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Abstract

Omics data address key issues in liver transplantation (LT) as 
the most effective therapeutic means for end-stage liver dis-
ease. The purpose of this study was to review the current ap-
plication and future direction for omics in LT. We reviewed the 
use of multiomics to elucidate the pathogenesis leading to 
LT and prognostication. Future directions with respect to the 
use of omics in LT are also described based on perspectives 
of surgeons with experience in omics. Significant molecules 
were identified and summarized based on omics, with a focus 
on post-transplant liver fibrosis, early allograft dysfunction, 
tumor recurrence, and graft failure. We emphasized the im-
portance omics for clinicians who perform LTs and prioritized 
the directions that should be established. We also outlined 
the ideal workflow for omics in LT. In step with advances in 
technology, the quality of omics data can be guaranteed us-
ing an improved algorithm at a lower price. Concerns should 
be addressed on the translational value of omics for better 
therapeutic effects in patients undergoing LT.
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Introduction

As one of the most common causes of death, liver disease 
severely impairs global health and utilizes abundant health 
resources in countries worldwide.1 Currently, liver trans-
plantation (LT) is one of the most effective therapeutic ap-
proaches for the treatment of end-stage liver disease and 
acute hepatic failure;2,3 however, the therapeutic effects of 
LT are not equal among patients and the prognosis of re-
cipients is determined by many factors related to recipients, 
donors, grafts, surgery, and post-operative treatment.4 In 
addition, donor-recipient matching is also essential for im-
proving LT quality.5 LT involves systematic engineering that 
requires cooperation from the medical staff, scientists, engi-
neers, technicians, and patients. The optimal procedure for 
LT should be developed on the premise of comprehensive 
collection of information from each step to maximally ben-
efit the patients. Omics data from the donor, recipient, and 
graft samples can provide potential approaches to depict 
the panorama of the working environment for “new organs” 
in the body. Critical biomarkers might facilitate better organ 
allocation for most suitable patients.6 Indeed, well-organ-
ized clinical cohort studies with inclusion of multiomics data 
can provide an inspiration for better organ utilization and 
mechanistic studies.

Omics is the suffix applied to a series of disciplines in the 
science and medicine domains to acquire systems knowl-
edge on the collective characteristics of molecules from the 
entire genome, transcriptome, proteome, metabolome, and 
microbiome. Moreover, studies involving whole molecules 
from subspecies, such as the lipidome or glycome, are also 
attributed to the domain of omics.7,8 Omics data describe 
the dynamic variations of molecules from a macroscopic 
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perspective, which might help researchers to screen and 
thoroughly evaluate candidates. Moreover, integrative mul-
tiomics studies have also shown the advantages of a better 
understanding of the molecular function and investigation 
of disease prediction with mutual validations at all levels.9,10

Following improvements in assay technology and statisti-
cal algorithms, an increasing number of omics-based stud-
ies have been devoted to clinical investigations for compre-
hensive considerations with lower prices than ever before.11 
Criteria from authoritative institutions have been legislated 
to guarantee the high-quality and provide guidance on fur-
ther clinical trials;12,13 however, unlike laboratory models, 
enormous heterogeneities have been observed in human 
phenotypes and the panel of disease features has been de-
fined with a specific terminology (“phenomics”).14 Clinical 
omics studies aim to demonstrate the inner mechanism of 
complex phenotypes based on a comprehensive considera-
tion of whole molecule profiles in patients with common fea-
tures, such as disease and therapy, by construction of a net-
work model from omics data. The objective of clinical omics 
studies can be summarized into two parts, as follows: 1. 
identify the key targets for better individualized treatment 
of patients for disease prevention, diagnosis, therapy, prog-
nostication, and response to medication; and 2. provide in-
spiration for further mechanistic investigations involving the 
key features of disease based on the mathematical relation-
ships of basic science.7,15,16 Currently, more and more large 
sample-based clinical omics data with a focus on different 
types of patients have been published and deposited in 
public databases, such as Gene Expression Omnibus (GEO), 
The Cancer Genome Atlas (TCGA), and Genotype-Tissue Ex-
pression (GTEx).17–19 These databases provide potential ap-
proaches for researchers to initiate additional “omics-wide” 
investigations of their interests through free data mining via 
ready-made, bio-informatic workflows.20 Otherwise, well-
organized trials with assays of self-prepared omics data 
from specific samples in patients with relatively rare dis-
eases or treatments are also worthy of mechanistic inves-
tigation and individualized therapy. Additionally, integrative 

software packages, on-line toolkits, and workflows were 
developed to lower the barriers for analysis, exploration, 
and explanation of omics data, and the potential for clini-
cal utilization.21,22 Indeed, increased participation by expe-
rienced clinicians with critical thinking and clinical reasoning 
in omics research as a carrier of multidiscipline cooperation 
by physicians, bioinformaticians, biologists, and engineers 
might help to substantially improve the quality of clinical 
omics studies.23

Surgery is usually aimed at the treatment of severe dis-
ease, such as cancer, at the expense of resecting partial or 
entire organs. In contrast, transplantation medicine was a 
new surgical field in which an exhausted organ was replaced 
by a new organ from another person with a completely alien 
genetic background.2,24 More complexity was presented for 
various potential genetic confounders linked to the donors 
and recipients involved in the LT process with an impact on 
surgical quality and post-operative outcomes.25,26

As a crucial tool for improving the quality of clinical LT, 
the widely used omics analysis provides an approach to ac-
quire systematic knowledge that facilitates construction of 
the genetic architecture and clarification on the impacts on 
prognosis (including mortality or cellular rejection) of pa-
tients after LT, which might help to improve the treatment 
of key issues, such as graft selection and donor-recipient 
matching.6,27–34 Otherwise, the molecular mechanisms un-
derlying key issues, such as ischemic reperfusion injury 
(IRI) and operational tolerance in LT were also discussed in 
a previous multiomics study.35–39 A variety of omics studies 
involving solid organ transplantation have been collectively 
named transplantomics as a potential approach for the in-
dividualized treatment of transplant patients (Fig. 1).40,41

Despite the number of studies that have been published, 
the application of omics data for clinical LT is rarely sum-
marized.31,37–39,42–45 Based on our previous study, the ma-
jor peri-operative risk factors for LT were divided into four 
categories (including recipients, donors, grafts, and sur-
gery).39,46 We summarized the prior achievements of clinical 
omics studies that were categorized according to the above-

Fig. 1.  Research strategy for individualized treatment of key issues in LT based on multiomics clinical data. LT, liver transplantation.
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mentioned factors. More importantly, future directions on 
the application of omics with positive benefits for patients 
who underwent LT operations were highlighted based on the 
perspectives of experienced surgeons.

Current application of omics data in clinical LT inves-
tigations

Studies including less than 15 LT cases were excluded for 
guarantee of data reliability. Studies aimed at the selection 
of potential molecular targets under an unsupervised model 
were reviewed and categorized based on sample species (tis-
sues, peripheral sera/plasma from donor, recipient, or graft).

As presented in Tables 1 and 2, a total of eight stud-
ies have reported the connections between omics data and 
phenotypes in clinical LT.31,37–39,42–45 Metabolomics is the 
most-used assay involved in all omics studies. Most re-
searchers prefer to collect samples from graft tissues and 
omics data from recipient sera, but such were only assayed 
in three studies. As a common short-term complication, 
early allograft dysfunction (EAD) was the focus in most 
studies. In addition, post-transplant fibrosis, graft failure, 
tumor recurrence, and marginal organs were also discussed 
in select studies. Crossomics analysis and data integration 
were only performed in one study, with non-identical sam-
ple origins.42 More details were introduced by sample spe-
cies, as discussed below.

Omics data for assessing organ function after LT

Four studies, all of which involved European cases,37,38,43,45 
predesignated EAD as a major post-transplant outcome by 
mass spectrometry using a similar comparison strategy. Af-
ter reanalysis of prominently expressed potential metabo-
lites from published studies, we showed that the glycer-
ophospholipid, histidine, and purine metabolism pathways 
had significant deviations in EAD cases (Fig. 2). It is note-
worthy that dysfunctional glycerophospholipid metabolism 
was also shown to be a major cause of macrosteatosis 
(MaS) and graft failure (GF) in a prior study from our cent-
er.39 We speculated that a derangement in glycerophospho-
lipid might be a link to inferior organ quality, such as MaS, 
to early graft dysfunction and final organ failure in LT.

Omics data for assessing primary disease recurrence

The predictive value of noninvasive biomarkers from re-
cipient sera was evaluated in cohorts with a specific etiol-
ogy (hepatocellular carcinoma [HCC] or chronic hepatitis C 
[CHC]) from three studies.31,42,44 Among LT recipients with 
chronic hepatitis C, post-transplant fibrotic severity can be 
differentiated based on metabolite clusters, including sphin-
gomyelins and phosphatidylcholines. Severe liver fibrosis 
can be followed by down-regulation on glutathione biosyn-
thesis. Oxidative stress might be involved in regulating fi-
brogenesis after LT.31,42 Our metabolomic data in plasma 
samples from pretransplant HCC patients also showed the 
combined application of classical biological biomarkers, such 
as alpha-fetoprotein (AFP), phosphatidylcholine, and nutria-
cholic acid, might improve the predictive accuracy of tumor 
recurrence.44 Additional details are presented in Table 2.

Limitations of current LT-related omics studies

Collectively, current omics data involving LT are scattered, 

with a lack of a systematic framework and validation test-
ing. Most LT-related omics studies have adopted a retro-
spective design pattern. Because of the lower price and 
easy-to-conduct workflow, liquid chromatography-mass 
spectrometry (LC-MS) is the most commonly used tool for 
metabolomic assays. Other platforms, such as next-gener-
ation sequencing (NGS) and even multiomics studies with 
mutual validation in a fixed cohort are urgently needed in 
future LT-related omics studies.

Despite the importance of donor risk on post-transplant 
outcomes mentioned in previous studies,47,48 we found 
no reported omics data from donor blood samples to rep-
resent the general donor condition and the impact on LT 
quality. Donor features can be easily regulated as a flexible 
indicator by short-term intervention on exercise, diet, and 
drugs. These effects were more apparent in living donor 
liver transplantation (LDLT).49 The knowledge gap in om-
ics data from donor sera should be filled by future studies, 
which might lead to novel findings of manageable targets to 
improve LT quality.

Future directions for omics studies in LT

Many omics studies involved in the process of clinical LT 
have been conducted over the past decades. The profiles 
for proteomes and metabolomes from biological samples in 
the peritransplant period were outlined to determine the in-
terested issues in LT cases from an omics perspective. Key 
molecules and pathways involved in transcriptomics might 
provide potential targets for further translational stud-
ies.40,41

Despite these advances, limitations and many gaps still 
exist among the literature for clinical LT studies. Specifically, 
these limitations can be summarized as follows: 1. fewer 
multiomics studies with the inclusion of multi-dimensional 
samples (tissues and sera) in a fixed LT cohort; 2. lack of 
donor-recipient-matched omics data to show the panorama 
of LT; 3. lack of dynamic and longitudinal omics data to 
show the tendency of key molecules before and after LT; 
4. insufficient participation of more advanced technologies, 
such as single-cell RNA sequencing; and 5. lack of deep 
data-mining by construction of networks with clinical and 
omics factors. These limitations might affect the transla-
tional value of omics data in LT research. Transplantation is 
the crown in all liver surgical operations. Omics studies are 
urgently needed to guide clinical LT to maximize the ben-
efits to patients worldwide.50 In contrast, LT is a far more 
complex systematic engineering process affected by many 
factors from clinical, environmental, and the genetics of the 
donor and recipient.6,51–53 Therefore, omics projects in LT 
need cooperative networks of clinicians, pharmacists, bio-
informaticians, and biologists, with comprehensive consid-
eration of the abovementioned potential factors in an ap-
propriate algorithmic model. Thus, actions with considerate 
concerns on abovementioned factors are warranted in om-
ics studies for LT cases.

Analysis of multiomics and multidimensional systems 
in LT cases

Undoubtedly, the multiomics analysis which combines data 
from various high-throughput technologies has provided 
meaningful approaches to better understand molecular 
mechanisms and construct predictive models.54–57 Data 
from our center indicated a high efficiency of integrative om-
ics assays on the prediction of tumor burden in liver cancer 
patients.58 However, multiomics data of high quality were 
rarely reported in prior clinical investigations on LT cases.
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As discussed in our prior review (part II), clinicians tend 
to use metabolomic assays to explore the potential mecha-
nisms underlying key issues in LT. The possible explana-
tion might be due to the low quality of samples with severe 
RNA degradation after removal from donor bodies.59,60 A 
previous study reported that the intactness of tissues from 
different organs was inconsistent following the same cold 
ischemia exposure after surgical resection.61 With respect 
to the liver, the RNA appears to tolerate long-distance trans-
portation with grafts from donors after cardiac death (DCD). 
In a cohort of grafts from cadaveric LT, our ongoing project 
showed that >93% of graft tissues (41 of 44 samples) were 
suitable for further RNA-seq analysis even through long-
term cold ischemia time (CIT). The prerequisites for RNA-
seq analysis were as follows: 1. sample freshness and RNA 
extraction within 3 months; 2. shortened duration between 
the end of CIT and snap-freezing in liquid nitrogen (<30 
m); and 3. avoidance of repeated freezing and thawing (<2 
times). Data from our study indicated the feasibility of tran-
scriptomics assays in liver grafts from a citizen-based organ 

donation system (Fig. 3). Projects with well-designed RNA-
seq are desirable in further LT studies.

With the exception of solid organ tissues, omics data 
from biological fluids, such as peripheral blood, also showed 
advantages in disease screening and biomarker investiga-
tion in LT.62 Specifically, the superiority of omics studies 
on blood samples is realized in noninvasive and repeated 
sampling,6 and these features support blood omics as an 
appropriate tool in dynamic monitoring programs, such 
as graft rejection, drug responses, and operational toler-
ance in LT.63,64 An algorithm was developed to predict post-
transplant acute rejections by gene expression arrays in 
USA-based patients.62 Data from our center also confirmed 
the potential availability of the metabolomics assays on pe-
ripheral blood samples for prognostication of patients who 
underwent LT.44 In spite of the limitations (instability and 
internal/external heterogeneity) for omics results in blood 
samples,6 the diversity of omics assays (transcriptomics, 
proteomics, and metabolomics), and paralleled multi-sam-
ple dimensions (tissues/sera from donors/recipients) within 

Fig. 2.  Reanalysis of positive metabolites that associated with EAD in prior metabolomic studies. (A) Pathway analysis based on positive metabolites as-
sociated with EAD occurrence in prior metabolomic studies. (B) Details of pathway on glycerophospholipid metabolism and positive metabolites associated with EAD. 
(C) Details of pathway on histidine metabolism and positive metabolites associated with EAD. (D) Details of pathway on purine metabolism and positive metabolites 
associated with EAD. EAD, early allograft dysfunction.
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the same LT cases is recommended and might provide pos-
sible approaches to better uncover the potential biomarkers 
for individualized treatments of problems occurring in the 
peritransplant process.

Importance of donor-recipient-matched omics data 
in clinical transplantation

The importance of donor-recipient-matched genetic herit-
age has been emphasized in previous studies; however, 
the availability of relevant data was limited due to their low 
throughput with inclusion of single-to-several genes or ge-
netic polymorphisms.25,65,66 Omics data provide available 
approaches to understand the entire genetic background of 
LT donors and recipients, which might facilitate the develop-
ment of potential therapeutic targets and better manage-
ment of LT patients. The effect of donor features might be 
conditionally exerted on recipient features and vice versa. 
Therefore, an individually-matched omics study with con-
siderations of the recipient and donor will provide evidence 
with more reliability and persuasion for precise treatment of 
LT cases.40,67,68 A challenge is also anticipated in assessing 
the synergistic effects using an appropriate mathematical 
model. Key issues in the LT process are influenced by a 
network of factors from the recipient, donor, surgery, and 
post-transplant immunotherapy, with various internal and 
external connections.69 Advanced statistical methodologies 
with dimensional reductions are necessary in LT studies with 
the inclusion of integrative high-throughput data.70 Weight-
ed gene coexpression network analysis (WGCNA) is strongly 
recommended for dimensional reduction to build the con-
nections between omics and clinical traits in LT cases.71 In 
the matrix of the WGCNA algorithm, omics traits can be 
clustered into differentiated modules. The mathematical 
connections between clinical traits in LT, such as primary 
nonfunction (PNF) or EAD and modules might help for fur-
ther investigate the inner mechanism of these phenotypes 
in the LT process. Least absolute shrinkage and selection 
operator (Lasso) regression is another option in omics stud-
ies and key molecules can be screened out by Lasso re-

gression for scale reduction.72,73 More details are shown in 
Figure 4.

In addition, the involvement of artificial intelligence (AI) 
and machine learning algorithms might also provide inte-
grative analyses of high-throughput datasets.74–76

Necessity of dynamic and longitudinal omics studies 
in LT cases

Many phenotypes, such as drug response, might vary across 
different stages during the entire disease process. Dynamic 
omics data might help to uncover the mechanisms underly-
ing this development.77,78 Similarly, longitudinal omics data 
[e.g., before/after cellular rejection] might also help bio-
marker development and allograft monitoring in LT cases.28 
Continuous metabolomics assays on sera samples from re-
cipients were also performed to build the link between me-
tabolite profiles and post-transplant outcomes.34

Researchers tend to conduct dynamic omics by utiliz-
ing biological fluid samples for the simplicity of repeated 
sampling; however, the projects with dynamic omics results 
are far less often reported than needed in LT. Using graft 
steatosis as an example, the reversal of graft steatosis was 
observed in most cases of grafts used for LT; such reversal 
might have benefits on prolonged post-transplant surviv-
al.79,80 Additionally, we found that reversed fat deposition 
partially determined the fate (i.e. survival or death) of re-
cipient rats after LT.81 Multiomics studies with a focus on dy-
namic changes of histologic steatosis in vivo might elucidate 
this mechanism and potential biomarkers. Collectively, lon-
gitudinal omics data are worthy, in some circumstances, to 
fill in the knowledge gap for precise treatment in clinical LT.

Validation of transplantomics studies

The validity of multiomics results should be ensured based 
on validation practices over multiple steps.12 The impor-
tance of validation for omics studies for LT research has also 
been mentioned in a previous report.6 The validity of data 

Fig. 3.  Matched scatter plot between sample snap freezing time* and RNA quality for transcriptomic analysis. *Snap-freezing time indicates the period 
between the end of cold preservation and snap-freezing in liquid nitrogen. Correlation analysis was performed by Spearman’s test. Insignificant correlation was ob-
served between snap-freezing time and RNA quality.



Journal of Clinical and Translational Hepatology 2022 vol. 10(2)  |  363–373370

Liu Z. et al: Multiomics analysis for liver transplantation

is routinely tested via internal or external validation. Mul-
ticenter omics studies, including validation from relatively 
independent patient cohorts, yield more reliable biomarker 
panels in predicting post-transplant rejection with higher 
translational value.62 With the technologic development of 
omics assays, the cost of a commercial omics kit is lower 
with complete and individualized analytic platforms. Differ-
entiated with typical design referred in previous literature,12 
new concepts should be imported in omics validation in LT 
studies.

First, potential mechanisms can be verified by mutual 
validations across multiomics data. Candidate molecules 
from transcriptomics, proteomics, and metabolomics can be 
simultaneously mapped in the KEGG database, and can be 
strengthened by joint omics studies.82 Furthermore, omics 
validation in model organisms, such as cell lines or rats, 
might also help to distinguish the roles of omics molecules 
on key issues in LT. Biases are inevitable for disturbance 
from confounders in clinical transplant-related studies.83 In-
tegrative omics studies from patients and model organisms 
with preset targets might help better understand the under-
lying mechanisms. Therefore, validation in a LT study does 
not only simply mean an enlarged sample size. We applied 
more updates via measures on omics assays for the better 
treatment of LT cases.

Utilization of online platforms for statistics in multi-
omics studies

Currently, many online tools have been developed for the 
integration of omics data.84 Usually, a web-based tool has 
a user-friendly interface with a programmable procedure to 
run the data using preset algorithms. With the help of these 
online platforms, a shortened study curve was presented to 

researchers regarding omics data analysis.85–87 As an ex-
ample, MetaboAnalyst (https://www.metaboanalyst.ca/) is 
a popular online tool that analyzes metabolomics and mul-
tiomics data.88 The website provides online services with 
coverage from basic statistics, such as quantitative compar-
isons and principal component analysis, to advanced clus-
tering, enrichment, and pathway analysis. It is noteworthy 
that joint multiomics analyses can be conducted and visual-
ized in MetaboAnalyst with an entire set of R codes for the 
retrospective evaluation of potential errors.

More and more online resources have been developed to 
deal with multiomics data via ready-made sets of protocols 
prepared by statisticians that promote the translational val-
ue of omics results for clinical LT.84,89 Technological issues 
should not be barriers of clinical LT studies. User-friendly 
and open access online platforms have been developed by 
biostatisticians with mature protocols for the treatment of 
omics data. Clinicians should pay more attention to the as-
sociation between omics data and clinical traits. In contrast, 
timely updates on platforms are also needed to adapt to the 
rapid technological upgrade in omics assays.

Importance of contributions from experienced clini-
cians

We have come into the omics era, and it has been followed 
by technological development. Lower unit prices guaran-
tee the feasibility of multiomics studies in clinical LT cases; 
however, lower costs also cause abuse of omics studies. 
Low-quality omics studies might produce redundant infor-
mation to confuse decision-making in LT.90,91 In our opin-
ion, the academic value of omics studies rely on the ability 
to improve LT therapeutic efficiency. Thus, investment in 
omics test resources should uncover key traits with signifi-

Fig. 4.  Recommended flowchart for multiomics study in LT cases. LT, liver transplantation.

https://www.metaboanalyst.ca/
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cant potential to improve clinical LT quality. The increasing 
participation of experienced clinicians can also help to ex-
press the clinical requests of omics studies.23 A reliable and 
replicable clinical trait with translational potential is a good 
beginning for clinical omics studies in LT.

Using MaS grafts as an example, we found inferior prog-
noses in patients who received MaS organs with poor con-
current initial liver function (IPF) after LT (a phenomenon 
with clinical significance).46 The validity of this connection 
was demonstrated in another cohort with similar features 
(i.e. replicability). A metabolomics assay was performed to 
investigate the mechanism and biomarker for machine per-
fusion to improve the quality of marginal grafts (i.e. trans-
lational potential).39 Further omics studies are ongoing in 
a rat LT model (i.e. laboratory investigation),81 and collec-
tively, clinicians are responsible for playing a central role in 
implementing a meaningful project with the goal of better 
treatments for LT patients. In contrast, clinical omics in LT 
also require a well-organized consortium with a cooperative 
network of pharmacists, bioinfomaticians, scientists, and 
technicians.

Ideal flowchart for multiomics studies in LT cases

Based on the points discussed above, we suggest that a 
well-designed omics study in LT should be based on the 
following: 1. prospective destination with adequate sample 
storage; and 2. a research topic with adequate translational 
value. The molecular mechanism of MaS organs on post-
transplant prognosis was detailed in our previous study.39 
The details of the recommended flowchart are presented 
in Figure 4. Specifically, omics data (transcriptomics, pro-
teomics, or metabolomics) can be procured from samples 
(tissues/sera) from the donor and recipient, and classified 
by graft’s MaS status. First, the mechanism underlying or-
gan MaS on post-transplant outcomes can be deduced by 
joint omics analysis. Then, WGCNA can be performed to 
construct the network and evaluate the clinical omics con-
nection, and the impact on post-transplant outcomes. Third, 
omics data can be used in the construction of a MaS-re-
lated prediction model on post-transplant prognosis. It is 
noteworthy that the complex omics result is complicated 
and does not provide a clear expression to readers and in 
data visualization by tools, such as Cytoscape (https://cy-
toscape.org/), MetaboAnalyst, and other platforms, might 
help to highlight the key results.92

Conclusions

In conclusion, this review retrospectively evaluated the 
application of multiomics studies on clinical LT in the past 
decades and assessed the translational values on mechanis-
tic investigations and therapeutic aims. We forecasted the 
future directions for omics studies in clinical LT and called 
for more participation by clinicians in the cooperative con-
sortium. Finally, we shared the flowchart for the use of mul-
tiomics data on clinical LT cases. In the coming omics era, 
the quality of omics data can be guaranteed by improved 
algorithms with a lower cost, followed by technological de-
velopment. More mention should be raised on the transla-
tional value of further mechanistic exploration and better 
treatment of LT cases.
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