240 mm, matrix = 64 × 64). In addi-

tion to functional imaging, a high-resolution T1 scan was acquired for

anatomic normalization. T1 structural image for each subject was

acquired using an axial Fast Spoiled Gradient Recalled sequence
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(TR = 1900 ms, TE = 2.26 ms, data matrix = 256 × 256,

FOV = 256 mm × 256 mm, voxel size = 1 × 1 × 1 mm3).

For the validating cohort, imaging acquisition was carried out in a 3.0

Tesla Siemens magnetic resonance scanner with an 8-channel phase array

head coil at the Huaxi MR Research Center. Resting-state functional images

were obtained with a gradient echo EPI sequence with the following param-

eters: TR = 2000 ms; TE = 30 ms; flip angle = 90�; 30 continuous slices with

a slice thickness = 5 mm; data matrix = 64 × 64; FOV = 240 mm × 240 mm.

For each subject, a total of 205 volumes were acquired, resulting in a total

scan time of 410 s. A high resolution T1 structural image for each partici-

pant was acquired by using a three-dimensional MRI sequence with a voxel

size of 1 × 1 × 1 mm3 employing an axial Fast Spoiled Gradient Recalled

sequence with the following parameters: TR = 1,900 ms; TE = 2.26 ms; data

matrix = 256 × 256; FOV = 256 mm × 256 mm.

2.3 | fMRI data preprocessing

Functional data were preprocessed by the Statistical Parametric Mapping

package (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12).

The first five volumes were discarded to eliminate nonequilibrium effects

of magnetization and to allow participants to become familiar with the

scanning circumstances. Functional volumes were then slice time-

corrected and realigned, and normalized to the Montreal Neurological

Institute template brain, and smoothed with a 6-mm3 isotropic Gaussian

kernel. Individuals with an estimated maximum displacement in any direc-

tion larger than 1 mm or head rotation larger than 1� were discarded from

the study, and no data were excluded under this criterion. A band-pass fil-

ter (0.01 Hz < f < 0.1 Hz) was applied to remove the effects of low-

frequency drift and high frequency physiological noise. Finally, regression

of nuisance covariates including Friston 24 head movement parameters,

cerebrospinal fluid signals and white matter signals from the fMRI data

were carried out. The data used to support the findings of this study are

available from the corresponding author upon request.

2.4 | Head-motion calculations

To test whether our observations would be held when considering the

effects of head motion, we eliminated volumes from each subject's

resting fMRI time series that were associated with sudden head motion.

An index of framewise displacement (FD) was applied to mark the vol-

umes that tended to behave as burst noise. This would result in tempo-

ral masks for our data and similar approaches have been used in several

previous rs-fMRI studies (Liu et al., 2015; Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012). For each subject, the flag volume was

censored if its derivative values were above 0.5 (Power et al., 2012).

2.5 | Functional connectivity measures

The Human Brainnetome Atlas (Fan et al., 2016) containing 210 corti-

cal and 36 subcortical regions of interest (ROIs) was used to create

fMRI time course correlation matrices (i.e., functional connectivity

matrices) for the participants' processed echo-planar image time

series. Time series were extracted and averaged within each region.

For each participant, Pearson correlation coefficients were calculated

between the average time series of each region in the atlas to form a

246 × 246 symmetrical matrix (30,135 unique connections). All corre-

lation values were converted using a Fisher Z-transformation to

remove the effects of global levels of correlation (Plitt, Barnes, Wal-

lace, Kenworthy, & Martin, 2015). The GRETNA toolbox (https://

www.nitrc.org/projects/gretna), implemented in Matlab (MathWorks,

Inc.), was used for the construction of functional connectivity matrices

(Wang et al., 2015). The 30,135 unique connections for each partici-

pant were used as the initial features. Considering the effects of age

and sex, a linear regression model was applied to obtain an age- and

sex-adjusted feature for each connection.

2.6 | Grouping threshold definition

According to guidelines for controlled trials of prophylactic treatment

of chronic migraine in adults, preventive medications should be given

when migraine attacks are frequent (Dodick, 2018; Silberstein et al.,

2008). Specifically, the migraineur who had greater than or equal to

8 headache days per month should take preventive medications,

which may reduce the risk of progression to chronic migraine (Dodick,

2018; Silberstein et al., 2008). Thus, the frequency of 8 headache

days/month was used as the grouping threshold in our study.

2.7 | Multivariate logistic regression model

Following the general methodology developed by Vallières et al (Vallières,

Freeman, Skamene, & El Naqa, 2015), an adapted method was applied to

find the migraine attack frequency-related neuroimaging features. The

schematic overview can be seen in Figure 1. Specifically, the training/test

cohort was divided into MOl (MO with a low attack frequency, that is,

headache days < 8 per month) group and MOh (MO with a high attack

frequency, that is, headache days ≥ 8 per month) group (Table 1). Multi-

variate models were built for the initial features of the training/test cohort

and modeled outcome using imbalanced-adjusted logistic regression. The

initial feature set first underwent feature dimension reduction using a

ReliefF algorithm (Robnik-Šikonja & Kononenko, 2003), which reduced

the feature dimension from 30,135 to 10,000. For short, every feature

was assigned with a weight value indicating its relevance to the group

label, and the first 10,000 features were remained. Then, Gain algorithm-

based feature selection was performed using 100 bootstrap training sam-

ples to yield a reduced feature set of 25 outcome-related but low-

redundancy features (Vallières et al., 2015). After feature selection, step-

wise forward model construction was conducted by maximizing the

0.632+ bootstrap area under the receiver operating characteristic curve

(AUC) metric in 1000 bootstrap training and testing samples (training

sample: test sample≈2:1) to obtain logistic regression models combining

1 to 10 features (corresponding to model order: 1 to 10) (Vallières et al.,
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2015). For the outcome, the model providing the combination of func-

tional connection features with the best parsimonious properties (i.e., the

minimum model order and the maximum AUC) was chosen. Finally, the

classification performance of the chosen model (i.e., best model) was esti-

mated using the average AUC, sensitivity, specificity, and accuracy

obtained in 1000 bootstrap testing samples.

To further evaluate the generalizability of the best model, we used a

validating cohort (28 MO, containing 18 MOl (headache days <8) and

10 MOh (headache days ≥ 8)). The same functional connections were

extracted from the validating cohort, and then fed into the logistic regres-

sion model. The AUC, sensitivity, specificity, and accuracy were computed.

2.8 | Robustness of the features

To test whether the classification performance of the true features of

the best model was higher than chance level and whether counterpart

random features of functional connectivity could distinguish MOl

from MOh, the random connectivity matrices with the same degree

distribution as the real network were generated. Specifically, the

feature matrix of the training/test cohort was extracted from the best

model, and the corresponding label vector (i.e., 0 for the MOl group

and 1 for the MOh group) was randomly shuffled. Then, the

corresponding training and test sets of the best model were used to

train and test the model, respectively. As for the random features, the

same dimension random connectivity matrix (i.e., 246 × 246 matrix)

for each participant was first generated by using the GRETNA toolbox

to ensure the same degree distribution as the real network; the ran-

dom features that were located within the same location of the con-

nection matrix were extracted to conduct permutation tests. Then,

the coefficients of the logistic regression model were computed using

the shuffled training sample, and the classification performance was

tested on the shuffled test sample. The null distribution of the classifi-

cation AUC for the training/test cohort was built.

2.9 | Additional validation

To evaluate the influence of an imbalanced grouping, we adjusted the

grouping threshold to 5 headache days/month (the median of

F IGURE 1 Schematic overview of the multivariate logistic regression analysis. Whole-brain functional connectivity matrix was computed for
each subject using a 246-region cortical and subcortical atlas, for a total of 30,135 unique features. The training/test cohort (N = 151) was used
to build a multivariate logistic regression model with bootstrap sampling and ReliefF and Gain algorithms-based feature selection procedures. The
area under the receiver operating characteristic curve (AUC) was used to select the best model that had a high AUC and few features. Then, the
same features were extracted for the validating cohort (N = 28) according to the feature index of the best model. Finally, the group label for the
unseen subjects was calculated using the regression coefficients of the best model
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headache days) of the training/test cohort to insure a balanced group-

ing. Specifically, the training/test cohort was divided into a MOl

(MO with a lower attack frequency, that is, headache days < 5) group

and a MOh (MO with a higher attack frequency, that is, headache

days ≥ 5) group (Table S1). Then, the feature selection, model selec-

tion, and model generalizability evaluation procedures described in

the Multivariate logistic regression model part were repeated. Note that

the grouping threshold of headache days was also adjusted to 5 for

the validating cohort (i.e., 28 MO, containing 15 MOl (headache days

<5) and 13 MOh (headache days ≥ 5)).

2.10 | Development of a holistic evaluation model

To explore the relationship between migraine attack frequency and

demographical, behavioral and neuroimaging indicators, an individual

logistic regression analysis was performed. According the best classifi-

cation model, a neuroimaging score was calculated for each partici-

pant via a linear combination of selected functional connectivity

features weighting by its corresponding regression coefficients

(Huang et al., 2016). Then, an individual logistic regression analysis

was conducted with the following candidate indicators: age, sex, dis-

ease duration, average duration of a migraine attack, average pain

intensity, SAS, SDS, and neuroimaging score. A backward stepwise

selection was adopted and the likelihood ratio test with Akaike's infor-

mation criterion was used to determine the stopping rule (Huang

et al., 2016).

2.11 | Statistical analysis

As for the demographic and headache information, group comparison

was carried out using a two-sample t-test and chi-square test in SPSS

20.0 (SPSS Inc., Chicago, Illinois) with a statistical power p < .05.

As for permutation tests, after 5,000 permutations, the signifi-

cance value p for each metric (i.e., AUC, sensitivity, specificity, and

accuracy) was computed by dividing the number of times that showed

a higher value than the actual value derived from the nonpermuted

model by the total number of permutations, and p < .05 was

accepted(Plitt et al., 2015).

3 | RESULTS

3.1 | Demographic and headache information

A total of 179 MO (i.e., the training/test cohort (N = 151) and the vali-

dating cohort (N = 28)) were enrolled in this study. For the training/

test cohort (both imbalanced and balanced grouping), there were no

significant differences between the MOl and MOh groups with regard

to age, sex, education, disease duration, average duration of a

migraine attack, and average pain intensity (p > .05, Table 1 and S1).

For the validating cohort, the age was 31.43 ± 1.72 years (mean ± SE),

and the headache days during past month were 7.82 ± 1.25 days

(mean ± SE) (Table 2).

3.2 | Functional connectivity-based classification
of migraine attack frequency

The following results are for the training/test cohort using the imbal-

anced grouping (i.e., grouping threshold = 8 headache days/month),

unless otherwise specified. No significant between group difference

TABLE 1 Demographic and headache information for training/
test cohort with an imbalanced grouping

MOl (N = 102) MOh (N = 49) p

Age (years) 28.04 ± 0.99 30.04 ± 1.51 .26a

Sex (M/F) 23/79 16/33 .18b

Education (years) 15.13 ± 0.20 15.36 ± 0.29 .89a

Disease duration

(monthes)

96.19 ± 7.40 97.51 ± 10.13 .92a

Migraine attacks during past 4 weeks

Headache days 3.37 ± 0.15 10.45 ± 0.40 .00a

Average duration of

a migraine attack

(hours)

9.71 ± 1.10 11.12 ± 1.36 .45a

Average pain

intensity (0–10)
5.43 ± 0.17 5.63 ± 0.23 .48a

SAS 45.06 ± 0.88 48.58 ± 1.55 .04a

SDS 43.33 ± 1.07 47.42 ± 1.60 .03a

Note: Data are presented as mean ± SE.

Abbreviations: MOl, migraineurs without aura with a lower attack

frequency (i.e., headache days < 8); MOh, migraineurs without aura with a

higher attack frequency (i.e., headache days ≥8); SAS, self-rating anxiety

scale; SDS, self-rating depression scale.
ap-value established through a two sample t-test.
bp-value established through a chi-square test.

TABLE 2 Demographic and headache information for validating
cohort

MO (N = 28)

Age (years) 31.43 ± 1.72

Sex (M/F) 8/20

Education (years) 14.93 ± 0.30

Disease duration (monthes) 99.57 ± 14.86

Migraine attacks during past 4 weeks

Headache days 7.82 ± 1.25

Average duration of a migraine attack (hours) 19.30 ± 3.03

Average pain intensity (0–10) 5.59 ± 0.30

SAS 46.19 ± 1.53

SDS 45.64 ± 1.82

Note: Data are presented as mean ± SE.

Abbreviations: MO, migraineurs without aura; SAS, self-rating anxiety

scale; SDS, self-rating depression scale.
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was found for the mean FD. Functional connectivity matrix for each

participant was measured before the model construction. After the

feature selection and model selection procedures, we found that the

best model that could accurately discriminate MOh from MOl con-

tained 8 features, which were mainly located within the limbic lobe,

frontal lobe, and temporal lobe (Figure 2, Table 3). In the training/test

cohort, the AUC, sensitivity, specificity, and accuracy were 0.91 (95%

CI, 0.86 to 0.95), 81.29% (95% CI, 68.66% to 91.23%), 81.92% (95%

CI, 73.76% to 88.96%), and 81.79% (95% CI, 76.01% to 86.77%),

respectively (Table 4). As for the validating cohort, the AUC, sensitiv-

ity, specificity, and accuracy were 0.79, 80.00%, 72.22%, and 75.00%,

respectively.

To further evaluate the robustness of the discriminative features,

we generated the counterpart random features of functional connec-

tivity. The random connection matrix was generated for each partici-

pant with the guarantee of the same degree distribution to the real

F IGURE 2 Model classification
performance and migraine attack
frequency-related functional
connections. (a) Estimation of
classification performance is shown
for combinations of 1 to 10 brain
features (model orders) in terms of
the AUC metric for the training/test
cohort. (b) The metric distribution of

the best model (i.e., model order 8)
was shown with all mean values
above 0.8. (c) Circle plots: nodes are
color coded according to the cortical
lobes, and the observed functional
connections (edges) are drawn
between the nodes. (d) Glass brain
plots: each node is represented as a
sphere, where the size of the sphere
indicates the number of edges
emanating from that node

TABLE 3 Functional connections for migraine attack frequency prediction from the best model

Nodes of each pairwise functional connection
Model
coefficient

Node name A
MNI coordinates
(X,Y,Z) Node name B

MNI coordinates
(X,Y,Z)

Cingulate gyrus (dorsal area 23) (4, −37, 32) Inferior frontal gyrus (opercular area 44) (42, 22, 3) −19.76

Orbital gyrus (medial area 11) (6, 57, −16) Inferior frontal gyrus (caudal area 45) (−53, 23, 11) 11.09

Inferior temporal gyrus (ventrolateral

area 37)

(−55, −60, −6) Inferior temporal gyrus (intermediate

lateral area 20)

(−56, −16, −28) −11.27

Inferior temporal gyrus (rostral area

20)

(40, 0, −43) Middle temporal gyrus (dorsolateral area

37)

(−59, −58, 4) −9.83

Superior temporal gyrus (rostral area

22)

(56, −12, −5) Orbital gyrus (medial area 11) (6, 57, −16) 9.38

Superior temporal gyrus (TE1.0 and

TE1.2)

(51, −4, −1) Orbital Gyrus (lateral area 11) (−23, 38, −18) 7.04

Cingulate gyrus (pregenual area 32) (5, 28, 27) Insular gyrus (ventral agranular insula) (33, 14, −13) −7.96

Precuneus (dorsomeidal

parietooccipital sulcus)

(16, −64, 25) Superior temporal gyrus (area 41/42) (54, −24, 11) −6.54
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network. As for the true features, classification performance was sig-

nificantly better than chance with the AUC, sensitivity, specificity and

accuracy were 0.91, 83.34%, 82.22%, and 82.60%, respectively

(p < .005, 5,000 permutations). However, as for the random features,

the classification performance wasn't significantly better than chance;

the AUC, sensitivity, specificity and accuracy were 0.58, 54.18%,

60.62%, and 58.54%, respectively (p > .05, 5,000 permutations). Addi-

tionally, the null distribution of the AUC was depicted with a

histogram and the nonpermutation AUC was presented by a red line

(Figure 3).

3.3 | Classification with balanced grouping

Considering the influence of an imbalanced grouping, another group-

ing threshold of headache days was adopted to obtain a balanced

grouping for the training/test cohort (i.e., 151 MO, containing 77 MOl

(headache days < 5) and 74 MOh (headache days ≥ 5), Table S1).

Through the same feature selection and model selection procedures,

we found that the best model contained seven features. Compared

with the model that trained with an imbalance-adjusted strategy, this

model obtained a relative moderate classification in the training/test

cohort with the AUC, sensitivity, specificity, and accuracy being 0.81

(95% CI, 0.73 to 0.86), 73.58% (95% CI, 61.60% to 83.65%), 74.47%

(95% CI, 62.67% to 83.93%), and 74.05% (95% CI, 67.47% to

79.80%), respectively (Table S2). As for the validating cohort, the

AUC, sensitivity, specificity, and accuracy were 0.56, 100.00%, 0.00%,

TABLE 4 Prediction performance of the best model

Mean 95% CI

AUC 0.91 [0.86, 0.95]

Sensitivity 81.29% [68.66%, 91.23%]

Specificity 81.92% [73.76%, 88.96%]

Accuracy 81.79% [76.01%, 86.77%]

Note: One thousand bootstrap samplings.

Abbreviations: AUC, the area under the receiver operating characteristic

curve; CI, confidence interval.

F IGURE 3 Classification AUC (indicated by a vertical red line) and corresponding null distribution with 5,000 random permutations. (a) The
AUC was significantly greater than chance level (p < .0001) using the true features. (b) The AUC wasn't significantly greater than chance level
(p = .1676) using the random features

TABLE 5 Logistic regression analysis
with combined variables

Intercept and variable β Waldχ2 Odds ratio (95% CI) p

Intercept −1.138 0.399 .53

Age 0.022 0.297 1.022 (0.946 to 1.104) .59

Sex 0.434 1.682 1.543 (0.801 to 2.974) .20

Disease duration −0.001 0.077 0.999 (0.988 to 1.009) .78

Average duration of a migraine attack 0.038 3.100 1.038 (0.996 to 1.083) .08

Average pain intensity 0.010 0.003 1.010 (0.692 to 1.474) .96

SAS −0.024 0.256 0.976 (0.889 to 1.072) .61

SDS 0.019 0.179 1.019 (0.935 to 1.110) .67

Neuroimaging score 0.666 27.191 1.947 (1.515 to 2.500) <.001

Abbreviations: CI, confidence interval; SAS, self-rating anxiety scale; SDS, self-rating distress scale.
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and 46.67%, respectively, which seemingly failed to distinguish MOh

from MOl in the unseen dataset.

3.4 | Holistic evaluation

We finally investigated the relationship between migraine attack fre-

quency and demographical, behavioral and neuroimaging indicators

from an aspect of holistic evaluation, and we found that the functional

connectivity had a higher odds ratio than other variables (Table 5).

Additionally, the β value corresponding to the neuroimaging score

was positive (β = .666, p < .001, Table 5), indicating that the aberrant

brain functional connectivity patterns were an influence factor for fre-

quent migraine attacks.

4 | DISCUSSION

In this study, whole-brain functional connectivity was used to build a

multivariate logistic regression model to find migraine attack fre-

quency (i.e., headache days per month) related neuroimaging features.

Our model successfully predicted migraine attack frequency in inde-

pendent datasets, demonstrating that the neuroimaging feature-based

model is generalizable for individual disease characterization in

migraineurs. Furthermore, an individual logistic regression analysis

using the combined variables (i.e., age, sex, disease duration, average

duration of a migraine attack, average pain intensity, SAS, SDS, and

neuroimaging score) indicated that the aberrant brain functional con-

nectivity patterns were an influence factor for frequent migraine

attacks.

4.1 | Reliable identification of lower or higher
frequency of migraine attacks

Preventive medications are of use to reduce the frequency and sever-

ity of attacks in people with frequent migraine (Dodick, 2018), and

one of the criteria for considering or offering prevention was based

on headache frequency (Lipton et al., 2007). Several studies character-

ize the extent of measurement error arising from rounding in head-

ache frequency reporting (Houle et al., 2013), and pointed out that

recall error in describing and quantifying pain was sufficiently com-

mon to distort the resulting population estimates in headache chro-

nification research (Turner, Smitherman, Penzien, Lipton, & Houle,

2013). Although reliable and accurate measurement of pain could

potentially improve treatment strategies and design more effective

clinical trials, studies regarding predicting interindividual variability in

migraine attack frequency are sparse. For better decision-making in

providing preventive medication for migraine patients, psychological

and social factors such as anger, anger-expression, anxiety, and

depression have been used to predict the frequency of migraine

attacks, but only obtained an accuracy of 69.8% (Bernardy et al.,

2007). Due to a lack of sensitive predictive features, these studies

using behavioral indicators to predict headache attacks seemingly

failed to achieve good performance.

Borsook and colleagues proposed an allostatic model to under-

stand the effect of high-frequency headache attacks, and pointed

out that repeated migraine attacks and physical or psychological

stressors may cause progressive functional and structural changes in

brain networks (Borsook, Maleki, Becerra, & McEwen, 2012). In our

previous study, we investigated how the between-group differences

of functional connections in MO were organized along with the

changing trend by using resting-state fMRI, and found that the pres-

ence of chronic headache altered the functional connectivity from

the local central nervous system due to a disruption in whole-brain

networks with increased disease duration (Liu et al., 2015). In the

current study, we extended our previous findings and observed that

the variability of headache days in migraineurs could be predicted

from whole-brain functional connectivity. The neuroimaging feature-

based multivariate logistic regression model obtained good perfor-

mance in distinguishing MOl from MOh (AUC = 0.91 and 95% CI,

0.86 to 0.95). It should be noted that 81.29% of 49 MOh and

81.92% of 102 MOl were correctly classified, although the training/

test cohort was imbalanced. We further showed that the same neu-

roimaging features could predict migraine attack frequency in an

independent cohort of individuals with MO, which may demonstrate

a potential of functional connectivity for identifying low and high

migraine attack sufferers.

4.2 | Consideration of the grouping threshold

According to the guidelines for controlled trials of prophylactic treat-

ment of chronic migraine in adults (Dodick, 2018; Silberstein et al.,

2008), a frequency of 8 headache days per month was used as the

grouping threshold to subdivide our training/test cohort into a MOl

group (102 participants) and MOh group (49 participants). For better

learning from imbalanced data, prior probabilities for each group were

set equally with an imbalance-adjusted bootstrap approach (Vallières

et al., 2015; Zhou et al., 2017). The results demonstrated that both

the training/test cohort and validating cohort obtained good classifi-

cation performance. Nevertheless, to further evaluate the influence of

an imbalanced grouping, we used median headache days of the train-

ing/test cohort (i.e., 5 headache days per month) to evenly subdivide

this cohort (i.e., 77 participants of the MOl group and 74 participants

of the MOh group). The results showed that the best model failed to

predict migraine attack frequency in an independent sample. The

median headache days were derived from the current training/test

cohort rather than a larger sample, which may account for the poor

classification performance in the independent dataset. We also specu-

lated that the migraineurs who have a headache attack frequency of

less than 8 days per month might share a common or similar func-

tional connectivity pattern, resulting in the misclassification from the

MOh group to the MOl group. The current results may indicate that

the frequency of 8 headache days/month was more suitable to judge

whether a migraineur had a lower or higher migraine attack frequency
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from a data-driven analysis aspect, consistent with clinical prophylac-

tic treatment guidelines (Silberstein et al., 2008).

4.3 | Migraine attack frequency classification-
related features

In the present study, by using a multivariate analysis approach, dis-

criminative functional connections were found to be related to many

brain areas (i.e., the temporal lobe, limbic lobe, prefrontal lobe, and

insula) that belong to different functional brain systems, rather than

with activity in dedicated “pain centers” within the brain. Previous

studies have repeatedly shown that multiple brain regions are

involved in sensory, emotional, and evaluative aspects of pain

processing in healthy individuals (Martucci & Mackey, 2018). These

regions of the brain include the primary and secondary somatosensory

cortices, primary and supplementary motor cortices, anterior cingulate

cortex, prefrontal and parietal cortices, and limbic system (Martucci &

Mackey, 2018). Additionally, abnormal brain activation of the limbic

lobe, frontal lobe and temporal lobe was also observed in chronic pain,

including migraine (Schwedt & Dodick, 2009). Insights from positron-

emission tomography have observed that the limbic regions were

activated during migraine attacks (Afridi et al., 2005; Afridi et al.,

2005; Matharu et al., 2004). It suggested that the limbic regions

may modulate the affective components of pain in migraineurs, and

may play an important role in the association between chronic

migraine and psychiatric disturbances. Kucyi and Davis (2015)

pointed out that the prefrontal cortex may be act as an “exchange

hinge” for distributing pain-related information and relate to pain-

attention interactions in chronic pain. Recently, our group found

that baseline gray matter volume of the medial prefrontal cortex

and its functional connectivity could predict a future placebo

response in an 8-week sham acupuncture treatment for migraine

(Liu et al., 2017; Liu, Ma, et al., 2017). However, there is little speci-

ficity or congruence of these regions across studies in migraine

processing.

Looking at the brain as an integrative complex system, these dis-

criminative features were optimized to jointly predict the patients'

status, suggesting that migraine attacks may be associated with an

abnormal integrated network configuration, rather than in one or

more isolated brain circuits. It highlighted the importance of data-

driven analysis methods, which do not restrain the features to a priori

nodes of interest. Our findings were built upon previous literature

suggesting that multivariate analysis approaches in classifying func-

tional connectivity data offered a valuable technique in understanding

network-level differences in migraine attack frequency-related neuro-

biology and extended previous findings by demonstrating the hetero-

geneity in resting-state networks of individuals with migraine with

different headache frequency (Vallières et al., 2015; Zhou et al.,

2017). Our results also demonstrated good utility for distinguishing

different patient groups, which may have potential to further under-

stand the functional mechanisms contributing to the development

and maintenance of migraine.

It should be noted that our results only indicated that the

observed network features could identify the lower and higher

migraine attacks migraineurs. It was not necessarily implied that the

neural activity from the limbic lobe, frontal lobe and temporal lobe

was derived corresponding to the neural activity generating migraine.

As our current neuroimaging investigation is not a longitudinal study,

it cannot be determined whether the observed functional connection

pattern is preexisting to the continual migraine attacks, or whether

the continual migraine attacks result in the abnormal functional con-

nection pattern within the brain. Nonetheless, these discriminative

features were tested on different data sets (i.e., the training/test

cohort and validating cohort) by combining the bootstrap and permu-

tation methods. The results demonstrated that brain functional fea-

tures were robust in classifying the MOl group and MOh group, and

random features could not successfully discriminate the MOl group

from the MOh group. Finally, further investigations would provide an

opportunity to corroborate and extend our findings by using addi-

tional cohorts and other neuroimaging features.
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