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Nanoparticles - A Thoracic Toxicology Perspective
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A substantial literature demonstrates that the main ultrafine
particles found in ambient urban air are combustion-derived
nanoparticles (CDNP) which originate from a number of sources
and pose a hazard to the lungs. For CDNP, three properties
appear important-surface area, organics and metals. All of these
can generate free radicals and so induce oxidative stress and
inflammation. Inflammation is a process involved in the diseases
exhibited by the individuals susceptible to the effects of PM-
development and exacerbations of airways disease and cardio-
vascular disease. It is therefore possible to implicate CDNP in
the common adverse effects of increased PM. The adverse effects
of increases in PM on the cardiovascular system are well-docu-
mented in the epidemiological literature and, as argued above,
these effects are likely to be driven by the combustion-derived
NP. The epidemiological findings can be explained in a number
of hypotheses regarding the action of NP:-1) Inflammation in the
lungs caused by NP causes atheromatous plaque development
and destabilization; 2) The inflammation in the lungs causes
alteration in the clotting status or fibrinolytic balance favouring
thrombogenesis; 3) The NP themselves or metals/organics
released by the particles enter the circulation and have direct
effects on the endothelium, plaques, the clotting system or the
autonomic nervous system/ heart rhythm. Environmental
nanoparticles are accidentally produced but they provide a
toxicological model for a new class of purposely ‘engineered’
NP arising from the nanotechnology industry, whose effects are
much less understood. Bridging our toxicological knowledge
between the environmental nanoparticles and the new engineered
nanoparticles is a considerable challenge.
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INTRODUCTION

The production of new forms of manufactured/
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engineered nanoparticles is of increasing concern
as nanotechnology continues to develop and man-
ufacture them." These form a plethora of particle
types that include nanotubes, fullerenes, quantum
dots and compound particles of various types.
Whilst information on the toxicity of new types of
nanoparticles (NP) is accumulating these are
mostly in vitro studies, with few animal or human
studies. The existing toxicology knowledge re-
garding NP is almost entirely based on combus-
tion-derived nanoparticles (CDNP) present in
environmental air. Evolving from the ‘ultrafine
hypothesis’,” this strand of research has focused
on CDNP like diesel soot since this component of
particulate matter (PM) is seen as a key component
mediating adverse health effects. The mechanism at
the cellular level is understood in terms of the
ability of particles to cause oxidative stress and in-
flammation and translocate from the site of deposi-
tion.* This review builds on environmental NP and
their mechanisms, as a basic paradigm and then
moves on to discuss toxicology of engineered NP.

The portal of entry for NP discussed here is the
lungs and the toxic effects seen there are dis-
cussed. In addition the lungs and the cardi-
ovascular system are intimately linked and the
PMy literature indicates clearly that the cardi-
ovascular system is a lead target system for the
adverse effects of PM.

COMBUSTION-DERIVED NANOPARTICLES
IN ENVIRONMENTAL AIR POLLUTION

PMj; and its adverse effects

The adverse health effects of air pollution have
been recognised throughout much of recorded
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time and are now documented in large inter-
national epidemiological studies. In the UK, fossil
fuel combustion in towns and cities, during
periods of cold weather, where there is little
mixing of air have been associated with the
generation of smog episodes. These smogs
consisted largely of sulphur dioxide and particles
and could very high concentrations in urban air.
The particle component or PM represents a key
part of the air pollution cocktail present in
ambient air, which also comprises gases such as
ozone, nitrogen dioxide etc. PM in ambient air is
measured as the mass of particles collected using
the PMy or PM,s sampling conventions.” The
adverse health effects of PM are seen at the levels
that pertain in UK and other cities today and there
is often no threshold. In other words there is a
background of ill health being caused by PM that
increases when the ambient particle cloud in-
creases in concentration and goes down when the
amount of particles in the air decreases.’

These adverse health effects of air pollution
have been measured in hundreds of studies and
there is good coherence between the acute effects
seen in time series and panel studies, and the
chronic effects seen in environmental studies.

Nanoparticles as the most toxic component of
PM;p

PM is a complex mixture of particle types that
depend on season, time of day, site of sampler etc.
CDNP are present in PM from conurbations and
are a major toxicologically important component.
CDNP originates principally from car exhausts
although there are other sources.* Sulphates tend
to be very low in toxicity in experimental studies,
7 but do show a relationship with adverse effects
in some epidemiological studies;® this apparent
anomaly may be explained by a correlation
between sulphates and some more potent com-
ponent of the air pollution mix which is actually
driving the adverse effect, such as fine particles.

NP number, likely to be principally comprised
of CDNP, ranged from 15,000 to 18,000 particles
per cm’ in 3 European cities” and 10,000 to 50,000
particles per cm’ in a busy London street.”’ In a
study on US highways exposure in a vehicle
travelling in busy traffic was reported to be 200
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Fig. 1. Hypothetical series of events leading from com-
bustion-derived NP such as diesel soot interactions with
lung cells leading to inflammatory gene expression.

to 560 x 10° particles per cm’, (predominantly
NP).""* Indoor air also contains NP and cooking,
vacuuming and burning wax candles produce NP
of soot.”> NP also produced during combustion of
domestic gas and in one study 3 gas rings pro-
duced around 50,000 particles per cm’ which
underwent rapid aggregation within a few
minutes, as evidenced by increases in particle size
and decrease in apparent number." Secondary NP
also arise from environmental chemistry, e.g.
nitrates; but these are unlikely to be as toxicolo-
gically potent as CDNP (see below). The mole-
cular mechanisms of the adverse effects of CDNP
has been extensively reviewed by the authors**"®
and the pro-inflammatory mechanism is sum-
marised in Fig. 1.

CDNP AND THE LUNGS

The present understanding of CDNP activity in
the lungs is that the surfaces, organics and metals
can all produce free radicals with the potential to
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produce oxidative stress and contribute to inflam-
mation. Diesel exhaust particles (DEP) are one of
the main CDNP to which individuals are exposed.
DEP causes inflammation in rat'”"® and human
lungs" following short-term, high level exposure.
Oxidative stress is demonstrable as increased
levels of 8-OHAG, the oxidative DNA adduct of
the hydroxyl radical, in the lungs of rats following
exposure and in cells in culture treated with
DEP.*”" The component of DEP responsible for
the oxidative stress and subsequent pro-inflam-
matory signalling is principally the organic frac-
tion,”” although transition metals may also be
involved especially for welding fume.” The oxida-
tive stress then causes activation of signalling
pathways for pro-inflammatory gene expression,
including MAPK**? and NF-kB activation””
and histone acetylation that favours pro-inflam-
matory gene expression.31 Activation of these
pathways culminates in transcription of a number
of pro-inflammatory genes such as interleukin-8
(IL-8) in epithelial cells treated in vitro”> and in
human lungs exposed by inhalation.® Tumour
necrosis factor-alpha (TNF-a) has been reported to
be increased in macrophages exposed to DEP in
vitro> and interleukin-6 (IL-6) is released by
primed human bronchial epithelial cells exposed
to DEP.”

CARDIOVASCULAR EFFECTS OF PM AND CDNP-
POTENTIAL EFFECTS ON ENDOTHELIUM AND
ATHEROSCLEROTIC PLAQUE STABILITY

The adverse cardiovascular events associated
with increases in PM™” could be mediated
through the effects of CDNP. In a mixture of
studies which have used PM, CAPS and model
NP, evidence is accumulating that NP cause
inflammation that could adversely affect the
cardiovascular system. There is evidence of
systemic inflammation following increases in PM,
as shown by elevated C-reactive protein, blood
leukocytes, platelets, fibrinogen and increased
plasma viscosity (reviewed in reference 38). Athero-
thrombosis is the principle cause of cardiovascular
morbidity and mortality.” Atherosclerosis is an
inflammatory process, initiated via endothelial
injury and producing systemic markers of inflam-

mation that are risk factors for myocardial and
cerebral infarction.”*' Repeated exposure to PMip
may, by increasing systemic inflammation,
exacerbate the vascular inflammation of athero-
sclerosis and promote plaque development or
rupture. Experimental studies with animal models
susceptible to atherosclerosis confirm the ability of
particle exposure to enhance atherosclerosis.***

Normally the endothelial monolayer delicately
balances regulatory pathways controlling vaso-
motion, thrombosis, cellular proliferation, infla-
mmation and oxidative stress. Endothelial dys-
function or denudation is one of the earliest
pathological features of atherosclerosis.* Loss of
endothelial function results in expression of
leukocyte adhesion proteins, reduced anticoa-
gulant activity and the release of growth factors,
inflammatory mediators and cytokines. Chronic
inflammation results in leukocyte and monocyte
recruitment, induction of atheroma formation and
further arterial damage. Plaque expansion and
disruption can lead to angina, crescendo angina
and acute coronary syndromes, including myo-
cardial infarction.**

Inhaled PM may influence the vasculature
through indirect effects mediated by pulmonary
inflammation or through the direct action of
particles that have become blood-borne. Whether
inhaled NP can access the circulation is currently
the subject of intense research’™ and there is
conflicting reports on whether Technegas-radio-
active carbon NP-can reach the blood following
inhalation in humans”" Certainly, injured
arteries can take up blood borne NP, a fact
exploited by the nanotechnology industry for both
diagnostic and therapeutic purposes in cardio-
vascular medicine. The intra-arterial infusion of
carbon black NP has a detrimental effect on the
mouse microcirculation with up regulation of von
Willebrand factor expression and enhanced fibrin
deposition on the endothelial surface.”” These
prothrombotic effects are in keeping with toxi-
cological evidence from instillation studies, which
suggest particle exposure may promote throm-
bogenesis.”

The endothelium plays a vital role in the control
of blood flow, coagulation, fibrinolysis and in-
flammation. Following the seminal work of
Furchgott and Zawadski,” it is widely recognised
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that an array of mediators including cigarette
smoking can influence vascular tone through
endothelium-dependent actions, and there is now
extensive evidence of abnormal endothelium-
dependent vasomotion in patients with athero-
sclerosis.”™ Mild systemic inflammation also
causes a profound, but temporary suppression of
endothelium-dependent vasodilatation.” However,
whilst endothelium-dependent vasomotion is
important, it may not be representative of other
aspects of endothelial function, such as the regula-
tion of fibrinolysis.

The fibrinolytic factor tissue plasminogen acti-
vator (t-PA) regulates the degradation of intrava-
scular fibrin and is released from the endothelium
through the translocation of a dynamic intra-
cellular storage pool.”™* If endogenous fibri-
nolysis is to be effective, then the rapid mobili-
zation of t-PA from the endothelium is essential
because thrombus dissolution is much more effec-
tive if t-PA is incorporated during, rather than
after, thrombus formation.”"* The efficacy of plas-
minogen activation and fibrin degradation is
further determined by the relative balance
between the acute local release of t-PA and its
subsequent inhibition through formation of
complexes with plasminogen activator inhibitor
type 1 (PAI-1). This dynamic aspect of endothelial
function and fibrinolytic balance may be directly
relevant to the pathogenesis of atherothrombosis.

CDNP and endothelial dysfunction

In order to investigate the potential role of the
endothelium in triggering of acute myocardial
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infarction following CDNP exposure we inves-
tigated the effects of diesel exhaust inhalation on
vascular and endothelial function in humans.*’ In
a double-blind, randomized, cross-over study, 30
healthy men were exposed to diluted diesel
exhaust at 300 ng/ m’ particulate, or air, for 1 hour
with intermittent exercise. Two and six hours after
exposure, bilateral forearm blood flow was
measured following infusions of the endothelium-
dependent vasodilators bradykinin (BK) and
acetylcholine (ACh), and endothelium-indepen-
dent vasodilators sodium nitroprusside (SNP) and
verapamil. Inflammatory mediators in blood were
measured concomitantly. We showed no diffe-
rences in resting forearm blood flow or inflam-
matory markers after exposure to diesel exhaust
or air. There was a dose-dependent increase in
blood flow with each vasodilator, but this
vasomotor response was significantly attenuated
to BK, ACh and SNP (p < 0.001) infusions 2 hours
after exposure to diesel exhaust, and remained
impaired at 6 hours.

In addition, BK caused a dose-dependent in-
crease in plasma t-PA that was suppressed 6
hours after exposure to diesel (p < 0.001; area
under the curve decreased by 34%). We concluded
that, at levels encountered in an urban envi-
ronment, inhalation of dilute diesel exhaust im-
pairs two important and complementary aspects
of vascular function in humans: the regulation of
vascular tone and endogenous fibrinolysis. The
likely mechanism- is shown in Fig. 2 and is based
on the central role of nitric oxide (NO) in the
maintenance of vascular tone.

The vasodilator drugs ACh and BK act on
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Fig. 2. Hypothetical scheme to explain the observed effects of DEP exposure on vasomotor function® see text for explanation.
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receptors in the endothelium to stimulate calcium
increase and endothelial nitric oxide synthase
(eNOS) activation leading to local nitric oxide
(NO) levels that activate gunayl cyclase in sub-
jacent smooth muscle cells stimulating relaxation.
SNP is a NO donor and increases vascular NO
directly by an endothelial-independent pathway,
while Verapamil causes smooth muscle relaxation
by an endothelium-independent and NO-indepen-
dent pathway. The observed blunting of the
vasomotor response to ACh, BK and SNP could
be explained by oxidative stress from pulmonary
inflammation or from particles that gain access to
the blood. In this scenario, superoxide anions in
the vessel wall, resulting from oxidative stress,
rapidly combine with NO to form peroxynitrite.
Therefore less NO is available in the smooth
muscle cells and relaxation is blunted.

This explanation combines the well-known
oxidative stressing and inflammatory effects of
CDNP with key endothelial functions and so
provides a potential mechanism that links air
pollution to the pathogenesis of atherothrombosis
and acute myocardial infarction.”

Engineered nanoparticles

One of the major reasons behind the rapid
expansion in industrial use of nanotechnology and
in particular engineered NP themselves, are their
unique properties due to small size and large
reactive surface area. NP come in a wide variety
of shapes, sizes and chemical compositions. In
addition to the spherical shapes observed for
particles such as titanium dioxide (TiO:), shape
varieties also include carbon nanotubes, nano-
whiskers and nanofibres. Engineered NP vary
considerably in their size and composition and so
would be anticipated to vary in toxicity. Nanotubes
and nanowires can range from less than 100 nm
diameter to tens of um in length. The variety of
chemical composition range from substances
considered traditionally to be relatively inert (e.g.
carbon and gold) to substances associated with
significant toxicity (e.g. cadmium and other heavy
metals). Since the NP size imparts heightened
reactivity to the ‘inert’ materials, it is interesting to
consider the impact of small size on toxic materials,
especially since reactivity might relate to toxicity.

Engineered nanoparticles and the lungs

Carbon black (CB) and TiO; along with alumina
and silica have been studied for some time with
regard to their pro-inflammatory effects but none
of these studies have explicitly addressed effects
on the cardiovascular system. Nano-size CB has
been intensively studied with regard to the issue
of low toxicity dust and the confounding effect of
rat lung overload.”” In view of the very high
surface area per unit volume of NP and the
identification of surface area as the driver for
overload,68'70 attention has been focused on the
nanoparticulate form of these nuisance dusts.
These would be anticipated to produce lung
overload at lower mass lung burdens than seen
with the larger particles and in fact, was indeed
shown to be the case.””” However, even at low,
non-overload exposures to nano-sized CB, there
was a pro-inflammatory effect not seen with the
larger CB particles.”” Instillation studies have also
shown that the nanoparticulate form of CB and
TiO; produce more inflammation than an equal
mass of larger, yet respirable particles™”* of the
same material and across a range of NP of
nuisance dust the surface area was found to be the
driver of the inflammation.”

The molecular mechanism of the increased
inflammatory effects of nanoparticle CB have
demonstrated that they generate reactive oxygen
species (ROS) in cell-free systems”®”" and cause
alterations in calcium signaling”™® in exposed
cells. Oxidative stress from the nanoparticulate CB
can also activate the EGF-receptor’” and redox-
responsive transcription factors such as NF-kB*
and AP-1% leading to the transcription of pro-
inflammatory cytokines and lipid mediators.”*"

Carbon nanotubes

Carbon nanotubes (CNT) are long sheets of
graphite rolled in the form of a tube, that can
range from a few nm thick (single-walled-
SWCNT) up to a few hundred nm thick (multi-
walled-MWCNT). The needle-like structure im-
plies that a paradigm related to fibres, such as
asbestos, might be appropriate in considering
their toxicity. The potential pathogenicity of a
conventional fibre is dictated by length greater
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than 20 um, thinness and biopersistence.83 Bioper-
sistence is an important determinant of mineral
fibres and Synthetic Vitreous Fibre pathogenicity.
Long biopersistent fibres are the biologically effec-
tive dose that drives pathogenic effects™ whilst
non-biopersistent fibres undergo dissolution pro-
cesses that can be enhanced at the acid pH of 5.0
existing inside macrophage phagolysosomes.”
Long, biosoluble fibres undergo leaching of key
structural molecules leading to breakage into
short fibres that are readily phagocytosed by
macrophages.™*’

In one study,” the authors addressed the
important issue of biopersistence of CNT using
both un-ground and ground nanotubes, 0.7 and
5.9 um long respectively. These were assessed for
biopersistence and the longer, un-ground nano-
tubes were more biopersistent than the short ones.
This is consistent with the greater biopersistence
of long fibres seen in studies with asbestos and
other mineral fibres although these ‘long’
nanotubes were much shorter than those mineral
fibres defined as ‘long’, which are in the region of
20 um and greater.83 A 20 um diameter rat macro-
phage is able to enclose and transport fibres less
than its own diameter from the lungs,” and the
length-dependent inhibition of clearance seen
with 5.9 im long nanotubes is thus rather unex-
pected. It may be that the well-documented ten-
dency for nanotubes to form bundles and wires */
is important in impairment of clearance.

Nanotubes have been used in a number of rat
lung instillation studies.®™™ All of these used
high dose and dose-rate which raises questions
about physiological relevance; no study has
addressed the role of length by comparing long
(> -20 pm) with short (< 10 pm) CNT. However
all of the studies mentioned above showed an
increased ability of CNT to cause granulomatous
fibrosis in the absence of severe inflammation.

CNT have also been tested in a range of
different cell types in vitro to assess their potential
toxicity. Treatment of human keratinocytes have
shown that both SWCNT and MWCNT are
capable of being internalized, causing cellular
toxicity.”” In a study with alveolar macrophages,
SWCNT were more cytotoxic than MWCNT after
exposure at equal mass dose” Human T cells
exposed to oxidised MWCNT were killed in a time-

86
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and dose-dependent manner, through mechanisms
involving apoptosis™ as was also the case in kidney
cells exposed to SWCNTs.” Manna et al.,, demon-
strated dose-dependent oxidative stress and NF-kxB
activation in human keratinocytes along with IkB
depletion and MAPK phosphorylation.” I vitro,
CNT can produce free radicals by the role of iron
via Fenton-type reactions.”

It is difficult to draw general conclusions on
CNT toxicity because of the scarcity of data and
CNT variability-they can vary in length and
composition including metal contamination. CNT
are often kinked and tangled into aggregates of
varying size and shape. This kind of variability is
found both between and within samples. All of
these factors could impact on toxicity. More rigid
CNT are likely to disperse more efficiently than
tangled CNT. However the tangles are more
easily taken up by cells in culture and could
therefore be more readily cleared from the lungs
by macrophages. A programme of research is
warranted to define the factors that control CNT
toxicity.

Engineered NP and the cardiovascular system

Radomski et al., examined the role of new NP
on the clotting system™ studying the effects of
multi-walled and single-walled nanotubes, Cso
fullerenes and mixed carbon black NP on human
platelet aggregation in wvitro and rat vascular
thrombosis in vivo. Standard urban PM was used
as a control. Nanotubes and carbon black particles
but not Ceo, stimulated platelet aggregation and
the same ranking was observed in their ability to
affect the rate of vascular thrombosis in rat carotid
arteries; urban dust had low activity in these
assays. Thus, there are differences between
different carbon NP to activate platelets and
enhance vascular thrombosis. Yamawaki et al,,
have shown that carbon back of aggregate size 248
nm are cytostatic, cytotoxic and pro-inflammatory
in endothelial cells.”

Engineered NP and Quantitative Structure
Activity Relationships

The numbers of new NP that are being pro-
duced pose a special problem in testing. NP are
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relatively easy to alter in terms of physicoche-
mistry, size, coating, composition etc and this
makes for even more particles to be tested. Other
factors are also important-the average small
company that is developing a new NP type is
unlikely to have the funds to carry out proper
toxicology testing and the current climate against
animal testing makes this type of testing not
viable.

In the pharmacology and toxicology worlds, the
term QSAR (Quantitative structure activity rela-
tionship) is used to describe the attempt to relate
chemical structure to pharmacological or toxico-
logical activity. This idea could be used to
categorise NP on the basis of physicochemistry, if
physicochemical markers could be related to
toxicity. The most obvious candidates for struc-
tural markers that could be related to toxicity
markers at the moment are size/surface area and
oxidative stress. For insoluble particles the surface
area times the surface reactivity describes a
biologically effective dose (the dose that drives
adverse effects) and so particle size is likely to be
important. For NP, the quantum effect changes in
the physicochemical nature of the surface of a
very small particle compared to a larger one and
could plausibly impact on toxicology. The domi-
nant hypothesis for the action of harmful particles
on cells is oxidative stress and the oxidative
stressing activity of particles is a physicochemical
parameter that may well be important in structure
activity considerations.

The QSAR idea is likely to be achievable for
predicting lung inflammation and so could be
predictive for cardiovascular effects if they are
driven by pulmonary inflammation. For trans-
location from the lungs to the blood or for effects
in the blood, a different QSAR may be necessary.

Potential carcinogenic effects of manufactured
NP

The ability of PM to cause cancer is well
documented and other types of particles, such as
asbestos and silica, are also known to be
carcinogenic. The mechanisms are, however, not
completely understood and may involve both
direct genotoxic effects of the particles themselves
and indirect genotoxic effects mediated through

the particles ability to cause inflammation. Direct
genotoxic effects of particles involve the particles
entering cells and delivering damage to DNA. The
chemical composition, as well as the structural
composition of the particles, both plays a role in
this and so CDNP certainly have the potential to
mediate this type of effect.” Transition metals
have been shown to redox cycle inside the cell
and generate damaging hydroxyl radicals that
form mutagenic adducts with DNA."" Organic
molecules adsorbed on to the surface of CDNP,
such as polycyclic aromatic hydrocarbons (PAHs),
can also form adducts'” whilst large surface areas
on NP are capable of generating oxidative stress.
% 11y addition, the inflammatory effects of CDNP,
as discussed above, can play an important role in
the genotoxic and carcinogenic processes and the
products of the leukocyte oxidative burst can form
adducts within target cells.'” The effects of
oxidative stress inside the cell may cause lipid
peroxide production in the cell and the products
of lipid peroxidation are longer-lived than the
ROS themselves and may therefore mediate
adduct formation.'

Certain types of NP appear to be able to enter
the nucleus in cell culture systems, to a much
greater extent than larger particles of the same
material'” and NP in general seem to be cable of
crossing biological membranes.'” If NP generally
gain access to the nucleus rather than being
retained in the cytoplasm like larger particles,
then by virtue of being closer to the DNA, the
oxidative products they produce may be more
likely to cause genotoxic effects.

CONCLUSION

A paradigm has evolved arising from ex-
perience with environmental CDNP, exemplified
by diesel soot. In this paradigm, oxidative stress
and inflammation are identified as key processes
in the local effects in the lungs. In addition, in-
flammatory effects and blood translocation could
explain adverse cardiovascular effects observed in
epidemiology studies with air pollution particles.
Support for this contention comes from a number
of studies using model NP and CDNP, where
adverse cardiovascular effects such as clotting,
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plaque development and endothelial dysfunction
are enhanced after NP exposures in a number of
different models. In parallel with these studies, an
increasing number of toxicology studies using
bulk NP, such as TiO, and CB, have identified a
key role for the large surface area of NP and its
ability to produce oxidative stress.”"”'® It is not
known whether the same paradigm can be used
for new engineered NP and nanotubes. In the
limited studies so far published, engineered NP,
such as the CNT are also reported to induce
oxidative stress, cell death and inflammation.
However, there are differences in the magnitude
of the adverse effects caused by NP between
models and not all NP are likely to have the same
toxic potency. This is to be anticipated since the
total toxicity of any particle sample is the complex
sum of the surface reactivity times the surface
area plus releasable toxic moieties, along with
shape, and all modified by the degree of
biopersistence. There is a strong likelihood that
these factors will differ considerably and so the
cumulative toxicity will vary between different
particle types.
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