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During the last two decades, several approaches for the
activation of the immune system against cancer have been
developed. These include rather unselective maneuvers such
as the systemic administration of immunostimulatory agents
(e.g., interleukin-2) as well as targeted interventions, encom-
passing highly specific monoclonal antibodies, vaccines and
cell-based therapies. Among the latter, adoptive cell transfer
(ACT) involves the selection of autologous lymphocytes with
antitumor activity, their expansion/activation ex vivo, and
their reinfusion into the patient, often in the context of lym-
phodepleting regimens (to minimize endogenous immuno-
suppression). Such autologous cells can be isolated from
tumor-infiltrating lymphocytes or generated by manipulating
circulating lymphocytes for the expression of tumor-specific
T-cell receptors. In addition, autologous lymphocytes can be
genetically engineered to prolong their in vivo persistence, to
boost antitumor responses and/or to minimize side effects.
ACT has recently been shown to be associated with a con-
sistent rate of durable regressions in melanoma and renal cell
carcinoma patients and holds great promises in several other
oncological settings. In this Trial Watch, we will briefly review
the scientific rationale behind ACT and discuss the progress of
recent clinical trials evaluating the safety and effectiveness of
adoptive cell transfer as an anticancer therapy.

Introduction

For a long time, the immune system has been believed to
participate in oncogenesis, tumor progression and response to

therapy as a mere bystander, a notion that has now been
invalidated. On one hand, components of the immune system,
such a B lymphocytes and macrophages, have been shown to
facilitate inflammation-driven carcinogenesis,1-3 while others, such
as CD8+ T and natural killer (NK) cells, ensure a constant barrier
against oncogenesis (immunosurveillance) that malignant pre-
cursors must break to develop tumors.4 On the other hand, the
therapeutic efficacy of several anticancer regimens, including
conventional chemotherapeutics as well as targeted agents, appear
to rely (at least in part) on the activation of innate or cognate
immune effector mechanisms.5 Thus, the abundance of intra-
tumoral CD8+ and memory T cells has recently been shown to
dramatically affect the clinical outcome in multiple oncological
settings.6-9 Along with this conceptual shift, which occurred
during the last three decades, therapeutic interventions aimed at
activating the immune system against tumors begun to attract
an ever increasing interest, from both researchers and clinicians.
The promising field of anticancer immunotherapy had been
established.10

Nowadays, cancer immunotherapy can be subdivided into
three major branches: (1) approaches for the relatively “unselec-
tive” stimulation of the immune system against tumors, (2)
anticancer vaccines (including protein-, peptide- and cell-based
vaccines), and (3) adoptive cell transfer (ACT) protocols.11

Immunostimulatory interventions are exemplified by the systemic
administration of lymphocyte-targeting growth factors such as
interleukin-2 (IL-2), other pro-immunogenic cytokines such as
interferon a (IFNa), or compounds that block immunosuppres-
sive mechanisms, including monoclonal antibodies that are
specific for the cytotoxic T lymphocyte antigen 4 (CTLA4) or
chemotherapeutics that selectively depletes immunoregulatory
cell populations. Immunostimulatory agents given as monother-
apy have been associated with consistent rates of tumor regression
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in melanoma and renal carcinoma patients,12-15 perhaps because
these cancers are able to elicit per se elevated levels of antitumor
lymphocytes. Of note, several anticancer agents that are currently
used in the clinic also mediate immunostimulatory effects, either
by actively triggering immune effector mechanisms or by selec-
tively inhibiting/killing immunosuppressive cells such as FOXP3+

regulatory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs).5,16 These chemotherapeutics might de facto function
as combination therapies, mediating both a cytotoxic/cytostatic
effect on tumor cells and a stimulatory effect on the immune
system.

Vaccines constitute a very appealing approach to cancer
immunotherapy, presumably because they would be relatively
easy to administer, cheap (especially in the case of peptidic
vaccines) and virtually devoid of side effects.17 Nonetheless, cancer
vaccines, encompassing both peptides and dendritic cell (DC)-
based approaches, so far have failed to meet the high expecta-
tions that they had raised, being associated with modest and
often non-reproducible clinical benefits.11 Perhaps, this can be
attributed to the fact that end-stage cancer patients often exhibit
immune defects that can compromise their ability to mount a
vaccine-driven antitumor response. One notable exception is
provided by sipuleucel-T (Provenge1), a DC-based vaccine that
has been granted FDA approval for the treatment of asympto-
matic or minimally symptomatic, metastatic castration-resistant
(hormone refractory) prostate cancer.18-20 In addition, promising
results have been observed in prostate cancer patients receiv-
ing prostate-specific antigen (PSA)-targeted poxviral vaccines
(PROSTVAC-FS),21 as well as in melanoma patients treated with
a peptidic vaccine combined with high-dose IL-2.22

ACT has emerged as an effective form of immunotherapy, with
rates of complete durable responses (in specific clinical settings)
as high as 40%.23,24 As a note, ACT must be conceptually
differentiated from other cell-based immunotherapies, including
the re-infusion of autologous DCs pulsed ex vivo with tumor
antigens or tumor cell lysates (aimed at eliciting an anticancer T
cell response in vivo) and the infusion of allogeneic T and NK
cells (aimed at obtaining a curative graft-versus-disease effect).25,26

No ACT-based approach is currently approved by FDA for use
in humans. In this Trial Watch, we will briefly review the
scientific rationale behind ACT and discuss the progress of recent
clinical studies evaluating the safety and efficacy of cell immuno-
therapy in oncological settings.

Scientific Background

ACT entails the (re)introduction into a conditioned patient of
large amounts (often up to 1011) of lymphocytes exhibiting
antitumor activity. When possible, notably in the case of
melanoma and renal cell carcinoma (RCC) patients (which
spontaneously manifest high number of antitumor lymphocytes),
the starting material for ACT is constituted by a surgery specimen
or biopsy, from which tumor-infiltrating lymphocytes (TILs) are
isolated and (in some instances) selected for T-cell receptor (TCR)
specificity.27 Before reinfusion, such lymphocytes are expanded
ex vivo in the presence of IL-2 and other growth factors, and

optionally activated with immunostimulatory compounds such as
anti-CD3 antibodies, alone or combined with tumor-specific
antigens.28 This said, melanoma and RCC constitute relatively
privileged settings for immunotherapy, as suggested by the high
rate of spontaneous TILs and by fact that immunostimulatory
interventions alone are efficient against these tumors but not
others.12-15

To extend the benefits of ACT to other types of cancer that
are not associated with an intense endogenous immune res-
ponse, genetic engineering can be employed to convert circulat-
ing lymphocytes into cells that exhibit antitumor activity. Thus,
normal lymphocytes are isolated from the peripheral blood and
genetically manipulated for the expression of TCRs that recognize
tumor antigens with high affinity. The implementation of this
strategy requires the isolation of very few endogenous cells with
antitumor activity, from which rearranged TCR genes can be
cloned and incorporated into highly efficient retroviral or lenti-
viral vectors.11 Upon transduction newly generated antitumor cells
are amplified and treated similar to their tumor-derived counter-
parts. Importantly, as the TIL phenotype has been shown to affect
both their in vivo persistence and their clinical efficacy,29-32

genetic engineering can be employed to confer additional features
to lymphocytes, including (1) increased in vivo persistence, owing
to the (over)expression of anti-apoptotic proteins like BCL-233 or
telomerase, the enzyme that prevents the senescence-associated
physiological attrition of telomeres;32 (2) increased proliferative
potential, due to the (over)expression of growth factors, like IL-2,
or their receptors;34 (3) enhanced homing to tumor sites, as a
result of the expression of molecules involved in trafficking
such as CD62L and CCR7;35 (4) enhanced antitumor potential,
upon the (over)expression of co-receptors such as CD8 or co-
stimulatory molecules like CD80 or the blockade of potentially
immunosuppressive signals, such as those mediated by transform-
ing growth factor β (TGFβ).36 Finally, as an alternative to TCRs,
the so-called chimeric antigen receptors (CARs) can be employed.
These chimeric receptors bind to tumor antigens via antibody-
derived complementarity-determining regions (CDRs), yet are
coupled to the intracellular machinery for TCR signaling, de facto
mediating the functional activation of T cells even when antigens
are not displayed in the context of MHC molecules.37

In the context of genetically engineered T cells, the choice
of the tumor antigen specifically recognized by the TCR (or
CAR) is critical, as it dictates both the efficacy and the safety
of ACT.38 So far, encouraging results have been obtained with
TCRs recognizing the melanocyte-specific markers MART1,39,40

MELOE-141,42 and gp100,43,44 the carcinoembryonic antigen
(CEA),45 and cancer-testes antigens (which are expressed by a
variety of epithelial cancers)46 such as NY-ESO-1, MAGE-A1 and
MAGE-A3,47-50 as well as with CARs targeting the B-cell antigen
CD1951-53 and the vascular endothelial growth factor receptor 2
(VEGFR2) (Table 1).54

In early trials, upon ex vivo expansion and activation, auto-
logous TILs were re-administered to virtually untreated patients,
resulting in transitory tumor regression but no durable res-
ponses.55 Perhaps, this was due to the fact that inoculated cells
are subjected to a consistent degree of immunosuppression by
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endogenous Tregs and MDSCs, and normally fail to persist over
long periods in vivo. Moreover, endogenous B, T and NK cells
might compete with re-infused TILs for limited amounts of
critical cytokines, including IL-7 and IL-15, a phenomenon
known as “cytokine sink.”56,57 To circumvent these critical issues,
pre-conditioning regimens based on cyclophosphamide (an
alkylating agent that at high doses exert consistent immuno-
suppressive effects), fludarabine (a nucleoside analog commonly
used for the therapy of hematological malignancies) and total
body irradiation have been developed, resulting in different
extents of lymphodepletion.58 Importantly, the intensity of
lymphodepletion has been shown to directly correlate with
ACT antitumor efficacy,58 leading to the introduction of precon-
ditioning lymphodepletion into the clinical practice for ACT.

Re-infusion protocols have also been progressively refined to
improve the persistence of TILs in vivo and to exacerbate their
antitumor efficacy. Thus, although the co-infusion of cells with
IL-2 is now a routine approach, several other possibilities are
being explored. IL-2 has indeed been shown to correct the
intrinsic anergy or TILs,59 and to promote the expansion of
antitumor T cells in vivo.60 However, recent results indicate that
this cytokine also stimulate immunosuppressive cell populations
including Tregs,61-63 a phenomenon that may compromise its
clinical benefits. New approach include, but are not limited to: (1)
the co-infusion of cytokines other than IL-2, encompassing IL-7,
IL-12, IL-15 and IFNc, which stimulate immune effector and
memory functions;64-67 (2) the co-infusion of angiogenesis
inhibitors, which facilitate the extravasation of re-infused cells
into the tumor;68 (3) the co-infusion of Toll-like receptor (TLR)
agonists, to limit endogenous immunosuppression;69 and (4) the
co-infusion of immunostimulatory chemotherapeutics, such as
metronomic cyclophosphamide.5,70

Recently, ACT attempts based on B cells and NK cells have
been investigated. On one hand, adoptively transferred B cells

that exhibit antitumor activity in vitro reportedly mediate the
generation of T-cell responses against xenografted breast cancer
in mice.71 However, B cell-based ACT protocols have not yet
been evaluated in clinical settings, perhaps due to the fact that
B cells also mediate immunosuppressive and pro-tumorigenic
effects, at least in some models of carcinogenesis.1,3 On the other
hand, in spite of encouraging preclinical results and of the
established efficacy of allogeneic NK cells for the therapy of
acute myeloid leukemia (AML),72-74 NK cells failed to mediate
antitumor effects in metastatic melanoma and RCC patients,75

perhaps owing to their limited persistence in vivo.76 Conversely,
promising results have been obtained with the infusion of so-
called “young TILs,” i.e., unselected, minimally cultured, bulk
TILs whose production is relatively rapid and does not involve
individualized tumor-reactivity screening steps.77-79 By reducing
the costs and technical constraints that are associated with the
ex vivo amplification and activation of TILs, this new approach
may de facto increase the number of centers that will be able to
offer ACT immunotherapy to eligible cancer patients. Of note,
while the clinical efficacy of ACT is largely believed to depend on
CD8+ T cells, the infusion of CD4+ T cells alone also mediates
durable responses in melanoma patients.48 The cellular and
molecular circuitries that underlie these observations remain to be
precisely elucidated. As a possibility, infused cells (be they CD8+

of CD4+ cells) may initiate antitumor responses that result in the
expansion of the tumor-specific TCR repertoire, and hence in the
elicitation of robust immune reaction against cancer cells.48,80

Recent preclinical data demonstrate that oncogene-targeting T
cells are superior to oncogene-specific drugs in the eradication
of oncogene-addicted tumors, as the latter (but not the former)
leave the tumor vasculature intact, allowing for the generation
of resistant tumor clones.81 Perhaps, this superiority relies on
the paracrine effects of IFNc secreted by T cells, provoking the
destruction of tumor vessels and impeding the growth or resistant
cells.

Al least theoretically, the most prominent side effects of ACT
relate to: (1) the specificity of re-infused cells, which might
destroy normal tissues expressing the same antigen recognized
by genetically engineered TCRs (or CARs);82 (2) the secretion by
re-infused TILs of large amounts of cytokines/chemokines;83,84

(3) the possibility that transduced TCR chains might recombine
with endogenous ones, resulting in the acquisition of unwarranted
antigen specificity and graft-versus-host disease.85 So far, however,
only a few cases of severe/lethal adverse reactions have been
reported,45,83,84 suggesting that, in the vast majority of settings,
ACT constitutes a safe clinical procedure.

Published Clinical Trials

Since the advent of ACT, the efficacy and safety of this inter-
vention has been evaluated in multiple oncological settings, and
the results of these early (Phase I/II) clinical studies have been
published in some 30 high impact papers (Table 2).

One half of these studies were performed in small cohorts
of (often metastatic) melanoma patients,23,43,47,52,77,82,86-94 while
the other half tested ACT in clinical settings as diverse as

Table 1. Examples of tumor antigens exploitable for adoptive cell transfer

Antigen Tumor type Notes Ref.

CEA Colorectal cancer Preferentially expressed
by gastrointestinal tumors

45

CD19 CLL
Lymphoma

B cell-specific antigen 51–53

gp100 Melanoma Melanocyte-specific antigen 43, 44

MAGE-1 Multiple epithelial
malignancies

Cancer-testes antigen 46, 49

MAGE-A3 Multiple epithelial
malignancies

Cancer-testes antigen 46, 50

MART-1 Melanoma Melanocyte-specific antigen 39, 40

MELOE-1 Melanoma Melanocyte-specific antigen 41, 42

NY-ESO-1 Melanoma
Synovial cell
carcinoma

Cancer-testes antigen 47, 48

VEGFR2 Multiple types
of solid tumors

Overexpressed in tumor
vasculature

54

Abbreviations: CEA, carcinoembryonic antigen; CLL, chronic lymphocytic
leukemia; VEGFR2, vascular endothelial growth factor receptor 2.
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hematological malignancies,23,43,47,52,77,82,86-90,92-94 RCC,47,95,96

hepatocellular carcinoma,97 ovarian cancer,98 neuroblastoma,99

metastatic colorectal carcinoma,45 and head and neck squamous
cell carcinoma.100

In about one third of these studies, patients were re-infused
with autologous cells that had been non-specifically activated in
vitro, for instance by the administration of IL-2 or anti-CD3
antibodies, alone or in combination with anti-CD28 anti-
bodies.23,86,89,92,96,101-105 Alternatively, patients received lympho-
cytes that had been specifically activated against the tumor by
the ex vivo administration of dead cancer cells in the presence of
the Calmette-Guerin bacillus,95 or by the co-culture with living
tumor cells,93 with DCs pulsed with tumor antigens,87,91 with
DCs pulsed with cancer cell lysates,97 or with an artificial antigen-
presenting cell (APC) system that can educate antitumor lym-
phocytes to acquire both a central memory and an effector
memory phenotype.94 In two studies, patients received young
TILs,77,79 whereas in one trial ex vivo expanded Va24 NK
(NKT) cells were intravenously administered in tumor-feeding
arteries, in conjunction with the nasal administration of
aGalCer-pulsed APCs.100 In the remaining studies, the re-infused
material consisted in genetically modified cells, including
peripheral blood mononuclear cell (PBMC)-derived T cells
engineered to express tumor antigen-specific TCRs,43,45,47,82,92,98

CARs51,52,99,106 or IL-2.88

In most cases, patients received classical lymphodepleting
regimens based on cyclophosphamide + fludarabine, alone or in
combination with total body irradiation,23,47,52,79,82,86,89,92,101,104,106

and were given cells together with high-dose IL-2.23,25,43,45,47,51,

52,77,79,82,86,88,89,91,92,94-98,100-102,104-106 As an alternative, cells were
co-infused with a course of low-dose IL-2 over 6 d,87 or low-dose
IFNc.93

In two of these trials no antitumor effects were observed,97,98

and in two other studies ACT was associated with limited (though
assessable) therapeutic responses.96,105 Apart from these notable
exceptions, the results of the clinical trials conducted so far on
ACT are very encouraging, reporting response rates as high as
70% and a very low incidence of severe side effects (Table 2).
Although they were often performed in small patient cohorts and
the therapeutic protocols often differed from trial to trial, these
phase I/II studies demonstrate that ACT is efficient and safe
for the treatment of some types of cancer, in particular melanoma.
This paved the way for ongoing studies that evaluate alternative
ACT protocols or the applicability of ACT to other oncological
settings.

Ongoing Clinical Trials

At present, there are around 35 ongoing, early (Phase I/II) clini-
cal trials that test the safety and efficacy of ACT in oncological
indications (source www.clinicaltrials.gov). Thirteen of these
studies are performed in melanoma and RCC patients. In addi-
tion, ACT, alone or combined with established procedures,
is being evaluated as a therapy for tumors as different as
hematological malignancies (including multiple myeloma and
several types of leukemia and lymphoma), sarcomas, cancers of
the reproductive trait (including cervical, Fallopian tube, ovarian
and prostate cancer), neoplasms of the central nervous system

Table 2. Published clinical trials evaluating adoptive cell transfer in cancer patients

Site Tumor type(s) Phase Notes Ref.

Hematological
neoplasms

BCL I
IL-2-activated T cells + IL-2

2 PRs + 5 SDs out of 7 patients
103

CLL I
Anti-CD19 CAR-engineered T cells + IL-2
1 PD, 2 SDs and 3 PRs out of 9 patients

51

CLL
Follicular lymphoma

LCL
MCL
SLL

I/II
Anti-CD19 CAR-engineered T cells + IL-2

1 CR, 1 SD, 6 ORs out of 8 patients
52, 106

Multiple myeloma
Plasma cell neoplasms

I/II
CD3/CD28-costimulated T cells ± vaccine upon HSCT

No ORs but some immunological responses
105

NHL I
CD3/CD28-costimulated T cells following HSCT

5 CRs, 7 PRs, 4 SDs out of 16 patients
Transient dose-dependent infusion toxicities

102

Kidney

Renal cell carcinoma I
CD3/CD28-costimulated T cells + IL-2

Some metastatic regression
Mild toxicity

96

Renal cell carcinoma II
CD3-activated, dead tumor cells + Calmette-Guerin

bacillus-primed CD4+ cells + IL-2
9 CRs + 5 PRs out of 39 patients

95

Multiple tumors

Metastatic melanoma
Metastatic SCC

II
Anti-NY-ESO-1 TCR-engineered T cells + IL-2

ORs in 4/6 SCC patients and 5/11 melanoma patients
47

Advanced solid tumors
NHL

I
CD3-stimualted CD4+ cells + IL-2

1 CR, 2 PRs and 8 MRs out of 31 patients
101
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Table 2. Published clinical trials evaluating adoptive cell transfer in cancer patients (cont.)

Site Tumor type(s) Phase Notes Ref.

Skin

Melanoma

n.a.
MART-1-specific CTLs generated in vitro using aAPCs

1 CR, 3 PRs, 3 SDs out of 10 patients
Some IL-2- and lymphopenia-associated toxicity

94

I
CD8+-enriched young TILs ± myeloablative lymphodepletion
9/33 ORs (3 CRs) without TBI; 11/23 ORs (2 CRs) with TBI

79

Metastatic melanoma

I
TILs + IL-2 upon non-myeloblative lymphodepletion

18 ORs (3 CRs + 15 PRs) out of 35 patients
Some IL-2- and lymphopenia-associated toxicity

86

I
Anti-MART-1 TCR-engineered PBMCs

2 ORs out of 15 patients and durable engraftment
43

I

MART-1-specific cells generated upon co-culture
with MART-1-pulsed DCs + low dose IL-2

3 ORs out of 11 patients
Mild (grade 1–2) adverse effects

87

I
Autologous CTLs upon previous fludarabine or not

3 MRs or SDs out of 9 patients
Fludarabine improved in vivo persistence

104

I
TILs + IL-2 upon non-myeloblative lymphodepletion

20 CRs out of 93 patients, which exhibited 100% 3 y survival
23

I/II
IL-2-engineered TILs + IL-2

1 PR out of 12 patients and persistent IL-2 expression
88

I/II
MART-1-specific T cells + IL-2 and IFNa
6 ORs (2 LTCRs) out of 14 patients

91

I/II
PBMC-derived T cells generated upon co-culture

with melanoma cells + low dose IFNa
1 CR, 1 PR, 3 SDs out of 10 patients

93

II
Autologous TILs + IL-2 ± myeloablative lymphodepletion

Up to 72% ORs (with TBI) out of 93 patients
1 death

89

II

Anti-MART-1 and anti-gp100 human or
murine TCR-engineered PBMCs

30% (human TCR) and 19% (murine TCR) ORs
Toxicity to normal melanocytes in the ear and skin

82

II
Young TILs + IL-2

10 ORs and 4 SDs out of 20 patients
Transient and manageable toxicity

77

II

Autologous TILs or MART1-specific
PBMC-derived T cells + IL-2

9 CRs and PRs in the brain out of 26 patients
1 subarachnoid hemorrhage without consequences

92

Various

Colorectal cancer I/II
Anti-CEA murine TCR-engineered T cells

1 ORs out of 3 patients
Transient colitis in all patients

45

HCC I
iDCs, CIK cells and CTLs + tumor lysate-pulsed DCs

Early increase in the CD8+/FOXP3+ ratio
97

HNSCC II
NKT cells in combination with alphaGalCer-pulsed DCs

5 ORs out of 10 patients
100

Neuroblastoma I
Anti-GD2 CAR-engineered EBV-specific CTLs

ORs in 50% of patients
99

Ovarian cancer I
Anti-FR TCR-engineered T cells + IL-2

No anticancer responses
IL-2 related mild (grade 3–4) toxicity in 5/8 patients

98

Abbreviations: aAPC, artificial antigen-presenting cell; BCL, B cell lymphoma; CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen; CIK, cytokine-induced
killer; CLL, chronic lymphocytic leukemia; CR, complete response; CTL, cytotoxic lymphocyte; DC, dendritic cell; EBV, Epstein-Barr virus; FR, folate receptor; HCC,
hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; HSCT, hematopoietic stem cell transplantation; iDC, immature DC; LCL, large cell
lymphoma; LTCR, long-term complete response; MCL, mantle cell lymphoma; n.a., not available; NHL, non-Hodgkin lymphoma; NK, natural killer: NKT, Va24 NK; IFN,
interferon; IL, interleukin; MR, minor response; n.a., not available; OR, objective response; PBMC, peripheral blood mononuclear cell; PD, progressive disease; PR,
partial response; SCC, synovial cell carcinoma; SD, stable disease; SLL, small lymphocytic leukemia; TBI, total body irradiation; TIL, tumor infiltrating lymphocyte.
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(including malignant glioma, glioblastoma, medulloblastoma and
neuroectodermal tumors), as well as nasopharyngeal, breast, lung
and hepatocellular carcinomas (Table 3).

In many cases, the infused material consists of ex vivo expanded
and activated TILs, though the use of young TILs (NCT01118091;
NCT01319565; NCT01369888) and of cytokine-induced killer
(CIK, CD3+CD56+ non-MHC-restricted, NK-like T lympho-
cytes)107 cells (NCT00815321; NCT01232062; NCT01395056)
is also being investigated. Sometimes, TILs are collected a few
weeks after the administration of tumor antigen-specific vaccines
(NCT00791037; NCT00834665; NCT01312376). Moreover,
distinct approaches of genetic engineering are being undertaken,
including the production of lymphocytes expressing tumor

antigen-specific TCRs (NCT00720031; NCT00871481;
NCT00910650; NCT01212887), CARs (NCT00968760;
NCT01218867; NCT01318317; NCT01416974) IL-12
(NCT01236573) or IFNc (NCT01082887). One particularly
interesting study entails the engineering of lymphocytes for the
expression of an inducible suicide fusion protein, which might be
employed to resolve ACT-related toxicity (NCT00730613). Con-
ditioning regimens largely overlap with those employed in previous
successful studies, with a high prevalence of non-myeloablative
lymphodepletion (cyclophosphamide + fludarabine), alone or com-
bined with total body irradiation. In one instance, cells are infused
in the absence of conditioning and after three cycles of low-dose
(sub-efficient) radiotherapy, aimed at stimulating immune responses

Table 3. Ongoing clinical trials evaluating adoptive cell transfer in cancer patients*

Site Tumor type(s) Phase Notes Ref.

Breast

HER2+ breast cancer

I/II Autologous ex vivo expanded HER2-specific T cells NCT00791037

I
Autologous ex vivo expanded HER2-specific

T cells + cyclophosphamide
NCT01219907

TNBC n.a. CIK cells ± DCs
NCT01232062
NCT01395056

CNS

Glioblastoma I
CMV-activated T cells alone or

combined with a DC-based vaccine
NCT00693095

Malignant glioma I
Autologous CD8+ T cells expressing inducible suicide fusion

protein and an IL-13 chimeric immunoreceptor
NCT00730613

Medulloblastoma
Neuroectodermal tumors

I/II
Tumor-specific T cells alone or

combined with a DC-based vaccine
NCT01326104

Hematological
neoplasms

AML
CML
MDS

II Autologous CIK cells ± imatinib NCT00815321

BCL I Anti-CD19 CAR-engineered CD8+ cells + IL-2 upon HSCT NCT00968760

BCL
B-CLL

Multiple myeloma
I Anti-k light chain CAR-engineered T cells NCT00881920

CLL I Anti-CD19 CAR-engineered CD8+ cells after chemotherapy NCT01416974

NHL I/II
Anti-CD19 CAR-engineered CD8+ cells upon

myeloablative conditioning and PBSCT
NCT01318317

Multiple myeloma I CD3/CD28-costimulated T cells following HSCT NCT01239368

Multiple myeloma I/II Vaccine primed-autologous T cells following HSCT NCT00834665

Multiple
sites

Breast carcinoma
Colorectal carcinoma

Gastric cancer
Lung cancer

Ovarian cancer
Pancreatic cancer

I Anti-CEA TCR-engineered T cells + IL-2 NCT01212887

Breast carcinoma
HCC

Nasopharyngeal cancer
I CD8+-enriched young TILs + IL-2 NCT01462903

Metastatic melanoma
RCC

I/II Anti-VEGFR2 CAR-engineered CD8+ cells + IL-2 NCT01218867

Reproductive
tract

Cervical neoplasms I/II Low-dose radiotherapy followed by autologous TILs NCT01194609

Fallopian tube cancer
Ovarian cancer

Primary peritoneal cancer
I

CD3/CD28-costimulated vaccine-primed
autologous T cells

NCT01312376

Prostate cancer I Anti-PSMA TCR-engineered T cells NCT01140373
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(NCT01194609). Most often patients receive cells together with
high-dose IL-2, though the co-infusion of IL-15 (NCT01369888)
or DC-based vaccines (NCT00693095; NCT00910650;
NCT01326104) is also being tested.

Concluding Remarks

Thanks to the work from several laboratories worldwide, our
knowledge on the molecular and cellular circuitries that underlie
the long-term effectiveness of ACT has greatly advanced. ACT
based on autologous TILs has already been associated with con-
sistent rates of durable remissions in exquisitely immunosensitive
cancers such as melanoma. Moreover, the use of genetically
engineered circulating T cells constitutes a promising approach for
the treatment of several other (solid and hematological) malig-
nancies. Results from ongoing trials will clarify whether the

clinical benefits of ACT truly extend to poorly immunosensitive
tumors. Unfortunately, ACT is far from becoming a routine
clinical practice, as its implementation is laborious and associated
with elevated costs. In this sense, the development of simplified
techniques for the ex vivo expansion, activation and genetic
engineering of lymphocytes might allow an increasing number of
cancer centers to offer ACT as a therapeutic option.
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Table 3. Ongoing clinical trials evaluating adoptive cell transfer in cancer patients* (cont.)

Site Tumor type(s) Phase Notes Ref.

Skin Metastatic melanoma

II TILs + IL-2 upon non-myeloblative lymphodepletion NCT00604136

I/II MART-1-specific TILs + IL-2 followed by IL-2 and IFNa NCT00720031

I/II NY-ESO-1-specific TILs + IL-2 ± ipilimumab NCT00871481

II
Anti-MART-1 TCR-engineered PBMCs plus MART-126–35

peptide-pulsed DCs + IL-2
NCT00910650

I Melanoma reactive (DMF5) TILs + IL-2 NCT00924001

n.a. TILs + IL-2 upon non-myeloblative lymphodepletion NCT01005745

I/II IFNc-engineered TILs + IL-2 NCT01082887

II CD8+-enriched young TILs + IL-2 NCT01118091

I/II IL-12-engineered TILs + IL-2 NCT01236573

II Young TILs + IL-2 NCT01319565

I/II Young TILs + IL-15 NCT01369888

II TILs + IL-2 upon non-myeloblative lymphodepletion NCT01468818

Soft tissues
Adult liposarcoma

Adult soft tissue sarcoma
Adult synovial sarcoma

I
NY-ESO-1-specific CD8+ T cells + IL-2, upon conditioning

with low-dose IFNc and cyclophosphamide
NCT01477021

Abbreviations: AML, acute myeloid leukemia; BCL, B cell lymphoma; B-CLL, B cell chronic lymphocytic leukemia; CAE, carcinoembryonic antigen;
CAR, chimeric antigen receptor; CIK, cytokine-induced killer; CML, chronic myeloid leukemia; CMV, cytomegalovirus; CNS, central nervous system;
DC, dendritic cell; HCC, hepatocellular carcinoma; HSCT, hematopoietic stem cell transplantation; IFN, interferon; IL, interleukin; MDS, myelodysplastic
syndrome; n.a., not available; NHL, non-Hodgkin lymphoma; PBMC, peripheral blood mononuclear cell; PBSCT, peripheral blood stem cell transplantation;
PSMA, prostate-specific membrane antigen; TBI, total body irradiation; TCR, T-cell receptor; TILs, tumor-infiltrating lymphocytes; TNBC, triple negative breast
cancer; VEGFR2, vascular endothelial growth factor receptor 2. *started after January, 1st 2008 and not completed or terminated at the day of submission.
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