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Abstract

Introduction Estrogens are important in breast cancer
development. SULT1A1 and UGT1A1 catalyze estrogen
metabolism and are polymorphic. The SULT1A1*2 protein
exhibits low activity, and a TA repeat within the UGT1A1
promoter alters the level of expression of the protein. We
hypothesized that the SULT1A1*2 allozyme has decreased
capacity to sulfate estrogens, that the SULT1A1*2 allele
conferred increased capacity of cells to proliferate in response
to estrogens, and that individuals with the variant SULT1A1 and
UGT1A1 genotypes exhibited different breast tumor
characteristics.

Methods The capacity for SULT1A1*2 to sulfate 17β-estradiol
and the capacity for cells expressing SULT1A1*1 or
SULT1A1*2 to proliferate in response to 17β-estradiol was
evaluated. A case-series study was performed in a total of 210
women with incident breast cancer, including 177 Caucasians,
25 African-Americans and eight women of other ethnic
background. The SULT1A1 and UGT1A1 genotypes were

determined and a logistic regression model was used to analyze
genotype–phenotype associations.

Results We determined that the SULT1A1*1/*1 high-activity
genotype was associated with tumor size ≤2 cm (odds ratio =
2.63, 95% confidence interval = 1.25–5.56, P = 0.02).
Individuals with low-activity UGT1A1 genotypes (UGT1A1*28/
*28 or UGT1A1*28/*34) were more likely to have an age at
diagnosis ≥60 years (odds ratio = 3.70, 95% confidence
interval = 1.33–10.00, P = 0.01). Individuals with both
SULT1A1 and UGT1A1 high-activity genotypes had low tumor
grade (odds ratio = 2.56, 95% confidence interval = 1.04–6.25,
P = 0.05). Upon stratification by estrogen receptor status,
significant associations were observed predominantly in
estrogen receptor-negative tumors.

Conclusion The data suggest that genetic variation in
SULT1A1 and UGT1A1 may influence breast cancer
characteristics and might be important for breast cancer
prognosis.

Introduction
Estrogens are involved in the development and progression of
breast cancer [1-4]. Women experience various exposures to
estrogens, including endogenous production, use of pharma-
cological estrogens (birth control medications and hormone
replacement therapy) and through environmental contact.
There are several mechanisms that are believed to be critical
for estrogen-mediated carcinogenesis. Estrogens, being

estrogen receptor (ER)-mediated mitogens, stimulate cell pro-
liferation and promote the growth of estrogen-responsive
transformed cells [5,6]. ER-independent activities of estro-
gens have recently been elucidated that include cell-signal
transduction as well as mutagenicity [4,7-9]. Estrogens are
metabolized to catecholestrogens, semiquinones and qui-
nones, which participate in direct DNA damage and mutagen-
esis (Fig. 1). Those carcinogenic metabolites are the product
R909

bp = base pair; BSA = bovine serum albumin; CI = confidence interval; E2 = 17β-estradiol; ER = estrogen receptor; 2-MeE2 = 2-methoxyestradiol; 
2-OHE2 = 2-hydroxyestradiol; OR = odds ratio; PCR = polymerase chain reaction; 35S-PAPS = 35S-labeled 3'-phosphoadenosine-5'-phosphosul-
fate.

http://breast-cancer-research.com/content/7/6/R909
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


Breast Cancer Research    Vol 7 No 6    Shatalova et al.

R910
of estrogen oxidation reactions catalyzed by the cytochrome
P450 isoforms and are capable of forming either stable or
depurinating DNA adducts [7,8,10], thus having the potential
to result in permanent nucleotide mutation [4,9].

Conjugation of estrogens and their metabolites with methyl,
sulfate or glucuronide moieties generally inactivates those
molecules and is regarded as a protective reaction for the cell
[4,11-13] (Fig. 1). Indeed, estrone sulfate is quantitatively the
most abundant circulating hormone in humans, and deconju-
gation of estrone sulfate or 17β-estradiol (E2) sulfate by sulfa-
tase is a critical reaction for liberating active estrogens within
hormone-responsive tissues [4]. While conjugation of E2 and
catecholestrogens is generally considered inactivating, one
conjugated catecholestrogen metabolite, 2-methoxyestradiol
(2-MeE2), has been recognized as a molecule with antimi-
togenic and antiangiogenic activities [14-16] and is now
undergoing clinical study as an anticancer agent [17]. While
sulfation and glucuronidation reactions may protect the cell
from the mitogenic and DNA-damaging activities of E2 and
catecholestrogens, those reactions also compete with methyl-
ation of 2-hydroxyestradiol (2-OHE2) and thus may decrease
cellular pools of the antiproliferative 2-MeE2. Sulfation and
glucuronidation, depending on cellular context and the com-
peting metabolic pathways, may therefore represent protec-

tive (detoxifying) or detrimental (decreasing formation of 2-
MeE2) pathways to the cell (Fig. 1).

Sulfotransferases and UDP-glucuronosyltransferases are two
important phase II enzyme families that catalyze the sulfate and
glucuronide conjugation of many endogenous and exogenous
substances, including estrogens and estrogen metabolites to
form water-soluble biologically inactive molecules. SULT1E1,
SULT1A1 and SULT2A1 are members of a superfamily of
cytosolic proteins that metabolize estrone, E2 and catecholes-
trogens, although the affinity of these enzymes for estrogens
varies [18]. SULT1E1 has the highest affinity for estrone, E2
and catecholestrogens [11], and is expressed in many human
tissues, including the liver [19] and breast, but not in malignant
breast cells [20]. SULT1E1 is therefore likely to play a major
role in the systemic sulfation of estrogens and catecholestro-
gens, and can contribute significantly to the pool of circulating
estrogen sulfates [21] but perhaps not to sulfation reactions in
breast tumors. SULT1A1, and to a lesser extent SULT2A1,
appear to be the isoforms responsible for estrogen and cate-
cholestrogen sulfation in breast tumors [11,18,20,22-24].
SULT1A1 also catalyzes the sulfation of 2-MeE2, an endog-
enous, potent antiestrogen [25]. SULT1A1 has therefore been
hypothesized to be important in the sulfation of estrogens
within breast tumors. In the present study we focused on

Figure 1

Disposition of 17β-estradiol (E2) and metabolitesDisposition of 17β-estradiol (E2) and metabolites. SULT1A1 and UGT1A1 inactivate E2, and thus represent an antimitogenic pathway; the products 
of E2 oxidation, 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol, (4-OHE2), are both possible mutagens; 2-OHE2 is methylated by catechol-O-
methyltransferase (COMT) to the antiproliferative compound 2-methoxyestradiol (2-MeE2), thus this pathway is potentially both antimutagenic and 
anitmitogenic. 2-OHE2 is alternatively sulfated and glucuronidated; this pathway would be predicted to be antimutagenic because it inactivates 2-
OHE2 and, at the same time, promitogenic because it competes with the antimitogenic methylation pathway. 4-OHE2 is also inactivated by 
SULT1A1 and UGT1A1. Thus, sulfation and glucuronidation, depending on the cellular context and the competing metabolic pathways in a specific 
cell, may represent protective (detoxifying) or detrimental pathways. CYPs, Cytochromes P450.
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SULT1A1 because this gene is polymorphic with common and
well-described functionally significant alleles and is the estro-
gen-sulfating gene most highly expressed in breast tumors
[20,22].

SULT1A1 is a polymorphic gene with three common alloz-
ymes (SULT1A1*1, SULT1A1*2 and SULT1A1*3) [26-28].
We have previously determined that the SULT1A1*2 allele,
when expressed homozygously, was associated with a low
level of SULT1A1 activity [26,27]. Several epidemiological
studies have evaluated whether the SULT1A1 genotype is
associated with altered risk for breast cancer. One study sug-
gested a link between the high-activity SULT1A1*1 allele and
early onset of breast cancer as well as the presence of non-
breast tumors [29]. No evidence was found for the association
of genotypes or allele frequency with tumor size, tumor stage
at diagnosis and ER status [29,30]. Two additional studies
have suggested a link between the low-activity allele
(SULT1A1*2) and increased breast cancer risk [31,32].

UGT1A1 is a member of a superfamily of membrane-bound
enzymes. Estrogenic compounds inactivated by UGT1A1
include E2, 2-hydroxyestrone, 2-OHE2, 2-MeE2 and ethi-
nylestradiol [13,33]. UGT1A1 is expressed extensively in the
liver [34] and to a lesser extent in other organs. To our knowl-
edge UGT1A1 expression was not investigated in breast epi-
thelium, but was detected in human breast cancer cell lines
[35]. More than 60 UGT1A1 allelic variants have been
described [36]. The most common UGT1A1 genetic variant is
a dinucleotide TA repeat in the promoter TATA box. The
wildtype allele, UGT1A1*1, contains six TA repeats, while the
variant alleles UGT1A1*28, UGT1A1*33 and UGT1A1*34
contain seven, five and eight TA repeats, respectively [35,37-
41]. There is an inverse relationship between the number of TA
repeats at this locus and the level of transcriptional activity of
UGT1A1 [35,39,42]. This polymorphism results in an altered
level of enzyme expression and therefore enzymatic activity,
such that UGT1A1*1 and UGT1A1*33 are associated with
high activity while UGT1A1*28 and UGT1A1*34 are associ-
ated with low activity.

The UGT nomenclature has been established by the UDP Glu-
curonosyltransferase Nomenclature Committee. The allele
containing five TA repeats in the promoter has been renamed
UGT1A1*36, and the allele containing eight TA repeats has
been renamed UGT1A1*37. In this manuscript we have pre-
sented our data using the previous system (UGT1A1*1,
UGT1A1*28, UGT1A1*33 and UGT1A1*34) to avoid confu-
sion when comparing our results with published literature. We
have also cross-referenced the nomenclature with the historic
terminology referring to the number of TA repeats.

As with SULT1A1, several studies have reported links
between the UGT1A1 polymorphism and the risk of breast
cancer. One study has reported a potential association

between low-activity alleles (UGT1A1*28 and UGT1A1*34)
and increased risk of breast cancer in premenopausal women
of African ancestry (odds ratio [OR] = 1.8, 95% confidence
interval [CI] = 1.0–3.1, P = 0.06), and the association was
strongest in ER-negative breast cancer (OR = 2.1, 95% CI =
1.0–3.1, P = 0.04). In a larger study of Caucasian women,
however, the same authors found no association between
UGT1A1 polymorphisms and breast cancer [35,41]. A recent
study of a Chinese population suggested that UGT1A1*28
was associated with an increased risk of breast cancer in
women younger than 40 years old (OR = 1.7, 95% CI = 1.0–
2.7) [43]. A reduced risk of ER-negative breast cancer was
observed in a group of Caucasian and Asian patients with the
UGT1A1*28/*28 genotype [44].

Given the role of SULT1A1 and UGT1A1 in the metabolism of
estrogens, we hypothesized that polymorphisms in these
genes might be associated with differences in breast tumor
characteristics, such as tumor size, tumor grade and age of
breast cancer diagnosis. Here we present data suggesting
that SULT1A1*2 is associated with a low level of estrogen sul-
fating capacity, expression of the SULT1A1*2 allele increases
the proliferative response of MCF-7 cells to estrogens and, in
a case-series study of women with breast cancer, SULT1A1
and UGT1A1 alleles are significantly associated with specific
tumor characteristics.

Materials and methods
Study subjects and data collection
A sample of 226 incident breast cancer cases (140 infiltrating
ductal carcinomas, 27 infiltrating lobular carcinomas, four
mixed infiltrating ductal and lobular carcinomas, one tubular
carcinoma, three mucinous carcinomas, two metaplastic car-
cinomas and 49 unknown histological subtypes) diagnosed
between 1995 and 1999 was identified through the Medical
Oncology Clinics at the University of Pennsylvania Cancer
Center (Table 1). Case status was confirmed by review of
medical records using a standardized abstraction form.
Women were excluded from this study if they were non-inci-
dent cases (i.e. those diagnosed more than 12 months prior to
the date of study ascertainment) or had a prior diagnosis of
cancer at any site except nonmelanoma skin cancer. The mean
age of diagnosis was 59.8 years (standard deviation = 8.5
years) with a range of 43–80 years.

Information on risk factors, the medical history and breast can-
cer diagnostic information was obtained using a standardized
questionnaire and a review of medical records. Information
collected included the personal history of benign breast dis-
eases, previous cancer diagnoses, demographic information
such as race, and pathology data, including different tumor
characteristics, such as the size, grade and ER status of
tumors. All study subjects provided informed consent for par-
ticipation in this research under a protocol approved by the
Committee for Studies Involving Human Subjects at the
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University of Pennsylvania, and genetic samples and informa-
tion were handled in accordance with the Helsinki Declaration.
Genomic DNA for the present study was self-collected by
each study subject using sterile cheek swabs (Cyto-Pak
Cytosoft Brush; Medical Packaging Corporation, Camarillo,
CA, USA).

Generation of recombinant SULT1A1 proteins
Purified 6X-histidine-tagged recombinant SULT1A1*1 and
recombinant SULT1A1*2 allozymes were generated in a bac-
uloviral/insect cell system. SULT1A1 cDNAs were cloned into
the pBlueBacHis2A expression vector (Invitrogen, Carlsbad,
CA, USA). The His2A/SULT constructs were co-transfected

Table 1

Population characteristics

Characteristic Category Proportion (%) Number of subjects

Race Caucasian 84.3 177

African-American 11.9 25

Other 3.8 8

Age at menarche (years) (mean 
[standard deviation])

Known 12.7 [1.6] 208

Unknown 3

Use of oral contraceptives Ever 50.0 105

Never 50.0 105

Pregnancy history �1 full term pregnancy 88.6 186

No full term pregnancies 11.4 24

Age at first full term birth (years) 
(mean [standard deviation])

Known 24.9 [5.8] 183

Unknown 3

Menopausal status Premenopausal 11.9 25

Perimenopause 5.2 11

Postmenopausal 76.2 160

Unknown 6.7 14

Age at menopause (years) (mean 
[standard deviation])

48.8 [6.2] 160

Age at diagnosis ≤60 years 62.8 132

>60 years 34.8 73

Unknown 2.4 5

Tumor size ≤2 cm 47.1 99

>2 and ≤4 cm 16.7 35

>4 cm 10.9 23

Unknown 25.2 53

Tumor grade 1 21.4 45

2 36.2 76

3 23.8 50

Unknown 18.6 39

Estrogen receptor status Positive 42.4 89

Negative 22.9 48

Unknown 34.8 73

The number of subjects with each characteristic of interest is shown. The proportion of the sample size is calculated based on a total of 210 
subjects that were genotyped successfully for at least one gene.
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with BacVector 3000 viral DNA (Novagen, San Diego, CA,
USA) through liposome-mediated transfection into Sf-9 insect
cells. After incubation at 27°C, viral supernatant was removed
and diluted for isolation of individual viral clones. Clones with
the highest protein expression were selected for amplification
to a high-titer viral stock (>5 × 108 pfu/ml). His-tagged pro-
teins were purified from high-titer viral stock (>5 × 108 pfu/ml)
using cobalt-immobilized metal-affinity chromatography (Talon
resin; Clontech, Palo Alto, CA, USA). Histidine tags were
removed using the EnterokinaseMax serine protease (Invitro-
gen). Purified untagged recombinant SULT1A1 protein was
dialyzed with 5 mM phosphate buffer (pH 6.5), and the total
protein concentration was determined using the Bradford
assay (Pierce, Rockford, IL, USA). Several aliquots of the puri-
fied recombinant SULT1A1 allozymes were stored at -80°C in
the presence of 0.75 mg/ml BSA until assay. Purified
SULT1A1 has been shown to be stable for at least 5 months
under these storage conditions [45].

SULT1A1 biochemical assay
Recombinant SULT1A1 allozymes were characterized with
regard to biochemical activity toward E2 using a standard
SULT1A1 radiometric assay [46,47]. One hundred nano-
grams of purified recombinant SULT protein was incubated
with 10 µM 35S-labeled 3'-phosphoadenosine-5'-phosphosul-
fate (35S-PAPS), the biological sulfate donor, and varying con-
centrations of E2 (0–250 µM; Sigma, St. Louis, MO, USA)
dissolved in dimethylsulfoxide (DMSO). The final reaction vol-
ume was 30 µl and included the standard reaction buffer con-
taining 50 mM potassium phosphate (pH 7.4), 0.75 mg/ml
BSA, 13 mM dithiothreitol and 7.5 mM MgCl2. The final con-
centration of DMSO in the reaction mixture was 3%. The reac-
tion was initiated with the addition of 10 µM 35S-PAPS (NEN,
Boston, MA, USA), and reactions were incubated for 15 min
at 37°C and then quenched with the addition of 20 µl of a 1:1
mixture of 50 mM barium hydroxide/barium acetate. Unincor-
porated 35S-PAPS was precipitated from the reaction mixture
by adding, sequentially, 10 µl of 0.1 M ZnSO4, 10 µl of 0.1 M
(Ba)OH2, 10 µl of 0.1 M ZnSO4 and 80 µl H2O. The resulting
precipitate was pelleted by centrifugation at 3220 × g for 10
min. The 35S-labeled reaction products were subsequently
detected by liquid scintillation counting of 100 µl reaction
supernatant. Each assay was performed in triplicate and 'blank
samples' utilized DMSO as the vehicle control (final reaction,
3% DMSO).

The effects of substrate inhibition were largely avoided by
measuring the initial reaction rates at very low substrate levels.
To determine the appropriate working concentration range, a
broad range of E2 concentrations were assayed initially (0–
250 µM) and used to calculate initial estimates of Vmax (maxi-
mum reaction rate) and the Michaelis–Menten constant, Km (a
measure of the affinity between substrate and enzyme meas-
ured as the substrate concentration at which half the maximal
reaction rate is achieved). Assays were then repeated over a

lower concentration range to fit data to the Michaelis-Menten
equation to determine the apparent Vmax and Km values. Data
were analyzed using GraphPad Prism 3.0b software (Graph-
Pad Software, Inc., San Diego, CA, USA). Statistical signifi-
cance was determined using the Mann–Whitney test.

Generation of stably transfected MCF-7 cells
Native SULT1A1*1 and SULT1A1*2 cDNAs were cloned into
the pCR3.1 expression vector (Invitrogen). MCF-7 cells were
cultured in RPMI 1640 media (Cellgro, Herndon, VA, USA)
and were transfected with 5 µg pCR3.1 SULT1A1*1,
SULT1A1*2 or control pCR3.1 plasmids using a standard cal-
cium phosphate method, and were cultured for 48 hours. Cells
were cultured in the presence of G418 over 8 days until
clones became visible to the eye. Six clones for each transfec-
tion were isolated and expanded in complete RPMI 1640
media with 10% fetal bovine serum. Clones that expressed
similar levels of SULT1A1 mRNA (SULT1A1*1 or SULT1A1*2
allele) were selected for comparison of allele-dependent differ-
ences in cell proliferation.

We have previously determined that the biochemical mecha-
nism by which the SULT1A1*2 allozyme is associated with low
activity includes both low intrinsic turnover of substrates by the
enzyme (Fig. 2) as well as faster cellular degradation of the
SULT1A1*2 protein such that SULT1A1*1 has a threefold
longer cellular half-life than SULT1A1*2 [48] (manuscript sub-
mitted). We have also confirmed that there is no difference in
the cellular stability of the SULT1A1*1 versus SULT1A1*2
mRNA. We therefore selected clones for further proliferative
analysis based on the expression of equal levels of mRNA to
mimic the biological mechanisms contributing to pharmacoge-
netic SULT1A1 variability. Selected clones expressed equal
levels of SULT1A1 mRNA, yet, as expected, western blot anal-
ysis revealed that the protein levels differed such that cells
expressing SULT1A1*1 expressed threefold higher levels of
SULT1A1 protein than cells expressing SULT1A1*2 (data not
shown). Native MCF7 cells are heterozygous for SULT1A1*1/
*2 and native levels of expression of the SULT1A1 protein are
negligible compared with the levels expressed in the stable
cell lines.

Cell proliferation assay
Cell proliferation was assessed by the alamarBlue assay (Bio-
Source International, Camarillo, CA, USA). The alamarBlue
assay incorporates a water-soluble fluorometric and colorimet-
ric indicator that is nontoxic to cells and is biotransformed to a
compound detectable at 570 nm at a rate dependent upon the
cell number. Cells expressing equivalent amounts of
SULT1A1*1 and SULT1A1*2 mRNA and a vector-control cell
line (pCR3.1) were plated in triplicate in 96-well plates at
1000 cells per well. Cells were cultured in RPMI 1640 with
10% charcoal-stripped fetal bovine serum and were washed
several times over 48 hours to remove endogenous estrogens.
On day 2, cells were treated with varying concentrations of E2.
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Proliferation was assessed as the percentage reduction of
alamarBlue on day 6 by spectrophotometric absorbance at
570 nm and 600 nm on a SpectraMax Plus (Molecular
Devices, Sunnyvale, CA, USA). Data were analyzed using
GraphPad Prism 3.0b software (GraphPad Software). Statis-
tical significance was evaluated using the one-way analysis of
variance test (GraphPad Prism 3.0b, GraphPad Software,
Inc., San Diego, CA).

SULT1A1 genotyping assay
The SULT1A1 genotype was determined using a pyrose-
quencing-based assay. A 268 base pair (bp) fragment of the
human SULT1A1 gene was PCR-amplified with the primers
I6F395 (5'-biotin-GTTGAGGAGTTGGCTCTGCAGGGTC-
3') and R733 (5'-GGGGACGGTGGTGTAGTTGGTCATAG-
3'). Six nanograms of genomic DNA were mixed with TaqPlus
Precision buffer (Stratagene, La Jolla, CA, USA) in a reaction
mixture containing 50 mM dNTPs, 10 pmol PCR primers and
1 U TaqPlus Precision DNA polymerase in a 50 µl reaction vol-
ume. Cycling conditions included initial denaturation for 5 min
at 94°C followed by 25 cycles of 94°C for 1 min, 68°C for 1
min initially with an incremental stepdown of 0.5°C on each
cycle, and 72°C for 1 min. This was followed by 20 cycles of
94°C for 1 min, 56°C for 1 min and 72°C for 1 min. A final 10-
min extension at 72°C completed the amplification. The pres-
ence of the PCR product was confirmed by agarose gel
electrophoresis.

Amplicons were prepared for automatic pyrosequencing sin-
gle nucleotide polymorphism (SNP) analysis on the PSQ 96
system (Pyrosequencing Inc., Westborough, MA, USA).
Twenty-five microlitres of the double-stranded biotinylated
amplicons were incubated with 100 µg streptavidin-coated
DynaBeads in binding buffer (5 mM Tris, pH 7.6, 1 M NaCl,
0.5 mM ethylenediamine tetraacetic acid, 0.05% Tween 20) in
a shaking thermal plate at 65°C for 15 min. Dynabeads and
bound DNA were transferred to a 0.50 M NaOH solution to
denature the DNA. The beads were washed and transferred to
an annealing buffer (20 mM Tris acetate, pH 7.6, 5 mM
Mg(OAc)2) for 1 min and then transferred to a sequencing
primer solution containing annealing buffer and 10 pmol
appropriate pyrosequencing primer.

For the G638A SNP the pyrosequencing primer was 5'-
CCTCTGGCAGGGAG-3', and for the A667G SNP the
primer was 5'-GAACGACGTGTGCTGAA-3'. The nucleotide
dispensation sequences for the G638A and A667G SNPs
were GTCAGCAC and ACATCAGAG, respectively (under-
lined nucleotides representing the negative control and bold
nucleotides representing the polymorphic sites). The incorpo-
ration of homozygous nucleotides generated a luciferase sig-
nal with a peak height of 2X, while heterozygous nucleotides
generated peak heights of 1×. The SULT1A1 genotype was
assigned as follows: SULT1A1*1, G638 A667; SULT1A1*2,
A638 A667; and SULT1A1*3, G638 G667. DNA samples
with known SULT1A1 genotype were also evaluated as posi-
tive control samples.

UGT1A1 genotyping assay
UGT1A1 genotyping was performed using a PCR-based
Genescan® (Applied Biosystems, Foster City, CA, USA)
method. A segment of the UGT1A1 gene was amplified from
genomic DNA by PCR using the primers F144887 (5'-
TATCTCTGAAAGTGAACTC-3') and R175122 (5'-TAGTT-
GTCATAGAAGGGTC-3'). These primers flank the polymor-
phic TA locus in the promoter region of the UGT1A1 gene,
and amplify a 256 bp fragment when a (TA)6TAA allele is
present, a 258 bp fragment when a (TA)7TAA allele is present,
a 260 bp fragment when a (TA)8TAA allele is present and a
254 bp fragment when a (TA)5TAA allele is present. The for-
ward primer was labeled with a fluorescent dye (6-carboxyflu-
orescein) at its 5'-end to permit detection of the amplified
product. The amplification reaction (25 µl reaction volume)
included 20 ng total human genomic DNA as template, 0.2 µM
each primer, 50 µM each dNTP, 1.5 mM MgCl2 and 0.5 U Taq-
Plus Precision DNA polymerase. Reaction conditions included
initial denaturation for 4 min at 95°C, followed by 35 cycles of
95°C for 30 s, 52°C for 30 s and 72°C for 30 s, followed by a
final extension at 72°C for 2 min. The products were visualized
by agarose gel electrophoresis.

PCR fragments were subjected to gel electrophoresis on an
ABI 377 DNA analyzer (Perkin-Elmer, Wellesley, MA, USA).

Figure 2

17β-estradiol (E2) sulfation by recombinant SULT1A1 allozymes17β-estradiol (E2) sulfation by recombinant SULT1A1 allozymes. 
SULT1A1*2 has lower capacity to sulfate E2 than SULT1A1*1. One 
hundred nanograms of purified recombinant SULT1A1*1 and 
SULT1A1*2 allozymes were evaluated for capacity to sulfate E2 in a 
radiometric sulfotransferase assay. Assay conditions included 10 µM 
3'-phosphoadenosine-5'-phosphosulfate (the sulfate donor) and 
increasing concentrations of E2 (0–250 µM). Data were evaluated on 
GraphPad Prism 3.0b (GraphPad Software Inc..) and fit to the Michae-
lis-Menten equation. SULT1A1*1, Km = 25.73 ± 7.28 µM, Vmax = 17.5 
± 1.71 pmol/min per mg protein; SULT1A1*2, Km = 24.74 ± 20.24 µM, 
Vmax = 3.55 ± 0.99 pmol/min per mg protein (Vmax, P < 0.0001).
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Amplified products were diluted in water with the addition of
formamide and dextran blue loading buffer combined with a
size standard (GS-350; Perkin-Elmer), were denaturated at
95°C and were loaded onto a 4% denaturing polyacrylamide
gel. Fluorescent bands were analyzed using GENESCAN 2.1
software (Applied Biosystems) to determine the fragment
length. Genotypes were assigned as UGT1A1*1,
UGT1A1*33, UGT1A1*28, and UGT1A1*34 for six, five,
seven and eight TA repeats, respectively. DNA samples with a
known UGT1A1 genotype were also evaluated as positive
control samples.

Statistical methods
The chi-squared test was used to evaluate differences in allele
frequencies between Caucasians and African-American sub-
jects. Allele frequencies were not evaluated for the rest of the
group (Hispanics and Asians) because of the small size of that
group (11 samples; Table 1). For genotype–phenotype asso-
ciation analyses, genotypes were grouped based on known
biological function of the alleles. SULT1A1 was grouped as
follows: high activity, SULT1A1*1/*1; low activity,
SULT1A1*2/*2; and intermediate or unknown function,
SULT1A1*1/*2, SULT1A1*1/*3, SULT1A1*2/*3 and
SULT1A1*3/*3. UGT1A1 genotype groups were grouped as:
high activity, UGT1A1*1/*1, UGT1A1*1/*33 and
UGT1A1*33/*33; low activity, UGT1A1*28/*28 and
UGT1A1*28/*34; and intermediate or unknown function,
UGT1A1*1/*28, UGT1A1*1/*34, UGT1A1*33/*28 and
UGT1A1*33/*34.

We evaluated the associations between genotypes and tumor
characteristics, including tumor size, tumor grade and age at
diagnosis. A stepwise approach was used to identify genotype
groups with a statistically significant association with tumor
phenotypes. For each phenotype of interest, the chi-squared
test was applied first to all genotype groups of a single gene.
Genotype groups were subsequently evaluated as dichoto-
mous variables such that high-activity genotype groups and,
separately, low-activity genotype groups were tested versus
all other groups.

Phenotypes were analyzed categorically. The age at diagnosis
was evaluated as <60 years versus ≥60 years. This cutoff
point was selected based on the mean age at diagnosis of
59.8 years with a range of 43–80 years. Tumor sizes were cat-
egorized based on those values known to be critical for prog-
nosis and treatment strategy. Tumor size categories were ≤2
cm versus >2 cm. The tumor grade was analyzed using cate-
gories commonly applied during pathological evaluation,
including grades 1, 2 or 3. Statistical analysis for the associa-
tion between the genotype and the dichotomized tumor grade
was performed such that grade 1 tumors were evaluated ver-
sus grade 2 and grade 3 tumors.

Logistic regression was used to estimate the ORs and 95%
CIs for association of SULT1A1 and UGT1A1 genotypes with
categorized tumor phenotypes, followed by a chi-squared test.
ORs for age at diagnosis were adjusted for race (Caucasian
versus non-Caucasian) and those for other phenotypes were
adjusted for race and age at diagnosis. We used race-
adjusted and age-adjusted analyses rather then race-stratified
and age-stratified analyses because of the sample size limita-
tion. Analysis with simultaneous adjustment for age at diagno-
sis, tumor size and grade was not performed, again because
of sample size limitations. ORs, CIs and chi-squared P values
were estimated for all subjects, among the group of subjects
with ER-positive tumors and among the group of subjects with
ER-negative tumors. The chi-squared test was used to esti-
mate whether phenotype variables were distributed independ-
ently of each other. All analyses were undertaken using
Minitab™ Statistical Software (Release 13.20; Minitab Inc.,
State College, PA, USA).

Results
Our approach initially involved determining the functional sig-
nificance of the common SULT1A1*2 allozyme toward E2
because, unlike UGT1A1, little has previously been reported
regarding the functional consequences of genetic variation of
SULT1A1 toward E2 biology. We then asked whether a
genetic variation in UGT1A1 or SULT1A1 influenced specific
tumor phenotypes. These two genes were selected for analy-
sis because UGT1A1 and SULT1A1 directly compete for E2
and E2 metabolites as substrates.

SULT1A1 biochemical assays
Figure 2 depicts the kinetics of those purified proteins with E2
as a substrate. The Km values for the two allozymes were sim-
ilar (Km = 25.73 ± 7.28 µM and 24.74 ± 20.24 µM for
SULT1A1*1 and SULT1A1*2, respectively) but the maximal
rates were significantly different (Vmax = 17.5 ± 1.71 pmol/min
per mg protein and 3.55 ± 0.99 pmol/min per mg protein for
SULT1A1*1 and SULT1A1*2, respectively; P < 0.0001).
These data clearly demonstrate that the SULT1A1*2 allozyme
exhibits significantly lower capacity to catalyze the sulfation of
E2. We next tested the hypothesis that MCF-7 breast carci-
noma cells that were stably transfected with the SULT1A1*2
(low-activity) allele would proliferate faster in response to E2
exposure than cells expressing the SULT1A1*1 (high-activity)
allele.

Cell proliferation assay
Figure 3 demonstrates that cells expressing SULT1A1*2 pro-
liferated at a greater rate than cells expressing SULT1A1*1
over all three concentrations of E2 tested (P = 0.0022). The
most significant difference in proliferation between cells
expressing different SULT1A1 allozymes was observed at a
physiological concentration of E2 (0.1 nM, P = 0.0014).
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Genotype analyses
We successfully determined the SULT1A1 and UGT1A1 gen-
otypes from 181 subjects (80.1%) and 206 subjects (91.2%),
respectively. Collectively, 210 samples of the available 226
were successfully genotyped for at least one gene. All statisti-
cal analyses were thus performed among the 210 subjects for
whom we had genotype information. We did not observe dif-
ferences in the distribution of characteristics presented in
Table 1 between the excluded subgroup and the group that
was successfully genotyped (P values for the chi-squared test
were not statistically significant).

The allele and genotype frequencies for both genes are sum-
marized in Table 2. The SULT1A1 genotype frequencies in
Caucasian and African-American samples and the UGT1A1
genotype frequencies in Caucasians did not deviate signifi-
cantly from Hardy–Weinberg proportions. SULT1A1*3 allele
frequencies differed between Caucasians and African-Ameri-
cans (P < 0.01). The UGT1A1 allele frequencies between
those groups differed statistically significantly for UGT1A1*33
(P < 0.01), and with borderline significance for UGT1A1*1 (P
= 0.06). The age at diagnosis was distributed independently
from other phenotypes, but the tumor size and tumor grade
were associated such that tumor size ≤2 cm was associated
with tumor grade 1 (P < 0.01).

Association analyses were performed in the group of women
identified as Caucasian, as well as in the entire cohort. Differ-
ences in the results were observed when non-Caucasian sub-
jects were excluded as described in the following. Among all
cases we determined that individuals with the SULT1A1*1/*1
genotype (high activity) were most likely to present with a small

tumor size (≤2 cm; OR = 2.63, CI = 1.25–5.56, P = 0.02;
Table 3) compared with individuals with other SULT1A1 gen-
otypes. Individuals with low-activity UGT1A1 genotypes
(UGT1A1*28/*28 and UGT1A1*28/*34) were more probably
diagnosed at age older than 60 years (OR = 3.70, CI = 1.33–
10.00, P = 0.01; Table 3). Individuals who carried genotypes
predicting both high-activity SULT1A1*1/*1 and high-activity
UGT1A1*1/*1, UGT1A1*1/*33 and UGT1A1*33/*33 pre-
sented with low tumor grade (grade 1) (OR = 2.56, CI = 1.04–
6.25, P = 0.05; Table 3). No significant association was found
between the tumor grade and the SULT1A1 or UGT1A1 gen-
otypes when each locus was analyzed separately. In the group
of women identified as Caucasian, the association between
the high-activity SULT1A1 genotype and tumor size ≤2 cm
(OR = 2.27, CI = 1.04–5.00, P = 0.02), as well as between
the low-activity UGT1A1 genotypes and late age of onset (OR
= 3.22, CI = 1.12–9.09, P = 0.02), remained statistically sig-
nificant. The statistical significance of the association between
the interaction of high-activity SULT1A1 and UGT1A1 geno-
types with low tumor grade, however, was no longer signifi-
cant within the group of only Caucasian women (OR = 1.96,
CI = 0.75–5.00, P = 0.19).

Upon stratifying the entire group of subjects by ER status, we
observed significant genotype–phenotype associations pre-
dominantly in ER-negative tumors. The SULT1A1*1/*1 high-
activity genotype was associated with age at diagnosis <60
years (OR = 7.14, CI = 1.23–50, P = 0.02; Table 3) and tumor
size ≤2 cm (OR = 14.28, CI = 2.17–100, P = 0.02; Table 3).
The group of SULT1A1*1/*1 and UGT1A1*1/*1, UGT1A1*1/
*33 and UGT1A1*33/*33 high-activity genotypes was
associated with tumor size ≤2 cm (OR = 9.02, CI = 1.59–
51.31, P = 0.01; Table 3) and low tumor grade (OR = 10, CI
= 1.09–100, P = 0.04; Table 3). Among ER-positive tumors,
we observed an association of the low-activity UGT1A1
genotype with age at diagnosis ≥60 years (OR = 9.09, CI =
1.08–100, P = 0.02; Table 3). In a separate analysis we com-
pared the distribution of the SULT1A1 and UGT1A1 geno-
types among women with ER-positive versus ER-negative
tumors, and no difference was observed.

Discussion
We tested the hypothesis that the SULT1A1*2 protein would
exhibit impaired capacity to sulfate E2 and would confer
increased proliferative response of MCF-7 cells to estrogens.
The biochemical and cell culture data in Figs 2 and 3 suggest
that cells exposed to physiological doses of E2 proliferated at
a significantly different rate based on the SULT1A1 genotype.
Approximately one-third of Caucasian and African-American
individuals carry the low-activity SULT1A1*2 allele, and 10%
are predicted to be homozygous for SULT1A1*2 [26,27].
Because estrogen exposure is a known factor in the etiology
of breast tumors, and because the SULT1A1*2 allele is a low-
activity allele with a high population frequency, we hypothe-
sized that this allele might represent an important modifier of

Figure 3

Proliferative response of MCF-7 cells overexpressing different SULT1A1 allozymesProliferative response of MCF-7 cells overexpressing different 
SULT1A1 allozymes. MCF-7 cells overexpressing SULT1A1*2 prolifer-
ate faster in response to 17β-estradiol (E2) than cells overexpressing 
SULT1A1*1 (P = 0.002). Cells stably expressing equal levels of 
SULT1A1 mRNA (SULT1A1*1 or SULT1A1*2) were selected for 
study. Cells were plated onto 96-well plates and, in triplicate, treated 
with increasing concentrations of E2 (0, 0.1, 1 and 100 nM) in char-
coal-stripped media. Data were corrected for proliferation in the 
absence of E2 to calculate the proliferative index. Data for 'pCR3.1' 
cells were generated in a MCF-7 control cell line mock-transfected with 
the empty pCR3.1 vector.
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breast tumor characteristics. Furthermore, because a common
competing metabolic pathway for SULT1A1-mediated
sulfation of estrogens is UGT1A1-mediated glucuronidation of
E2, we also hypothesized that UGT1A1 alleles might repre-
sent modifiers of breast tumor characteristics.

Desulfation and deglucuronidation of estrogen conjugates
both contribute to the formation of active estrogen in target
cells. These reactions are catalyzed by membrane-bound ster-
oid sulfatase (arylsulfatase C) and β-glucuronidase, respec-
tively [2,4,49]. There have been no reports of functionally

significant genetic polymorphisms in those genes. We there-
fore did not include these genes in the current analysis. Thus,
we selected SULT1A1 and UGT1A1 as candidate genes for
affecting breast tumor characteristics based on the following
criteria: both genes are important effectors of the biological
fate of estrogens (especially pharmacological estrogens), both
genes are polymorphic, and functionally significant genotype–
phenotype relationships for the SULT1A1 and UGT1A1 alle-
les have been well characterized. Furthermore, a number of
epidemiological studies have suggested a role for these genes
in breast cancer risk [29,31,32,35,41,43,44], although spe-

Table 2

SULT1A1 and UGT1A1 allele and genotype frequencies

Caucasiansa African-Americansb

Nc Frequency Nc Frequency

Allele

SULT1A1*1 214 0.704 28 0.636

SULT1A1*2 87 0.286 9 0.205

SULT1A1*3 3 0.010 7 0.159

UGT1A1*33 (TA5) 5 0.015 7 0.140

UGT1A1*1 (TA6) 221 0.639 25 0.500

UGT1A1*28 (TA7) 120 0.347 13 0.260

UGT1A1*34 (TA8) 0 0.000 5 0.100

Genotype

SULT1A1*1/*1 74 0.487 12 0.545

SULT1A1*1/*2 66 0.434 1 0.045

SULT1A1*1/*3 0 0.000 3 0.136

SULT1A1*2/*2 10 0.066 2 0.091

SULT1A1*2/*3 1 0.007 4 0.182

SULT1A1*3/*3 1 0.007 0 0.000

UGT1A1*33/*33 (TA5/TA5) 2 0.012 0 0.000

UGT1A1*33/*1 (TA5/TA6) 1 0.006 2 0.080

UGT1A1*33/*28 (TA5/TA7) 0 0.000 4 0.160

UGT1A1*33/*34 (TA5/TA8) 0 0.000 1 0.040

UGT1A1*1/*1 (TA6/TA6) 67 0.387 8 0.320

UGT1A1*1/*28 (TA6/TA7) 86 0.497 5 0.200

UGT1A1*1/*34 (TA6/TA8) 0 0.000 2 0.080

UGT1A1*28/*28 (TA7/TA7) 17 0.098 1 0.040

UGT1A1*28/*34 (TA7/TA8) 0 0.000 2 0.080

aAllele frequencies were defined in 152 subjects for SULT1A1 and in 173 subjects for UGT1A1.
bAllele frequencies were defined in 22 subjects for SULT1A1 and in 25 subjects for UGT1A1.
cN, number of alleles for allele frequency calculations or number of patients for genotype frequency calculations.
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Table 3

Odds ratios and 95% confidence intervals for associations of SULT1A1 and UGT1A1 genotypes with breast cancer phenotypes

Phenotype Genotype [number (%) of subjects] Adjusted odds 
ratio

Adjusted 95% 
confidence 
interval

P

High-activity SULT1A1 
genotypea

Other SULT1A1 genotypes

Age at diagnosis <60 years 57 (66.28%) 48 (53.33%) 1.85d 1.00–3.45d 0.08

≥60 years 29 (33.72%) 42 (46.67%)

Tumor size ≤2 cm 54 (71.05%) 33(51.56%) 2.63e 1.25–5.56e 0.02

>2 cm 22 (28.95%) 31 (48.44%)

Tumor grade 1 20 (25.32%) 16 (22.86%)

2 or 3 59 (74.68%) 54 (77.14%) 1.36e 0.52–2.50e 0.73

Low-activity UGT1A1 
genotypesb

Other UGT1A1 genotypes

Age at diagnosis <60 years 6 (31.58%) 112 (61.88%)

≥60 years 13 (68.42%) 69 (38.12%) 3.70d 1.33–10.00d 0.01

Tumor size ≤2 cm 12 (70.59%) 86 (61.87%) 1.42e 0.45–4.44e 0.48

>2 cm 5 (29.41%) 53 (38.13%)

Tumor grade 1 4 (21.05%) 40 (26.85%)

2 or 3 15 (78.95%) 109 (73.15%) 3.70e 1.33–10.00e 0.59

SULT1A1 and UGT1A1 high-
activity genotypesc

Other SULT1A1 and UGT1A1 
genotypes

Age at diagnosis <60 years 20 (57.14%) 82 (59.85%) 1.10d 0.52–2.35d 0.77

≥60 years 15 (42.86%) 55 (40.15%)

Tumor size ≤2 cm 19 (70.37%) 67 (59.82%) 1.79e 0.69–4.55e 0.31

>2 cm 8 (29.63%) 45 (40.18%)

Tumor grade 1 11 (37.93%) 24 (20.51%) 2.56e 1.04–6.25e 0.05

2 or 3 18 (62.07%) 93 (79.49%)

Associations in the group of ER-
negative tumorsf

High-activity SULT1A1 
genotypea

Other SULT1A1 genotypes

Age at diagnosis <60 years 21 (91.30%) 12 (60.00%) 7.14d 1.23–50d 0.02

≥60 years 2 (8.70%) 8 (40.00%)

Tumor size ≤2 cm 18 (78.26%) 7 (41.18%) 14.28e 2.17–100e 0.02

>2 cm 5 (21.74%) 10 (58.82%)

SULT1A1 and UGT1A1 high-
activity genotypesc

Other SULT1A1 and UGT1A1 
genotypes

Tumor size ≤2 cm 22 (73.33%) 3 (30.00%) 9.02e 1.59–51.31e 0.01
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cific results have at times been contradictory. We therefore set
out to determine whether specific tumor characteristics and
the age of cancer onset were influenced by the SULT1A1 or
UGT1A1 alleles. To address these hypotheses we performed
a case-series study of the association of the SULT1A1 and
UGT1A1 genotypes with specific breast tumor characteris-
tics, such as the size and grade of the tumor and the age at
breast cancer diagnosis in a cohort of predominantly postmen-
opausal women with invasive breast cancer.

We observed that the high-activity SULT1A1 genotype
(SULT1A1*1/*1) was associated with a greater frequency of
small tumor size (≤2 cm) when compared with the group of
individuals with other genotypes (Table 3). Furthermore, we
observed that individuals with both high-activity SULT1A1 and
high-activity UGT1A1 genotypes were more likely to have a
lower tumor grade than those with other genotypes. These
data are consistent with the in vitro data depicted in Figs 2 and
3, which clearly indicate that SULT1A1*2 is associated with a
low capacity to sulfate E2 and that cells expressing
SULT1A1*2 exhibit a greater proliferative response upon
treatment with E2. These data are also consistent with the
general notion that a high capacity to sulfate and/or glucuroni-
date protects the cell from the proliferative effects of estradiol.
It is interesting to note that the affinity of recombinant human
SULT1A1 and UGT1A1 for E2 and E2 metabolites is generally
in the micromolar range. Nonetheless, the data in Fig. 3 clearly
show that cells expressing high-activity SULT1A1*1 prolifer-
ate at a significantly lower rate when exposed to 1 nM E2 than
cells expressing low-activity SULT1A1*2. The epidemiological
analyses presented in Table 3 are consistent with these data
even though it is difficult to understand from a biochemical
perspective that these reactions could have such a dramatic
effect on estrogenicity if endogenous levels of estrogens do
not reach the micromolar range.

We also observed that the high-activity SULT1A1*1/*1 geno-
type had a tendency to associate with earlier age at diagnosis,
although this association had borderline significance in our
study. One might expect the opposite association based on
the argument that a high capacity to sulfate or glucuronidate
estrogens would be protective, and would therefore associate
with late age of onset. However, our findings are consistent
with Seth and colleagues, who also reported an association
between SULT1A1*1 genotypes (homozygous or hetero-
zygous) and early age of breast cancer onset [29]. Further-
more, we observed that low-activity UGT1A1 genotypes
(UGT1A1*28/*28 and UGT1A1*28/*34) were significantly
associated with later age at diagnosis. Thus, although surpris-
ing, the results reported here, as well as the data reported by
Seth and colleagues [29], suggest that high-activity SULT1A1
or UGT1A1 are associated with an earlier age of onset and/or
that low activity is associated with late age of onset.

Little is known about the relationship between hormones and
the age of onset of breast cancer. Perhaps the explanation for
this lies in the complex biology of estrogens and estrogen
metabolites. For example, the estrogen metabolite 2-MeE2 is
antimitogenic, and high sulfation or glucuronidation activity
would be predicted to compete with methylation of 2-OHE2,
resulting in lower levels of 2-MeE2. It is possible that for the
phenotype of 'age of onset', the impact of conjugation on lev-
els of 2-MeE2 is more important than the antiproliferative
effects of sulfation and glucuronidation on ER-mediated prolif-
erative activity or the antimutagenic effects of these reactions
on 4-OHE2-mediated adduct formation. Such mechanistic
hypotheses obviously require further studies before these
questions will be answered.

The strategy of our statistical analyses was limited by the small
sample size. For example, it would be interesting to adjust
simultaneously for all tumor characteristics evaluated since
they are not independent variables. Furthermore, we would

>2 cm 8 (26.67%) 7 (70.00%)

Tumor grade 1 3 (37.50%) 3 (8.82%) 10.00e 1.09–100e 0.04

2 or 3 5 (62.50%) 31 (91.18%)

Associations in the group of ER-
positive tumorsf

Low-activity UGT1A1 
genotypesb

Other UGT1A1 genotypes

Age at diagnosis <60 years 1 (14.29%) 47 (60.26%)

≥60 years 6 (85.71%) 31 (39.74%) 9.09d 1.08–100d 0.02

Statistically significant P values, as determined by the chi-squared test, are indicated in bold. ER, estrogen receptor.
aHigh-activity SULT1A1 genotype, SULT1A1*1/*1.
bLow-activity UGT1A1 genotypes, UGT1A1*28/*28 and UGT1A1*28/*34.
cHigh-activity UGT1A1 genotypes, UGT1A1*1/*1, UGT1A1*33/*33 and UGT1A1*1/*33.
dAdjusted for race (Caucasian or not Caucasian).
eAdjusted for age at diagnosis and race (Caucasian or not Caucasian).
fOnly statistically significant associations are shown.

Table 3 (Continued)

Odds ratios and 95% confidence intervals for associations of SULT1A1 and UGT1A1 genotypes with breast cancer phenotypes
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have liked to determine the statistical significance of the differ-
ences in association between genotype and tumor character-
istics in ER-negative cancers versus ER-positive cancers.
Unfortunately, the small sample size, particularly for the ER-
negative samples, did not allow us to have power for this anal-
ysis. Thus, although this observation was interesting, it needs
to be interpreted with caution since the number of subjects for
whom the ER status was known was small (Table 1). These
observations might, however, generate interesting hypotheses
for future testing in larger studies. Also, because of the
restricted sample size we did not have enough statistical
power to include all polymorphic estrogen metabolizing
enzymes, such as cytochrome P450 isoforms, catechol-O-
methyltransferase and glutathione S-transferase isoforms, in
this analysis. Larger cohorts need to be analyzed to answer the
question of interaction of all these genes and their combined
effect on tumor phenotypes.

Conclusion
The involvement of estrogens in carcinogenic processes
within estrogen-responsive tissues has been recognized for a
number of years [1]. Conjugation is an important biotransfor-
mation pathway for endogenous and pharmacological estro-
gens in humans [4]. Collectively, our in vitro and
epidemiological data suggest that a low capacity to glucuroni-
date or sulfate estrogens is associated with more aggressive
tumor characteristics, including larger tumor size and higher
tumor grade but, curiously, later age at diagnosis.
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