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Abstract: Typical AR methods have generic problems such as visual mismatching, incorrect oc-
clusions, and limited augmentation due to the inability to estimate depth from AR images and
attaching the AR markers onto physical objects, which prevents the industrial worker from conduct-
ing manufacturing tasks effectively. This paper proposes a hybrid approach to industrial AR for
complementing existing AR methods using deep learning-based facility segmentation and depth
prediction without AR markers and a depth camera. First, the outlines of physical objects are ex-
tracted by applying a deep learning-based instance segmentation method to the RGB image acquired
from the AR camera. Simultaneously, a depth prediction method is applied to the AR image to
estimate the depth map as a 3D point cloud for the detected object. Based on the segmented 3D
point cloud data, 3D spatial relationships among the physical objects are calculated, which can assist
in solving the visual mismatch and occlusion problems properly. In addition, it can deal with a
dynamically operating or a moving facility, such as a robot—the conventional AR cannot do so.
For these reasons, the proposed approach can be utilized as a hybrid or complementing function
to existing AR methods, since it can be activated whenever the industrial worker requires handing
of visual mismatches or occlusions. Quantitative and qualitative analyses verify the advantage of
the proposed approach compared with existing AR methods. Some case studies also prove that the
proposed method can be applied not only to manufacturing but also to other fields. These studies
confirm the scalability, effectiveness, and originality of this proposed approach.

Keywords: augmented reality (AR); deep learning; facility segmentation; industrial AR; manufactur-
ing information visualization

1. Introduction

Recently, many studies have been attempted to increase productivity by building
smart factories through the convergence of the Internet of Things (IoT) and information
and communication technology (ICT) in traditional manufacturing systems [1,2]. As the
IoT technology is used to connect machines, sensors, and facilities seamlessly, smartization
can be realized, and the role of the worker has been changed from an operator to a smart
manager [3,4]. Therefore, it is essential to provide the right manufacturing information to
the smart manager concerning his or her role for practical task assistance.

Augmented reality is considered to provide user-centric information more easily in
various environments by embedding visual information onto the real objects directly. In
particular, the AR-based visualization of manufacturing information, called industrial AR,
can provide more effective task assistance, which can reduce a worker’s cognitive load and
increase work efficiency [5–7].

Typical industrial AR superimposes necessary manufacturing data around real equip-
ment using AR markers for indirect object detection and visual registration. However, it is
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difficult to attach AR markers on the physical objects such as machines and facilities whose
shapes are complicated. It is much more difficult to attach them if the configuration of the
facility or equipment is dynamically moving during the operation. Note that it is challeng-
ing to acquire a 3D spatial relationship between physical objects from an RGB image using
only one AR marker. Thus, it is necessary to attach multiple AR markers to them to solve
this problem. However, it is sometimes infeasible to attach multiple markers. In addition,
some of the markers cannot be adequately detected due to spatial occlusion when the
viewpoint is changed. Therefore, visual mismatch and incorrect occlusion problems still
occur in industrial AR environments, as shown in Figure 1. These visual problems increase
cognitive load and prevent the worker from understanding the required task quickly and
accurately at the right time.
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Figure 1. Visualization problems in conventional industrial AR systems: (a) visual mismatch occurs when the physical
configuration of the robot is changed; (b) undesired occlusion occurs when the depth perception of physical and virtual
objects cannot be properly estimated (the virtual object is located behind the real robot.).

For example, although the manufacturing information can be visualized correctly
from a particular viewpoint of the worker, as shown in Figure 1a, the visual mismatch
occurs when the viewpoint is changed. Besides, when the physical configuration of
a facility such as a robot is changed, incorrect information is displayed to the worker.
Furthermore, as shown in Figure 1b, the equipment located near the worker is occluded by
the AR view related to the far-off object irrespective of the distance between the worker
and the actual equipment. Both examples indicate the inherent limitation of currently
available AR systems.

For this reason, several previous studies have been conducted to support effective and
user-friendly visualization by solving these problems in industrial AR [8–11]. However,
most of them could not conduct object detection and find 3D spatial relations among
different physical objects effectively in industrial AR. In particular, they could not correctly
recognize the configuration of a dynamically moving object even if the AR marker was
attached or area learning-based AR was used [10]. One way to figure out the 3D spatial
relations among facilities is to use a depth camera to scan them and acquire a 3D point
cloud. However, most of the smart devices, such as smartphones and tablets, do not
have depth cameras. While a depth camera is attached, AR markers are still required to
recognize real objects [12].

In this study, we propose a hybrid approach to industrial AR, which can complement
existing AR methods and provide manufacturing information more effectively through the
deep learning-based instance segmentation and depth prediction of physical objects in the
AR scene. Deep learning-based instance segmentation is performed to recognize physical
facilities and to outline their regions in the AR view (e.g., 2D RGB image), and the depth
prediction using another deep learning is simultaneously conducted to predict a 3D depth
map of those facilities from the same AR view, as shown in Figure 2. Then, by combining
the segmented regions of the real facilities and the 3D depth map, the 3D point clouds of
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the facilities and their 3D spatial relations are also segmented and constructed. Thus, the
proposed industrial AR approach can not only solve the visual mismatch problem between
manufacturing information and actual facilities, but also can handle occlusion properly,
which is used to provide more user-friendly manufacturing visualization to improve the
worker’s understanding of the environment. In addition to stationary objects, dynamically
moving objects such as robots can also be handled to provide occlusion-free manufacturing
visualization through facility segmentation and depth prediction.
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The contributions of this study are as follows.

(1) A new industrial AR method is proposed to provide manufacturing information
more intuitively and accurately by solving visual mismatch and occlusion problems
through the deep learning-based instance segmentation and depth prediction.

(2) It is possible to handle dynamically moving facilities and visualize the manufacturing
information more effectively.

(3) The proposed approach can complement existing AR methods. Thus, it can be
utilized as a hybrid or complementing function to existing AR methods, since it can
be activated whenever the industrial worker requires handing of visual mismatches
or occlusions.

(4) The applicability and extensibility of this study can be confirmed through experiments
and various viable implementations.

The paper is organized as follows. Section 2 describes related research. Section 3
presents the proposed industrial AR method. Section 4 describes several implementation
results of the proposed approach. Quantitative and qualitative analyses are conducted
and evaluated in Section 5. Section 6 discusses the proposed approach. Finally, Section 7
concludes the paper and presents future studies.

2. Related Work
2.1. Manufacturing Information Visualization and Task Assistance in Industrial AR

Previous studies have shown that AR-based task assistance methods can reduce the
worker’s mistakes more than text or video-based methods. Additionally, it is well-known
that the provision of manufacturing information using AR is more effective in supporting
the task of the worker [13–15].

Several previous AR studies have been conducted to provide useful and effective
visualizations of manufacturing information, such as the real-time status of the facility
or guided instructions with single or multiple AR markers [16–19]. Maris et al. [19]
implemented an AR-based system to support collaborative assembly between the worker
and the robot. Through this implementation, different manufacturing information was
provided through functions such as assistance for the assembly process and the working
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space and trajectory visualization of the robot. Gattullo et al. [20] proposed a method
of transforming a manual created with existing visualization methods (text, PDF file,
etc.) into the AR-based visualization. Michalos et al. [21] also developed an AR-based
system that supported collaborative work in environments where workers and robots
were located together. The system allowed the visualization of the assembly process,
video and text-based manuals, and status information. Tzimas et al. [22] proposed an AR
method to support workers to set attribute values for various machines and parts in a
manufacturing system.

To visualize manufacturing information in AR environments, methods using marker-
less tracking systems without AR markers were also studied. Lima et al. [23] proposed a
tracking system using image feature points captured by smart devices rather than feature
points of the markers to support AR-based applications for the maintenance and repair of
automobiles. The proposed approach encompasses scene modeling, system calibration, and
tracking steps for markerless tracking using an RGB-D sensor. Wang et al. [24] proposed an
AR-based assembly assistance method using a coarse-to-fine markerless tracking system.
The proposed approach was divided into two stages: the offline preparation stage and the
online execution stage.

2.2. Dynamic Visualization by Handling Occlusion between Real Objects and Virtual Objects
in AR

In typical AR, a real object and its corresponding virtual model are simultaneously
visualized on the screen of a smart or wearable device. Due to the inherent rendering
characteristic of AR, real objects on the AR view are obscured by virtual objects. In
particular, the incorrect occlusion lowers the worker’s immersive feeling and also hinders
task assistance in various industrial AR environments. Therefore, several methods have
been proposed for handling occlusions between real and virtual objects in AR properly.
Those can be divided into three approaches, a contour-based approach, a depth-based
approach, and a 3D reconstruction-based approach.

The contour-based approach traces the silhouette or edge of the object to handle the
occlusion [8]. The contour of a real object is extracted by user interaction or extracted
automatically by analyzing the attribute of the object. The contour-based approach cannot
effectively deal with 3D spatial relations. The depth-based approach uses an RGB-D
camera to acquire depth information of the real object and environment. By comparing
the depth value of each pixel corresponding to a real object and the depth value of a pixel
corresponding to a virtual object in an image, it is possible to determine the 3D spatial
relation between them. Based on the spatial relation, it is possible to handle occlusion
problems [9,10,25]. However, the quality of the depth information depends on the material
of the object. In addition, most of the currently available AR devices do not support
RGB-D cameras, which limits the applicability of the industrial AR in real manufacturing
environments. The 3D reconstruction-based approach creates a 3D model of a real object in
advance. After that, the 3D model of the real object is compared with the depth value of the
virtual object to handle occlusion [11,26,27]. This approach can construct a 3D environment
using an RGB-D camera or geographic information system (GIS) database.

In particular, most of the previous studies were mainly applicable to a static environ-
ment wherein the real object could not move. In addition, most mobile devices do not have
RGB-D sensors. Therefore, this study proposes a new industrial AR method using a single
RGB image to handle visual mismatches and occlusions using deep learning in dynamic
environments [28].

2.3. Industrial IoT and AR Applications

IoT integrates the key technologies of industrial communication, computing, and
control, and is providing a new way for a wide range of manufacturing resources to
optimize management and dynamic scheduling [29]. Recently, IoT and cloud computing
have been widely applied in various industrial fields, as they can provide new methods
for intelligent perception and connection from M2M (including man-to-man, man-to-
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machine, and machine-to-machine), and on-demand use and efficient sharing of resources,
respectively [30]. Thus, IoT is considered as one of the most important key technologies in
intelligent manufacturing in the context of Industry 4.0 [31].

AR also plays an important role in IoT applications, such as smart homes, farming,
and robot task planning. Seo et al. proposed a hybrid reality-based user experience and
evaluation of a context-aware smart home [32]. The user experience is provided by the inte-
gration of egocentric virtual reality and exocentric augmented reality. Huo et al. presented
Scenariot, a method that enables instant discovery and localization of the surrounding
smart things while also spatially registering them with a mobile AR system [33]. An
AR-IoT system was proposed to superimpose IoT data directly on real-world objects and to
enhance object interaction for crop monitoring [34]. Cao et al. presented V.Ra, a visual and
spatial programming system for robot-IoT task authoring [35]. Jo et al. proposed a scalable
AR framework enabled by simple extension to the IoT infrastructure for interacting with
IoT appliances everywhere [36]. Although most previous studies have shown promising
directions of utilizing AR in IoT environments, they have not dealt with handling incorrect
occlusion and visual mismatch for providing more intuitive and easy-understandable AR
information for industrial workers. The primary objective of this research is to solve these
problems in industrial AR.

3. Industrial AR Using Deep Learning-Based Facility Segmentation and
Depth Prediction
3.1. Overview of the Proposed Approach

This study proposes a new hybrid approach to industrial AR that can provide user-
friendly manufacturing information to the worker more effectively and naturally by com-
bining deep learning and augmented reality, which can complement existing AR methods.
Instance segmentation is applied to the image of the AR view to detect actual equipment
and tools and to segment their outlines from the AR image. Besides, depth information
is predicted at the same time, using another deep learning approach. Then, the relative
3D spatial relationship between objects is calculated using the segmented object instances
and predicted depth information. Finally, the manufacturing information is augmented on
physical objects so that the worker can easily understand their tasks through AR scenes.
Figure 3 shows a schematic diagram of the proposed industrial AR, which consists of (1)
deep learning-based facility recognition and region extraction and (2) AR-based manufac-
turing information visualization modules.

The deep learning-based facility recognition and region extraction module applies the
mask region-based convolutional neural network (Mask R-CNN [37]) to the RGB image
captured by the AR camera, which detects actual facilities or tools and then segments the
surrounding regions of the detected objects from the RGB image. At the same time, depth
prediction is conducted to estimate the 3D depth map of the same AR image [38,39]. Then,
the results of instance segmentation and depth prediction are combined to obtain a 3D
point cloud of the detected facilities and spatial relationship among them.

The AR-based manufacturing information visualization module superimposes the
required information onto the detected objects for task assistance. Firstly, it creates triangle
meshes using the segmented and predicted 3D point cloud data. Then, a 3D spatial relation
among real facilities is calculated from the constructed 3D meshes as the 3D meshes can
be sorted in the ascending order in the depth map. Finally, a meshing rendering using a
depth mask shader is applied to the 3D meshes for occlusion rendering, which makes the
region of the object in the AR view depth-aware transparent. For example, the far object
instance can be occluded by the near object instance, although there is no such information
in the AR scene.
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The deep learning methods used in this study are difficult to be executed in mobile
or wearable devices directly because of their hardware and software restrictions. For this
reason, a client-server module was developed to solve this problem. The module consists
of the AR client and the remote deep learning server, as shown in Figure 4. Smart devices or
wearable devices play the role of the AR client. Firstly, the RGB-based AR image captured
from the smart device is transmitted to the remote deep learning server through a network
connection. The remote deep learning server is used to achieve instance segmentation and
depth prediction of the physical facility in the AR image. Results are combined to generate
the segmented 3D point cloud data of the physical object. Then, they are transmitted to
the AR client. The AR client generates 3D meshes based on the segmented 3D point cloud.
It also conducts the occlusion rendering to handle incorrect occlusions and solve visual
mismatches. Finally, the AR client overlays manufacturing information on the AR display.
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Although this study can solve the problems of existing AR, such as visual mismatches
and incorrect occlusions, with deep learning it is difficult to guarantee real-time perfor-
mance regarding providing manufacturing information to users. Therefore, the proposed
approach can be utilized as a hybrid or complementing function to existing AR meth-
ods since it can be activated whenever the industrial worker requires handing of visual
mismatches or occlusions. In other words, the proposed method and the existing AR
method can be used at the same time, so that they can be switched with each other as
needed, thereby complementing each other. Since the technology of deep learning and the
performances of mobile devices are rapidly developing, it is expected that deep learning
will be executed in real time on smart devices rather than via server–client connections
sooner or later.

Note that the proposed approach can not only detect physical object instances but
also segment the outlines of the objects whose configurations are dynamically moving
and changing. Most of the previous AR works have not considered this issue. In addition,
manufacturing information is augmented in the right position by overcoming visual
mismatches and incorrect occlusions. For example, visual information of a certain facility
that is far from the worker can be obscured by nearby facilities. Besides, manufacturing
information of a nearby facility can be displayed in a larger and detailed form, and that
of a remote facility can be displayed in a simplified and small form, which can provide a
more intuitive and user-centric visual form.

3.2. Detection, Segmentation, and Depth Prediction of Real Facilities

It is crucial to acquire 3D spatial information and the class and position of each equip-
ment to provide manufacturing information appropriate for task assistance in mobile AR.

3.2.1. Object Detection and Facility Instance Segmentation

Object instance segmentation identifies object outlines at the pixel level by detecting
objects and segmenting their regions in the RGB image, as shown in Figure 5. Then, the
object can be rendered in the pixel level according to the outline of the recognized object
shape. For example, it can segment Universal Robot-3TM (UR3) and its gripper from the
AR view. Unlike object detection, which displays a detected object as a bounding box,
instance segmentation accurately can render the region corresponding to the outline of
the detected object. In particular, it recognizes the region as another object, even if it is
classified into the same class. In this study, instance segmentation was conducted using
the Mask R-CNN [37] to outline the regions for real facilities from the AR image acquired
through smart devices, as shown in Figure 5.
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Mask R-CNN extends Faster R-CNN [40] by adding a branch for predicting seg-
mentation masks on each region of interest (RoI), in parallel with the existing branch for
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classification and bounding box regression [37]. The mask branch is a fully convolutional
network (FCN) applied to each RoI, predicting a segmentation mask in a pixel-to-pixel
manner. Mask R-CNN has two stages for instance segmentation. The first stage scans
the image and generates region proposals. The second stage classifies the proposals and
generates bounding boxes and masks. In the first stage, the region proposal network
(RPN), like Faster R-CNN, is used to predict the bounding box for the object. However,
in Mask R-CNN, RoIAlign was used instead of RoIPool for accurate segmentation and
fixing misalignment.

Mask R-CNN defines a multi-task loss on each sampled RoI as follows (Equation (1)).

L = Lcls + Lbox + Lmask (1)

The classification loss Lcls and the bounding-box loss Lbox (Equation (2)) are identical
as those defined in Faster R-CNN [40] as follows.

Lcls + Lbox = L(p, u, tu, v)
= Lcls(p, u) + λ[u ≥ 1]Lloc(tu, v)

(2)

where p and t represent the size and position of the predicted classes and bounding box,
and u and v represent the size and position of the real class and bounding box.

Finally, the mask loss Lmask is defined as the average binary cross-entropy.

3.2.2. Depth Prediction

By conducting the instance segmentation mentioned above, it is possible to calculate
2D spatial relations, such as relative positions between real objects. However, since the
depth information is unknown, a 3D spatial relation cannot be derived, which can cause
visual mismatch and occlusion problems. To calculate the 3D spatial relationships between
objects from the AR view, depth information must be predictable. Note that mobile AR
also utilizes a single image so that it cannot percept depth information from the single
image without AR markers. In this study, depth information was predicted through an
hourglass network by training MageDepth Dataset [38,39]. Depth prediction aims to
recover depth information from a single RGB image taken from a camera. As shown
in Figure 6, the hourglass network consists of a series of convolutions using a variant
of the inception model and down-sampling, followed by a series of convolutions and
up-sampling, interleaved with skip connections that add back features. The symmetric
shape of the network resembles an hourglass. Through this process, the depth information
of the RGB image can be acquired, and the resolution of the depth information is the same
as that of the RGB image.
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The scale-invariant loss function L (Equation (3)) combines three terms as follows [38].

L = Ldata + αLgrad + βLord (3)

The scale-invariant data loss Ldata (Equation (4)) calculates the mean square error of
the difference between all pairs of log-depths. Let L be a predicted log-depth map and
L∗ a ground truth long-depth map. Li and L∗i denote corresponding individual log-depth
values indexed by pixel position i.

Ldata =
1
n ∑ n

i=1(Ri)
2 − 1

n2

(
∑ n

i=1R i
)2 (4)

where Ri = Li − L∗i and n is the number of valid depths in the ground truth depth map.
The scale-invariable gradient matching loss Lgrad (Equation (5)) makes gradient

changes smoother and depth discontinuities sharper in the predicted depth map. It is
defined as an L1 penalty on differences in log-depth gradients between the predicted and
ground truth depth map as follows.

Lgrad =
1
n ∑

k
∑

i

(∣∣∣∇xRk
i

∣∣∣+ ∣∣∣∇yRk
i

∣∣∣) (5)

where Rk
i is the value of the log-depth difference map at position i and scale k.

The ordinal depth loss Lord (Equation (6)) encourages the predicted depth map to
agree with the ground-truth ordinal relations as follows.

Lord =

{
log
(
1 + exp

(
Pij
))

i f Pij ≤ τ

log
(
1 + exp

(√
Pij
))

+ c i f Pij > τ
(6)

where Pij = −r∗ij
(

Li − Lj
)

and r∗ij is the automatically labeled ordinal depth relation be-
tween i and j (r∗ij = 1 if pixel i is further than j and −1 otherwise).

As a result, the segmented 3D point cloud data of the detected facilities can be acquired
by combining the predicted depth information with the outcome of instance segmentation.
Since the dimension of the predicted information is the same as that of the RGB image, the
segmentation of 3D point clouds corresponding to the detected facilities from the predicted
depth map is straightforward.

3.3. Industrial AR-Based Manufacturing Information Visualization

When information on the segmented 3D point cloud data is transmitted to the mobile
device of the worker together with the classification information of the detected facilities,
all the information is combined to handle visual mismatches and incorrect occlusions in
manufacturing information visualization. Since segmented point cloud data do not contain
surface information for rendering and occlusion handling, a triangular mesh is constructed
from the segmented point cloud of each object instance. If there are multiple detected object
instances, several triangular meshes are generated. Each triangular mesh can represent a
detected object in the 3D AR space. A Delaunay triangulation was applied to construct
a triangular mesh of the segmented 3D point cloud of each object instance [41,42], as
shown in Figure 7. A meshing rendering using a depth mask shader is applied to the
triangular mesh for occlusion rendering, which makes the region of the object in the AR
view depth-aware transparent.
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As 3D spatial relation can be derived from the 3D meshes of segmented instances, the
location and orientation of a visual information panel or object can be easily synchronized
with the detected real facility. Figure 8 shows the segmented objects and their spatial
relations according to the different viewpoints of the worker. The segmented object with
the red color is located near the worker, and that with the green color is located far from
the worker.
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Figures 9 and 10 show how the proposed AR can handle the occlusion properly and
can provide depth-aware and intuitive visualization to the worker. The manufacturing in-
formation corresponding to the actual facility can be visualized dynamically and adaptively
around the facility according to its location and spatial relation. As shown in Figure 9, the
virtual object (robot) on the rear side is occluded adequately by the UR3 robot closer to the
worker.
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In particular, even if the actual equipment is dynamically operating or moving by
changing its configuration, the manufacturing information can be positioned around the
equipment properly by updating its location, as the proposed approach can detect and
segment facilities and predict their 3D depths and spatial information. On the other hand,
when the existing AR marker is used, there is no problem in visualizing fixed and stationary
equipment, but visual mismatching occurs when the position and configuration of the
equipment are changed. Figure 10 shows how to effectively perform the manufacturing
information visualization for the gripper attached to the UR3 robot using the proposed AR
method. As the UR3 robot moves to grip a product or a component, the configuration of
the robot changes the position and orientation of the gripper. Nevertheless, the proposed
approach can recognize the movement of the gripper and consistently augments the
relevant information, which can solve the common visual mismatch in the AR environment.
These examples prove the effectiveness and advantage of the proposed approach.

4. System Implementation and Comparative Evaluation

We implemented the proposed industrial AR, which can segment actual facilities
and predict their 3D depths from the AR view for task assistance. Instance segmentation
and depth prediction can run on either TensorFlow [43] or Pytorch [44] in Windows 10.
Two GPUs with GTX 1080 Ti architecture were used for training and testing. One GPU
is assigned to instance segmentation, and the other to depth prediction. The industrial
AR application was developed using Unity3D [45]. For the evaluation of the industrial
AR, an additional seven classes based on pre-trained weights of the COCO dataset [46]
were trained and tested, including UR3 robot, gripper, press machine, etc. Each class was
trained with 250 segmented images. The learning rate was 0.001, and the epoch was 100.
For training depth prediction, 130,000 images were used [38,39]. The learning rate was
0.0002, and the epoch was set to 30. To verify the feasibility and viability of the proposed
approach, it was implemented in two environments, a controlled laboratory environment
and a testbed for a smart factory.

We compared the proposed industrial AR with conventional AR marker-based meth-
ods (e.g., planar and cylindrical markers) using a popular Android-based smartphone
(Samsung Galaxy S9TM) and another AR method using a smartphone with an RGB-D
camera (Google TangoTM). In the case of AR marker-based methods, the 3D model is
overlaid on the AR marker when the AR method recognizes the marker. In the case of the
method using the RGB-D camera, the outline of the facility is segmented using the Mask
R-CNN used in the proposed approach, but only the point cloud data corresponding to
the segmentation are extracted from among those obtained by the RGB-D camera. Two
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experiments were conducted to evaluate three methods. First, we examined the effective-
ness of the recognition of real equipment according to the variable distance. Different color
gradation is used to represent the distance from the AR system. For example, the color
becomes darker when the detected object is far from the user. Second, we evaluated the
recognition of dynamically moving equipment. Note that one of the main advantages of
the proposed industrial AR visualization is that it does not require a depth sensor.

4.1. Recognizable Distances of Real Objects

We evaluated whether each method can detect and superimpose a virtual model
onto corresponding real equipment consistently and effectively depending on the distance
between the AR camera and the equipment. For this purpose, each AR system was located
at a distance of 1, 3, or 5 m from the UR3 robot and another robot prototype created using a
3D printer, as shown in Figure 11.

1 
 

 

Figure 11. Comparative evaluation of the proposed approach.

First, the cylindrical AR marker-based method showed the worst performance. On
the other hand, the proposed method showed the best performance without AR markers
and an RGB-D sensor. When a cylindrical AR marker was attached to the physical object,
the marker was recognized at a distance of 1 m, but the marker was not identified at
distances of 3 and 5 m (Figure 11b). The size of the cylinder-shaped AR marker was
8.5 cm in diameter and 7 cm in height due to the geometric shape of the prototype. The
rectangular AR marker was recognized at distances of 1 m and 3 m, but the AR marker was
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not recognized at a distance of 5 m. Note that the marker was attached to the perpendicular
direction to the AR camera for easy recognition.

However, this attachment was not normal. When the marker was attached to the
floor, its recognition rate became worse. As shown in Figure 11c, when the real object was
detected using the same instance segmentation using the RGB-D camera, depth information
of the actual equipment was only acquired at distances of 1 m and 3 m. In the case of
the RGB-D camera [10], the range of obtaining the depth information is about 50 cm to
4.5 m. Furthermore, the accuracy of the depth perception depends on the material type and
distance too much. Unlike the conventional AR marker-based and RGB-D sensor-based
approaches, the method proposed in this study recognized real facilities more consistently
and accurately at all distances, as shown in Figure 11d. In addition, it can also construct
the 3D spatial relations among the detected facilities. Figure 12 shows that the proposed
approach can effectively find the spatial relations, although the interesting objects are
separated a lot concerning the spatial relation in Figure 11.
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Table 1 shows quantitative results for measuring the recognition rate and processing
time of the experiment in Figure 11. For 5 m, the marker-based method cannot recognize
the objects at all, although it can run in real-time. In particular, the method cannot detect
the cylindrical marker, even at 3 m. Furthermore, the existing marker-based methods
cannot deal with occlusion and visual mismatch properly. The RGB-D camera cannot
also recognize objects at a distance of 5 m. Only the proposed approach can recognize
objects correctly. Note that most mobile devices such as smartphones and tablets on the
market today do not have RGB-D cameras so that the proposed approach could be more
practical. Due to the processing of deep learning and mesh generation, it takes about
one second for AR visualization. Nevertheless, the proposed approach can deal with
incorrect occlusion and visual mismatch that prohibit the worker from understanding
the manufacturing situation correctly and effectively. Concerning the advantages of each
approach, the proposed method and the existing AR method can be used at the same time
so that they can be switched to each other as needed, thereby complementing each other.
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Table 1. Quantitative results for measuring recognition rate and processing time (the number of tests: twenty).

Methods Distance
Recognition Rate (20 Times)
[Successful Trial/Total Trial

(Recognition Rate)]
Average Process Time(s)

Planar and cylindrical markers
3 m Planar marker: 20/20(100%) Real-time

Cylindrical markers: 0/20(0%) -

5 m 0/20(0%) -

RGB-D camera
3 m 20/20(100%) 0.801

5 m 0/20(0%) -

Our Method 3 m 20/20(100%) 1.191

5 m 18/20(90%) 0.994

4.2. Handling Dynamically Moving Objects

We have also evaluated the capability for handling dynamically moving objects. As
shown in Figure 13, two AR markers were used in the marker-based method. The first
marker was attached to the body of the UR3 robot, and the other was attached to the
gripper to detect them separately during the movement. On the other hand, the proposed
approach does not need any AR makers.
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Note that one of the advantages of using the AR marker is to detect actual facility fast
and accurately. However, when the configuration of the facility is changed, or the facility
is moving, it is almost impossible to detect parts or components attached to the facility
without receiving additional information through other sensors. Furthermore, it is still
difficult to detect and segment the facility itself, and their components as AR markers might
be occluded when the facility and their parts are moving, as shown in Figure 13. Such
problems make it difficult to attach AR markers on the dynamically moving equipment,
which may prevent the industrial worker from performing the task properly. On the
other hand, the proposed approach can detect and segment the dynamically moving
equipment with only single AR images. Besides, the equipment can be recognized at
various perspectives even if the worker’s position changes. These assessments prove the
novelty and advantage of the proposed approach.
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5. Industrial Applications

To verify the advantages and applicability of the proposed industrial AR, several
proof-of-concept applications were implemented.

5.1. Manufacturing Information Visualization

The manufacturing information visualization using the proposed industrial AR was
implemented using robots in a controlled laboratory environment. In particular, the UR3
robot can move to pick up a part and place it to a specified location. During the robotic
operation, the kinematic configuration of the robot is changed. However, the conventional
AR cannot overcome the inherent occlusion problem shown in Figure 14a with the AR
marker, as it cannot determine the spatial relations between physical objects. Furthermore,
it cannot seamlessly provide consistent visualization when the kinematic configuration
is changed, even with multiple AR markers. The main reason is that the existing AR
technology superimposes virtual information on the AR image. On the other hand, as
shown in Figure 14b, the proposed approach can handle occlusion properly so that it can
provide consistent views to the worker.
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The proposed AR method can also be applied to a hybrid AR environment that fuses
virtual and real objects. For example, it can be effectively applied to a process layout
design where a new facility will be added to examine possible layouts or simulations with
existing facilities. As can be seen in Figure 15, if a new robot or facility is expected to be
installed in the current layout, connected to the current UR3, a virtual robot or facility can
be augmented next to the UR3. However, in the existing AR technology, there is no visual
problem in the case where the virtual robot is separated from UR3 (Figure 15a), but when
the viewpoint of the worker is changed while inspecting the new layout, the virtual facility
is augmented in front of UR3, which causes an occlusion problem, as shown in Figure 15b.
As the previous AR cannot estimate the depth perception with AR images, visual mismatch
and occlusion issues may occur between the virtual model and the actual facility, which
may make it difficult to conduct a proper preliminary review. On the other hand, as shown
in Figure 15c, the proposed AR method can solve those problems by applying instance
segmentation and depth prediction, even if virtual and real objects coexist.
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The second application was applied to the testbed of a smart factory (Figure 16). The
testbed used to this study was built in a Gumi city of Korea and produced various brush-
less direct current (BLDC) motors in a flexible assembly line [28]. This implementation
was applied to the visualization of the manufacturing information in the module for sub-
assembling bearings of BLDC motors. With the help of the proposed industrial AR method
using the smart device, the worker can easily recognize assembling machines and tools
such as press machine and gripper, as shown in Figure 16. As the outlines of the machine
and tool can be segmented, and their 3D spatial relationship can be estimated through
depth prediction, real-time monitoring data and related information can be retrieved from
manufacturing database, and they can be seamlessly augmented onto physical facilities
without occlusion problem and visual mismatch. For example, manufacturing information
retrieved from DB, such as production schedule, production quantity by item, and related
charts, is superimposed adaptively around the machine and gripper. Additionally, as
shown in Figure 16, although the machine configuration is changed during the assembly,
the proposed approach supports consistent visualization, and thus, corresponding manu-
facturing information can be visualized dynamically in the correct position. Therefore, the
worker can receive more accurate information.

5.2. Different Applications Using the Pre-Trained Network

In addition to applying the proposed industrial AR to manufacturing information
visualization, we have found that it can be applied to the visualization of smart appliances
or devices in a smart home. In this application, a pre-trained network was utilized. As
shown in Figure 17a, information on home appliances connected to Internet of Things
(IoT) at home can also be visualized in the augmented reality environment. Figure 17c
shows a typical result of applying existing AR technology. Information on the oven can be
augmented, but the table is occluded by the AR visualization. However, Figure 17b shows
the visualization of the segmentation and depth information of the appliances obtained
through the proposed method. Furthermore, Figure 17d shows the proposed visualization
of an appliance information through handling occlusion properly using segmented 3D
point cloud and predicted depth information. Unlike the existing AR technology, we can
see the information of the appliance occluded by the table.
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The second application is to visualize augmented virtual objects between real objects
in RGB images. As shown in Figure 18, the proposed method can support seamless
visualization of a virtual car between real cars using instance segmentation and depth
prediction in the street. The virtual car is partially occluded by a real car or bus closer to
the camera view, and the car far away from the camera view is also properly occluded by a
virtual car.
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Figure 18. Application of the proposed approach to street visualization.

6. Discussion

Existing AR methods have difficulties in handling incorrect occlusions and visual
mismatches and in estimating depth from AR images, which prevents the industrial
worker from conducting manufacturing tasks effectively. To solve these inherent problems
in existing AR methods, this study proposed a new hybrid approach to industrial AR for
complementing existing AR methods using deep learning-based facility segmentation and
depth prediction without AR markers and a depth camera.

Several case studies and experimental analysis in Section 5 verified the advantage
of the proposed approach compared with existing AR methods. In particular, handling
incorrect occlusions and visual mismatches can make the worker understand the manufac-
turing situation more effectively and intuitively. Note that the proposed approach does not
require the RGB-D camera.

Nevertheless, there is some room for improvement and investigation. The depth pre-
diction does not always construct 3D depth maps accurately depending on the background
color and its complexity, as shown in Figure 19 (right). Nevertheless, by combining instance
segmentation and depth prediction, it might be possible to estimate 3D spatial relations
between detected objects correctly, since instance segmentation and depth prediction can
complement each other. However, it is necessary to improve the capability of the depth
prediction by training a variety of data and improving the deep learning network. In
addition, since the mobile device has hardware and software limitations, the deep learning
methods run remotely. Although it is expected that deep learning can run on a mobile
device, it is still necessary to devise a more efficient deep learning architecture such as
an end-to-end deep learning model that supports both instance segmentation and depth
prediction to improve the speed and accuracy.
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Nevertheless, the proposed approach and an existing AR method complement each
other. That is, for ordinary situations, the existing AR method is used, since it can support
real-time marker tracking. However, as the existing AR cannot handle incorrect occlusions
and visual mismatches, the worker can switch to the proposed approach to understand the
situation more effectively and intuitively.

7. Conclusions

This paper proposed a new industrial AR method that can handle visual mismatches
and incorrect occlusions of previous AR methods in representing manufacturing informa-
tion by applying deep learning-based facility segmentation and depth prediction. From a
single AR image, object instances are detected and segmented. At the same time, depth
prediction is applied to the same AR image. Then, a segmented 3D point cloud for each
detected object can be easily generated. Besides, a 3D triangular mesh is constructed from
the segmented 3D point cloud, which makes it possible to find 3D spatial relations among
the detected objects and render them in the 3D AR space rather than the image-based AR
space. The constructed 3D mesh and spatial relation are used to solve visual mismatch
and occlusion problems. Furthermore, the proposed approach can provide consistent AR
visualization regardless of the movement of the physical object. Therefore, manufacturing
information can be provided to the worker more intuitively and situation-dependently
based on the estimated 3D spatial relation and depth perception. Note that the proposed
approach can be utilized as a hybrid or complementing function to existing AR methods,
since it can be activated whenever the industrial worker requires handing of visual mis-
matches or occlusions. For another possible storyboard, a facility manager can utilize the
proposed approach, since the manager has difficulty in monitoring and maintaining the
facility by looking at its outside or surface. In such a case, it would be more helpful to
combine various IoT sensor data with the proposed AR system.

In future research, we will improve the deep learning network architecture because
it is affected by the performance of the deep learning network. In addition, the proposed
approach will be applied to various industrial environments. Furthermore, we will also
design more storyboards of actual and realistic industrial situations.
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