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Simple Summary: Growing evidence shows a close relationship between the microbiome and
colorectal cancer, but most studies analyze fecal samples. However, solid information on the microbial
community that is present locally in the intestinal tumor tissues is lacking. Therefore, the aim of this
systematic review was to compile evidence on the relationship between tissue-associated microbiota
and colorectal cancer. Among 5080 screened publications, 39 were eligible and included in the
analysis. Despite the heterogeneity in methodologies and reporting between studies, 12 groups
of bacteria with strong positive and 18 groups of bacteria with strong negative associations with
colorectal cancer were identified. Such knowledge may ultimately be used in novel strategies that
aim to prevent, detect, and treat colorectal cancer in the upcoming years.

Abstract: The intestinal microbiome is associated with colorectal cancer. Although the mucosal
microbiota better represents an individual’s local microbiome, studies on the colorectal cancer
microbiota mainly reflect knowledge obtained from fecal samples. This systematic review aimed
to summarize the current evidence on the relationship between the mucosal-associated bacterial
microbiota and colorectal cancer. Searches were conducted in PubMed and Web of Science databases
for publications comparing the mucosal microbiome of colorectal cancer patients with that of healthy
controls, or with that of non-cancerous mucosal tissues. The primary outcomes were differences in
microbial diversity and taxonomy. The Newcastle-Ottawa Scale was used to assess the quality of
the included studies. Of the 5080 studies identified, 39 were eligible and included in the systematic
review. No consistent results were identified for the α- and β-diversity, due to high heterogeneity
in reporting and to differences in metrics and statistical approaches, limiting study comparability.
Qualitative synthesis of microbial taxonomy identified 12 taxa with strong positive and 18 taxa
with strong negative associations with colorectal cancer. Fusobacterium, Campylobacter, Parvimonas,
Peptostreptococcus, Streptococcus, and Granulicatella were defined as enriched in colorectal cancer.
Despite the methodological limitations of the studies, consistent evidence on bacterial taxa associated
with colorectal cancer was identified. Prospective studies in large and well-characterized patient
populations will be crucial to validate these findings.

Keywords: mucosal microbiota; colorectal cancer; microbiome; bacteria; 16S rRNA sequencing;
next-generation sequencing

1. Introduction

Colorectal cancer (CRC) is the third most frequent cancer and the second leading cause
of death due to cancer, for men and women, in the world [1,2]. Despite the implementation

Cancers 2022, 14, 3385. https://doi.org/10.3390/cancers14143385 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14143385
https://doi.org/10.3390/cancers14143385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-0961-2356
https://orcid.org/0000-0001-5247-840X
https://doi.org/10.3390/cancers14143385
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14143385?type=check_update&version=2


Cancers 2022, 14, 3385 2 of 23

of CRC screening programs aimed at reducing cancer incidence and mortality, a significant
proportion of cases are still diagnosed at advanced stages [3]. While early-stage CRC
patients usually have a good prognosis, and curative surgical control of the disease is
possible, patients with metastatic disease have a five-year survival rate of 14% [4,5]. In the
latter, radiotherapy and chemotherapy are the leading strategies for controlling disease, and
targeted therapy approaches have also been successful in prolonging the overall survival
of CRC patients [3,5].

The great majority of CRC cases are sporadic (70% to 80%), a subset have a hereditary
component, and another subset may occur as a consequence of inflammatory bowel dis-
eases [6]. Thus, CRC is considered as a complex disease resulting from the interactions of
environmental and genetic risk factors, leading to the accumulation of genetic alterations
that dysregulate oncogenic and tumor suppressor signaling pathways [7,8].

The human body is inhabited by large communities of microorganisms–the microbiota–
that together with their genome and the niche with which they interact constitute the
microbiome [9]. The microbiome plays an important role in the normal human physiology,
and alterations to the microbiome–host homeostasis, also known as dysbiosis, can affect
the development and progression of several diseases, including cancer [10]. Increasing
evidence supports the hypothesis that local dysbiosis contributes to carcinogenesis, by
stimulating inflammation, cell proliferation, and even direct DNA damage [11–13]. In fact,
mechanistic evidence has been provided for the involvement of Fusobacterium nucleatum,
Bacteroides fragilis, and colibactin-producing Escherichia coli in the pathogenesis of CRC [14–16].
Furthermore, patients with CRC have distinct bacterial colonization patterns in their tumor
tissues in comparison with their non-neoplastic mucosa or with the mucosa of healthy
subjects [17–19].

A large number of studies that address the CRC microbial community composition
have used fecal samples, prompted by their potential use as a non-invasive tool for cancer
screening and early detection [20,21]. In fact, recent data collected in a national screening
program suggest that microbial profiling may improve CRC screening accuracy [22]. How-
ever, while the use of fecal samples for microbiome studies may have advantages due to
their ease of collection and non-invasive nature, their composition does not accurately rep-
resent the more stable cancer microbiota and the mucosal interactions across the gut [23,24].
The local tissue microbial community has a central role in colorectal chronic inflammation
and tumorigenesis, and knowledge on its features is critical [25].

Since previous systematic reviews have explored the association of CRC with the
microbiome, focusing mainly on the fecal microbiome [26,27] or on specific species such as
Fusobacterium nucleatum [28,29], the aim of the present systematic review was to summarize
the current evidence on the relationship between the mucosal microbiome and CRC. We
reviewed the studies comparing the microbiota of patients diagnosed with CRC with that
of healthy control individuals, and the studies comparing the microbiota in the cancer and
in the non-cancerous mucosal tissues of CRC patients.

2. Materials and Methods

A systematic review was undertaken with the aim of identifying peer-reviewed pub-
lications that address the mucosal microbiome based on 16S rRNA gene characteriza-
tion by next-generation sequencing and CRC. The systematic review followed the recom-
mendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) [30]. The protocol has not been registered.

2.1. Eligibility Criteria

The inclusion criteria were: original studies comparing the human colonic tissue micro-
biota of patients with a confirmed diagnosis of CRC with that of healthy controls, or with the
non-cancerous adjacent tissue. Only studies evaluating the microbiota by next-generation
sequencing of the 16S rRNA gene performed in fresh/frozen tissue were included. Studies
not written in English, reviews, opinion articles, letters, conference reports or abstracts,
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studies without a comparison group, studies performed in paraffin-embedded tissues, stud-
ies in animals, and in vitro studies were excluded. Studies addressing only precancerous
lesions and studies targeting only specific microbes (e.g., Fusobacterium nucleatum) were
also excluded.

2.2. Information Sources and Search Strategy

Searches were conducted in the PubMed and Web of Science (WoS) databases. For
PubMed, the search strategy used Medical Subject Headings (MESH), as follows: (((mi-
crobiota[MeSH Terms]) OR (human microbiome[MeSH Terms]) OR (microbiome[MeSH
Terms])) AND ((cancer, colorectal[MeSH Terms]) OR (carcinoma, colorectal[MeSH Terms])
OR (colorectal neoplasms[MeSH Terms]) OR (colon cancer[MeSH Terms]) OR (colon neo-
plasms[MeSH Terms]) OR (rectal cancer[MeSH Terms]) OR (rectal neoplasms[MeSH Terms])
OR (gastrointestinal cancer[MeSH Terms]) OR (gastrointestinal neoplasms[MeSH Terms]))),
from inception through 31 December 2021. For the WoS database, we searched the Science
Citation Index Expanded from inception up to 2021, and the search strategy was the com-
bination of #1 TS = (microbiota OR microbiome) AND #2 TS = (colorectal neoplasm OR
colorectal cancer OR colon cancer).

2.3. Selection Process

Two authors (CPC and PV or MM-R) independently reviewed studies retrieved by the
search strategies and excluded studies based on titles and/or abstracts. When there was no
consensus, the study was maintained for full text analysis. The same authors independently
reviewed the selected studies for full text analysis. When there were discrepancies between
reviewers, there was a re-check of data followed by a discussion to reach consensus,
arbitrated by the senior author (CF).

2.4. Data Collection Process and Data Items

Two authors (CPC and PV or MM-R) independently extracted the great majority of the
data, with the exception of the α- and β-diversity parameters and the statistical methods
for microbiota features, which were extracted by JP-M and RMF. Discrepancies between
reviewers were arbitrated by CF. The primary outcomes were differences in microbial α-
and β-diversity, and in microbial taxonomy between tumor and healthy or non-cancerous
tissue. Only taxa with statistically significant differences at a p value < 0.05 were considered.
The following additional data from the included studies were also collected: country,
number of participants, gender, age group, details of recruitment and intervention, and
details on the microbiota characterization methods, including the targeted 16S rRNA
region, the sequencing platform, the database for taxonomy assignment, the parameters to
determine the α- and β-diversity, and the statistical methods used for comparisons of the
microbiota parameters.

2.5. Methodological Quality

The quality of the included studies was assessed using the Newcastle–Ottawa Scale
(NOS) [31]. The full evaluation score was 9 points, and comprised: (1) the selection of
study population, including case definition, case representativeness, control selection, and
control definition; (2) the comparability of the study groups, including the control for age
and the control for other relevant confounders; and (3) the ascertainment of the outcome
of interest, including the use of antibiotics as an exclusion criterion, the same method of
ascertainment for cases and controls, and the use of clearly described statistics to analyze
the data. A high-quality study was defined as having at least 7 points. Two reviewers (CPC,
PV, or MM-R) assessed the quality of the included studies for selection, comparability,
and ascertainment of the outcome of interest. CPC performed consensus. JP-M and RMF
assessed the study quality for the use of statistics for data analysis.



Cancers 2022, 14, 3385 4 of 23

2.6. Qualitative Synthesis of Microbial Taxonomy Results

For summarizing the microbial taxonomic relationships with CRC, qualitative syn-
thesis was performed. When ≥3 studies detected a specific taxon statistically significantly
enriched in CRC, and none identified it enriched in the healthy control or in the non-
cancerous mucosa, the association was considered as strongly positive. Conversely, when
≥3 studies detected a specific taxon enriched in the mucosa of healthy controls or in the
non-cancerous mucosa, and none identified it enriched in CRC, the association was con-
sidered as strongly negative. The associations were considered as suggestive when only
two studies identified statistically significantly associations in the same direction and no
studies identified associations in the opposite direction [32].

3. Results
3.1. Literature Search and Selection of Eligible Studies

The initial literature search yielded a total of 5080 studies. Removal of duplicates
resulted in 4225 articles, which were screened for eligibility based on title and abstract.
After assessing the full text of 112 studies, 73 studies were additionally excluded as not
meeting the requirements: 19 evaluated only fecal microbiota; 14 did not include controls;
13 used 16S rRNA data from previously published studies; 10 had another outcome or
study design; five analyzed specific bacterial species, four did not have CRC cases; four
used colonoscopy aspirates or tissue swabs; two did not characterize the microbiota;
and two presented animal data only. A total of 39 studies were included in the present
systematic review [19,33–70]. The PRISMA flow-chart of the study inclusion process is
shown in Figure 1.
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3.2. Population Characteristics and Quality Assessment of the Included Studies

An overview of the 39 included studies, their study design, and methods are summa-
rized in Tables 1 and 2, and in Supplementary Tables S1 and S2. Studies were published
between 2011 and 2021, the majority (28 of 39) having been published in the last 5 years.
Studies were conducted in Europe (n = 11), North America (n = 4), South America (n = 2),
Asia (n = 20), and Australia (n = 1). One study included patients from both Europe and
North America [37].

The tissue microbiota composition of CRC was compared with that of healthy con-
trols in six studies [33–36,68,69] (Table 1) and with that of non-cancerous colon tissue
of CRC patients in 27 studies (Table 2) [19,37–56,62–64,66,67,70]. Six studies included
both comparisons [57–61,65]. The number of participants used for microbiome analy-
sis ranged between 6 [19,55] and 115 [57], with 16 studies analyzing ≤ 25 participants
(Tables 1 and 2) [19,33,34,36–38,42,43,45,47–51,55,63]. The small sample size in these stud-
ies may reduce the accuracy of the results. In studies comparing CRC patients with healthy
controls, CRC patients tended to be older than controls (Table 1), with only one excep-
tion [58]. In studies comparing the tumor tissue and the non-cancerous tissue of CRC
patients, the localization and distance from the tumor where the non-cancerous tissue was
collected showed large variation (Table 2).

All included studies used 16S rRNA gene sequencing for microbiome analysis, with
the great majority targeting variable regions V3 and V4, alone or in combination with other
regions, three targeting the V1–V2 regions [33,37,45], one targeting the V5-V6 regions [39],
one targeting the V6 region [36], and two not reporting the target region [67,69]. The
most frequently used sequencing platforms were Illumina MiSeq and 454 GS FLX (Roche).
Studies resorted to different databases for taxonomic assignment, with Greengenes, SILVA,
and Ribosomal Database Project (RDP) databases being the most frequently used. For
statistical analyses of the taxonomic differences between the groups, seven studies did not
report the methods used [19,34,38,43,47,49,58], whereas the remaining studies used distinct
statistical approaches to analyze the data (Supplementary Tables S1 and S2).

The quality assessment of the included studies using the NOS scoring system is
summarized in Supplementary Tables S3 and S4. Studies scoring ≥ 7 were considered
as having high quality. Of the 12 studies comparing the colorectal microbiome in CRC
and in healthy controls, seven [34,35,57–60,68] had a high-quality score of ≥7, with the
median score being 7 (range 3–8). Of the 33 studies comparing tumors vs. non-cancerous
mucosa, 27 [37,39,40,42,44,46–48,50–66,70] scored ≥7, with the median score being 7 (range
6–9). In the criterion selection, and in all included studies, the most frequent problem
identified was the lack of information about the case representativeness of the population.
In comparability, while all studies comparing samples of tumor and non-cancerous mucosa
of CRC patients had the maximum score, only six studies [34,35,57–59,68] comparing CRC
and healthy controls had the maximum score, with some studies not performing correction
for confounders between cases and controls, allowing other factors to have a possible
impact on results and reducing comparability. Regarding the ascertainment of the outcome,
22 (56.4%) [19,33,34,37–39,41–43,45,46,48–50,55,56,59,61–63,67,69] of all included studies did
not include the use of antibiotics as an exclusion criterion (Supplementary Tables S3 and S4).
In addition, 17 studies did not perform or report the statistical methods used for taxonomic
and/or diversity comparisons [19,34,36,38,41,42,44–47,49,52,53,58,68–70]. Because of the
variation in different aspects of the studies, the ability to summarize the results and
conclusions and to compare individual results limited to a certain extent.
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Table 1. Baseline characteristics of studies determining the mucosal colorectal microbiota of CRC patients and healthy controls.

First Author, Year Country No. Participants
Study Participants (Males)

Age Mean or Median ± SD (Range) Recruitment Exclusions

CRC Healthy Controls

Geng, 2014 [33] China 18 8 (4)
Mean 56.9 ± 14.4

10 (NR)
NR

CRC: Undergoing colonoscopy
HC: volunteers NR

Gao, 2015 [58] China 61 31 (15)
Mean 67 ± 7.2

30 (14)
Mean 70 ± 5.1

CRC: Undergoing CRC surgery
HC: Undergoing colonoscopy

HC: BMI > 30 kg/m2; HC and CRC: use of
antibiotics within 2 months, regular use of
NSAIDs, statins, or probiotics; chronic bowel
disorders, food allergies/dietary restrictions;
pre-operative radiation or chemotherapy

Mira-Pascual, 2015 [34] Spain 12 7 (7)
Mean 71.1 ± 10.1

5 (3)
Mean 58.8 ± 10 Undergoing CRC screening NR

Nakatsu, 2015 [59] China DC: 113
VC: 75

DC: 52 (31)
Mean 67.85 ± 13.18
VC: 50 (26)
Mean 61.34 ± 9.97

DC: 61 (25)
Mean 60.813 ± 5.99
VC: 25 (10)
Mean 41.28 ± 7.87

Undergoing CRC screening
Personal history of CRC, IBD, prosthetic
heart valve or vascular graft surgery;
contraindications for colonoscopy

Thomas, 2016 [35] Brazil 36 18 (10)
Mean 59.3 ± 8.8

18 (9)
Mean 55.2 ±15.7

HC: Undergoing exploratory
colonoscopy
CRC: Undergoing CRC surgery

HC and CRC: use of antibiotics 4 weeks
before sample collection; CRC: neoadjuvant
therapy prior to tissue collection; IBD,
hereditary cancer syndromes

Flemer, 2017 [57] Ireland 115 59 (37)
Range 41–90

56 (24)
Range 27–29

HC: Undergoing s colonoscopy
CRC: Undergoing CRC surgery

HC and CRC: Personal history of CRC, IBD,
or IBS; CRC: use of antibiotics the month
prior to surgery

Richard, 2018 [60] Italy 27

CAC: 7(5)
Mean 50.7 ± 10
SC: 10 (5)
Mean 68.8 ± 12.1

10 (7)
Mean 48.3 ± 13.4

HC: Undergoing routine screening
CRC: Undergoing CRC surgery

HC: History/clinical symptoms of intestinal
disorders and endoscopic/histological signs
of cancer or IBD; HC and CRC: Infectious
colitis, coagulation disorders, anticoagulant
therapy; use of antibiotics/antifungal
therapy 2 months before inclusion

Zhang, 2019 [36] China 23 9 (6)
Mean 62.6 ± 8.9

14 (7)
Mean 44.1 ± 15 Undergoing CRC screening

IBS; use of antibiotics or probiotics 30 days
or infectious gastroenteritis 60 days
before colonoscopy

Wang Y, 2020 [61] China 101
75 (48)
Mean 63.4
(Range 29–82)

26 (17)
Mean 51.7
(Range 21–71)

HC: Undergoing colonoscopy
CRC: Undergoing CRC surgery NR

Nardelli, 2021 [65] Italy 40 20 (10)
Mean 69.4

20 (10)
Mean 53.2

HC: Undergoing colonoscopy
CRC: Undergoing CRC surgery

IBD or IBS; use of antibiotics, pro/prebiotics,
antiviral, or corticosteroids 2 months prior to
sample collection
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Table 1. Cont.

First Author, Year Country No. Participants
Study Participants (Males)

Age Mean or Median ± SD (Range) Recruitment Exclusions

CRC Healthy Controls

Osman, 2021 [68] Malaysia 36 18 (12)
Mean 64.88 ± 2.34

18 (11)
Mean 54.44 ± 2.91

Undergoing colonoscopy and
tumor removal surgery

History of cancer, IBD and polyps; use of
antibiotics 3 months prior to radiotherapy or
chemotherapy prior to surgery

Wang, 2021 [69] China 60 30 (17)
Mean 63.9 ± 6.58

30 (15)
Mean 52.17 ±9.02

HC: Undergoing colonoscopy
CRC: Undergoing surgery

History of cancer, Peutz–Jeghers or Lynch
syndromes; use of antibiotics/NSAIDS 1
month prior to sample collection

Abbreviations: CAC: colitis-associated colorectal cancer; CRC: colorectal cancer; DC: discovery cohort; HC: healthy controls; IBD: inflammatory bowel disease; IBS: irritable bowel
syndrome; NR: not reported; NSAIDs: non-steroidal anti-inflammatory drugs; SC: sporadic colorectal cancer; SD: standard deviation; VC: validation cohort.

Table 2. Baseline characteristics of studies determining the microbiota of CRC and non-cancerous mucosal tissues.

First Author, Year Country No. Participants (Males) Age Mean ± SD
Median (Range) Recruitment Exclusions NCT Distance

from Tumor

Marchesi, 2011 [19] The Netherlands 6 (5) Mean 63.5 (49–71) Undergoing CRC surgery NR 5–10 cm

Chen, 2012 [40] China 46 (NR)
For analysis: 27 (14) Mean 61 (37–81) Undergoing CRC surgery

Diabetes, infectious diseases, particular diets;
use of antibiotics within 1 month of
sample collection

Pa2t: 2–5 cm;
Pa10t: 10–20 cm

Geng, 2013 [45] China 8 (4) Mean 56.9 ± 14.4 Undergoing CRC screening NR NR

Zeller, 2014 [56] Germany 38 (25) Mean 61.7 ± 13.5 (34–90) Undergoing CRC surgery
Previous colon or rectal surgery, CRC,
inflammatory or infectious injuries of the
intestine; need for emergency colonoscopy

NR

Allali, 2015 [37] USA
Spain

USA: 22 (11)
Spain: 23 (15)

Mean 63.6 (42–88)
Mean 69.8 (49–85)

Tissue bank
Undergoing CRC surgery NR USA: NR

Spain: 5 cm

Burns, 2015 [39] USA 44 (12) Mean 64.9 ± 16.7 (17–91) Biobank NR NR

Gao, 2015 [58] China 31 (15)
For analysis: 20 NCT Mean 67 ± 7.2 Undergoing CRC surgery

Use of antibiotics within 2 months, regular
use of NSAIDs, statins, or probiotics; chronic
bowel disorders, food allergies/dietary
restrictions; pre-operative radiation
or chemotherapy

5 cm

Nakatsu, 2015 [59] China DC: 52 (31)
VC: 50 (26)

DC: Mean 67.85 ± 13.18
VC: Mean 61.34 ± 9.97 Undergoing CRC screening

Personal history of CRC, IBD, prosthetic
heart valve or vascular graft surgery;
contraindications for colonoscopy

≥4 cm
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Table 2. Cont.

First Author, Year Country No. Participants (Males) Age Mean ± SD
Median (Range) Recruitment Exclusions NCT Distance

from Tumor

Brim, 2017 [38] USA 10 (5) Range 41–88 Undergoing CRC surgery NR NR

Drewes, 2017 [43] Malaysia 23 (12) Mean 62.22 ± 11.99 Undergoing CRC surgery Personal history of CRC or IBD;
pre-operative radiation or chemotherapy NR (as far as possible)

Flemer, 2017 [57] Ireland 59 (37) Range 41–90 Undergoing CRC surgery Personal history of CRC, IBD, or IBS; use of
antibiotics the month prior to surgery

OFFD and OFFP:
2–5 cm; UDD and UDP:
10–30 cm from
the tumor

Gao, 2017 [44] China 65 (35) Mean 63.49 ± 1.46 Undergoing CRC surgery
Use of antibiotics or probiotics within
4 weeks, acute diarrhea, adenoma or polyps,
IBD, IBS

>5 cm

Kinross, 2017 [47] UK 18 (10) Median 76 (55–85) Undergoing CRC surgery

Previous colorectal surgery, undergoing
emergency surgery; pre-operative
chemotherapy or radiotherapy; use of
antibiotics or probiotics 6 weeks prior to
surgery; history of FAP or IBD

5 cm and 10 cm

Cremonesi, 2018 [41] Germany 31 (21)
For analysis: 27 67.5 (35–82) Undergoing CRC surgery NR NR

Hale, 2018 [46] USA 106 (57) Mean 65.3 (23–90) Undergoing CRC surgery Radio or chemotherapy 2 weeks before
enrollment NR (adjacent and distal)

Loke, 2018 [50] Malaysia 17 (7) Mean 62.47 (41–84) Undergoing CRC surgery Pre-operative radiation or chemotherapy;
history of CRC or IBD NR

Richard, 2018 [60] Italy CAC: 7(5)
SC: 10 (5)

CAC: Mean 50.7 ± 10
SC: Mean 68.8 ± 12.1 Undergoing CRC surgery

Infectious colitis, coagulation disorders,
anti-coagulant therapy; use of antibiotics or
antifungal therapy 2 months before inclusion

<5 cm

de Carvalho, 2019 [42] Brazil 152 (81)
For analysis: 15 Mean 60.63 ± 13.7 Undergoing CRC surgery NR NR

Leung, 2019 [48] Australia 19 (9) Mean 64.7 ± 15.4 Undergoing CRC surgery NR Proximal
resection margin

Liu, 2019 [49] China 8 (5) Mean 61.3 ± 10.1 (50–78) Undergoing CRC surgery NR 2 cm

Saffarian, 2019 [52] France 58 (37) Mean 68.98 (23–92) Undergoing CRC surgery Undergoing chemotherapy, radiotherapy, or
antibiotic treatment 15–20 cm

Pan, 2020 [51] China 23 (11) Range: 49–70 Undergoing CRC surgery Use of antibiotics prior to sample collection >5 cm
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Table 2. Cont.

First Author, Year Country No. Participants (Males) Age Mean ± SD
Median (Range) Recruitment Exclusions NCT Distance

from Tumor

Sheng, 2020 [53] China 66 (38) Range: 35–94 NR

Radiotherapy or chemotherapy before
surgery; use of antibiotics, NSAIDs, statins,
or probiotics 3 months before surgery; family
history of CRC; IBD; diabetes; hypertension;
food allergies

>10 cm

Wang Q, 2020 [54] China 36 (NR) NR Undergoing CRC surgery
Use of antibiotics or probiotics 4 weeks
before surgery; undergoing radiotherapy or
chemotherapy; diabetes; infectious diseases

>5 cm

Wang Y, 2020 [61] China 75 (48) Mean 63.4 (29–82) Undergoing CRC surgery NR Adjacent and off tumor

Wirth, 2020 [55] Germany 6 (NR) NR Undergoing CRC surgery NR NR

Choi, 2021 [62] Republic of Korea 51 (51) Range: 43–86 Undergoing CRC surgery NR NR

Liu, 2021 [63] China DC: 11 (8)
VC: 10 (8)

DC: Mean 64.91 ± 15.20
VC: Mean 65.33 ± 7.54 NR NR NR

Malik, 2021 [64] USA 51 (30) 62 ± IQR 20 Undergoing CRC surgery Hereditary CRC syndromes, IBD;
neoadjuvant treatment NR

Nardelli, 2021 [65] Italy 20 (10) Mean 69.4 Undergoing CRC surgery
IBD or IBS; use of antibiotics, pro/prebiotics,
antivirals, or corticosteroids 2 months prior
to sample collection

NR

Niccolai, 2021 [66] Italy 45 (NR) Range: 30–90 Undergoing CRC surgery

Previous cancer surgery, chemo or
radiotherapy; use of immunosuppressives,
antibiotics, or probiotics in the previous
2 months; cancer, IBD

NR

Okuda, 2021 [67] Japan 29 (15) Range 37–94 Underwent CRC surgery CRC with FAP; IBD 3 cm

Zhang, 2021 [70] China 136 (81)
For analysis 101 (58)

Median 64 (21–88)
For analysis: Median 64
(21–88)

Undergoing CRC surgery No chemo or radiotherapy and no antibiotics
1 month before resection NR (as far as possible)

Abbreviations: AM: adjacent mucosa; CAC: colitis-associated colorectal cancer; CRC: colorectal cancer; DC: discovery cohort; FAP: familial adenomatous polyposis; IBD: inflammatory
bowel disease; IBS: irritable bowel syndrome; NCT: non-cancerous tissue; NR: not reported; NSAIDs: non-steroidal anti-inflammatory drugs; OFFD: off-distal; OFFP: off-proximal; Pa2t:
matched paracancerous tissue 2–5 cm; Pa10t: matched paracancerous tissue 10–20 cm; SC: sporadic colorectal cancer; SD: standard deviation; UDD: undiseased distal; UDP: undiseased
proximal; VC: validation cohort.
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3.3. Microbial Diversity Findings

The main findings of the microbial α-diversity (i.e., within sample diversity) and
β-diversity (i.e., diversity between samples) are detailed in Tables 3 and 4. Diversity param-
eters were assessed with different methods between studies, used alone or in combination.
While the most frequent metrics for evaluating α-diversity were the Observed species and
the Shannon and Chao1 indexes, the unweighted and/or weighted UniFrac distances and
Bray–Curtis dissimilarity were used to evaluate β-diversity (Tables 3 and 4). In the 12 stud-
ies comparing the mucosal microbiome between CRC patients and healthy controls, five
assessed α-diversity [35,36,58,60,69], with inconsistent results: one study reporting signifi-
cantly higher α-diversity in CRC patients [35], one showing significantly lower α-diversity
in CRC [69], and the remaining three reporting no statistically significant differences [36,60]
or showing inconsistencies between the text and the presented figures [58]. Eight studies
assessed β-diversity [34–36,57,60,65,68,69], and four of them showed that the structure of
the mucosal microbiome of CRC patients was significantly different from that of healthy
controls [35,57,60,65] (Table 3).

In the 33 studies comparing the microbiota of tumor and non-cancerous tissues in
CRC patients, 22 evaluated α-diversity, with 12 showing no statistically significant differ-
ences between tumor and normal mucosa [37,42,44,45,47,48,53,59,60,63–65], eight reporting
significantly lower microbial diversity in cancer tissues [40,46,50,51,55,62,66,70], and one
reporting significantly higher diversity in cancer tissues [39] (Table 4). One study stated
lower α-diversity in CRC, but without statistical support [52]. Three studies indicated
different α-diversity results when using different indexes [40,55,66]. Twenty studies as-
sessed β-diversity, with five showing that the structure of the microbial communities
could distinguish cancer from non-cancerous tissues [19,50,54,62,64], seven showing no
statistically significant differences [37,40,48,55,57,60,63], and the remaining eight studies
reporting differences or similarities in the microbiota structure, but without statistical
methods supporting the findings [42,44–46,49,52,53,70]. The use of different metrics and
statistical tests to determine microbial diversity is a limitation in the comparability of the
results reported.

3.4. Microbial Taxonomy Findings

The reported taxonomic levels varied throughout different studies, with predominant
analysis and detection of phyla and genera. Despite some studies identifying taxa to
the species level, it was necessary to approach these results with caution considering the
intrinsic limitation of 16S rRNA short-amplicon sequencing in providing reliable detection
at the lower taxonomic level of species.

While some results on bacterial taxa were consistent between studies, others were
only significant in one study, or differed in the direction of the associations. For example,
the phylum Firmicutes was found to be significantly enriched in the normal mucosa
in four studies [39,41,44,62] and significantly enriched in CRC tissues in one study [58].
Various studies did not present overall taxonomic comparisons between CRC and the non-
cancerous mucosa or the respective statistical analysis [19,34,38,47,49,69]. Three studies
did not identify significant differences in the overall microbiota composition in CRC
tissues and the paired non-cancerous mucosal tissues [51,55,57]. A detailed overview of
the statistically significant taxonomic findings in the different studies can be found in
Supplementary Table S5.
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Table 3. Summary of the diversity findings in the colorectal microbiota of CRC patients and healthy controls.

α-Diversity β-Diversity

First Author, Year Measure Findings in CRC Measure Findings

Geng, 2014 [33] NR NR NR NR

Gao, 2015 [58] Shannon, Simpson, Chao1 and
ACE indexes

Inconsistent between text
description and figures NR NR

Mira-Pascual, 2015 [34] NR NR UniFrac Distinguished CRC from HC ‡

Nakatsu, 2015 [59] NR NR NR NR

Thomas, 2016 [35] Observed species, Shannon and
Simpson indexes Significantly higher Unweighted and weighted UniFrac;

Bray–Curtis dissimilarity Distinguished CRC from HC

Flemer, 2017 [57] NR NR Unweighted and weighted UniFrac;
Spearman rank distance Distinguished CRC from HC

Richard, 2018 [60] Chao1 index
Observed species and Shannon index

NS
Significantly lower in CAC Bray–Curtis dissimilarity

Distinguished HC from SC
and CAC
Distinguished SC from CAC

Zhang, 2019 [36] Shannon and Chao1 indexes NS Unweighted UniFrac Similar between CRC and HC ‡

Wang Y, 2020 [61] NR NR NR NR

Nardelli, 2021 [65] NR NR Weighted UniFrac Distinguished CRC from HC

Osman, 2021 [68] NR NR Unweighted UniFrac Distinguished CRC from HC ‡

Wang, 2021 [69] Observed species, Shannon, Chao, and
ACE indexes Significantly lower Weighted UniFrac Distinguished CRC from HC ‡

Abbreviations: CAC: colitis-associated colorectal cancer; CRC: colorectal cancer; HC: healthy controls; NR: not reported; NS: no statistically significant differences; SC: sporadic colorectal
cancer; ‡ without statistical analysis.

Table 4. Summary of the diversity findings in the mucosal microbiota of CRC and non-cancerous mucosal tissues.

α-Diversity β-Diversity

First Author, Year Measure Findings in CRC Measure Finding

Marchesi, 2011 [19] NR NR Libshuff analysis Distinguished CRC from NCT

Chen, 2012 [40] Shannon index
Chao index Significantly lower NS Unweighted UniFrac NS
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Table 4. Cont.

α-Diversity β-Diversity

First Author, Year Measure Findings in CRC Measure Finding

Geng, 2013 [45] Observed species NS UniFrac Distinguished CRC from NCT ‡

Zeller, 2014 [56] NR NR NR NR

Allali, 2015 [37] Phylogenetic diversity and
observed species NS Unweighted UniFrac NS

Burns, 2015 [39] Phylogenetic diversity, Shannon and
Inverse Simpson’s indexes Significantly higher NR NR

Gao, 2015 [58] NR NR NR NR

Nakatsu, 2015 [59] Inverse Simpson’s index NS NR NR

Brim, 2017 [38] NR NR NR NR

Drewes, 2017 [43] NR NR NR NR

Flemer, 2017 [57] NR NR Unweighted and weighted UniFrac;
Spearman rank distance NS

Gao, 2017 [44] ACE, Chao1, Shannon, and
Simpson indexes NS Bray–Curtis dissimilarity Distinguished CRC from NCT ‡

Kinross, 2017 [47] Shannon index NS Bray–Curtis dissimilarity NR

Cremonesi, 2018 [41] NR NR NR NR

Hale, 2018 [46] Shannon index Significantly lower Unweighted and weighted UniFrac Similar between CRC and NCT ‡

Loke, 2018 [50] Observed species and Shannon index Significantly lower Unweighted UniFrac Distinguished CRC from NCT

Richard, 2018 [60] Observed species, Chao1, and
Shannon indexes NS Bray–Curtis dissimilarity NS

de Carvalho, 2019 [42] Observed species, Chao1, Shannon
indexes and Phylogenetic diversity NS Unweighted UniFrac Similar between CRC and NCT ‡

Leung, 2019 [48] Observed species, Chao1, Shannon,
and Simpson NS Weighted UniFrac NS

Liu, 2019 [49] OTU number, Chao1, ACE, Shannon,
and Simpson NR Weighted UniFrac Similar between CRC and NCT ‡

Saffarian, 2019 [52] Chao1 index Lower ‡ Unweighted UniFrac Similar between CRC and NCT ‡
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Table 4. Cont.

α-Diversity β-Diversity

First Author, Year Measure Findings in CRC Measure Finding

Pan, 2020 [51] Shannon index Significantly lower in stage III NR NR

Sheng, 2020 [53] Observed species, Chao1, Shannon,
and Simpson NS Bray–Curtis dissimilarity Similar between CRC and NCT ‡

Wang Q, 2020 [54] NR NR Unweighted UniFrac Distinguished CRC from NCT

Wang Y, 2020 [61] NR NR NR NR

Wirth, 2020 [55] Shannon and Simpson indexes
Chao1 and ACE indexes Significantly lower NS Unweighted and weighted UniFrac NS

Choi, 2021 [62] Shannon index and observed species Significantly lower Bray–Curtis dissimilarity Distinguished CRC from NCT

Liu, 2021 [63] Chao1 and Shannon indexes NS Bray–Curtis dissimilarity NS

Malik, 2021 [64] Observed species, Shannon and
Evenness indexes NS Morisita–Horn dissimilarity Distinguished CRC from NCT

Nardelli, 2021 [65] Shannon index NS NR NR

Niccolai, 2021 [66] Chao1 and breakaway species richness
Shannon index and Evenness Significantly lower NS NR NR

Okuda, 2021 [67] NR NR NR NR

Zhang, 2021 [70]
Pielou’s evenness, Phylogenetic
diversity, ACE, Chao, Shannon, and
Simpson indexes

Significantly lower Unweighted UniFrac Similar between CRC and NCT ‡

Abbreviations: CAC: colitis-associated colorectal cancer; CRC: colorectal cancer; NR: not reported; NS: no statistically significant differences; NCT: non-cancerous tissue; SC: sporadic
colorectal cancer; ‡ without statistical analysis.
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Table 5 presents the qualitative synthesis of the microbial taxonomic relationships with
CRC, considering strong positive and negative associations. Strong positive associations
were identified for 12 taxa. A strong positive association was identified for the phylum Fu-
sobacteria, which was enriched in the CRC mucosa in comparison with both the paired non-
cancerous mucosa [37,39,41,44,48,62,66,70] and the mucosa of healthy controls [58,60,65,68].
Strong positive associations were likewise identified for the family Fusobacteriaceae and
for the genus Fusobacterium, the latter having the highest number of studies reporting
statistically significant associations. A significant enrichment of Fusobacterium was reported
in the mucosa of CRC patients in six studies that compared it with the mucosa of healthy
controls [35,57–59,61,68], and in 19 studies that compared it with the non-cancerous tis-
sue [37,39,42,44,46–48,52–54,58,59,61–64,66,67,70]. A strong positive association was identi-
fied for Fusobacterium nucleatum, with three studies reporting its enrichment in the CRC mu-
cosa in comparison with the non-cancerous mucosa [37,43,56]. Additional strong positive
associations were identified for Campylobacter [37,42,44,48,57,59,61,62,64,67,68,70], Parvi-
monas [37,42,44,57,59,61,63,67,68,70], Peptostreptococcus [42,44,54,57–59,61,63,67,68], Strep-
tococcus [33,37,48,53,57,58,60,61,67], and Granulicatella [37,44,57,59,61]. All of these genera
were found to be significantly enriched in CRC in comparisons with both healthy controls
and with the non-cancerous mucosal tissue. Strong positive associations with CRC were
also identified for Selenomonas [44,62,67,70] and Gemella [37,44,59] in studies that compared
CRC tissue with the non-cancerous tissue. At the species level, Bacteroides fragilis had
a strong positive association with CRC both in comparison with the non-cancerous tis-
sue [43,52,59] and with healthy controls [35,59,65,68]. Overall, six genera—Fusobacterium,
Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella—were identi-
fied as strongly associated and enriched in CRC tissues in both types of studies (Table 5).
These genera were identified in patients from both Eastern and Western origins (Table 5).

Taxa with suggestive positive associations with CRC are shown in Supplementary Table S6,
and include, among others, the orders Campylobacteriales, Fusobacteriales [62,70], and
Clostridiales [35,57], the families Campylobacteriaceae [62,70], Gemellaceae [67,70], and Strep-
tococcaceae [42,60], the genera Escherichia-Shigella [57,58], Oscillospira [35,59], and Porphy-
romonas [33,57], and the species Gemella morbillorum [43,52] and Parvimonas micra [43,52].

Strong negative associations were identified for 18 taxa. A strong negative association was iden-
tified for the family Ruminococcaceae, which was reported as enriched in the non-cancerous mucosa
of CRC patients in seven studies [39,40,53,60,62,67,70]. Likewise, there was a strong negative asso-
ciation between CRC and the genus Ruminococcus [37,42,53,62,66,67]. Further strong negative
associations were identified for the genera Parabacteroides [37,40,42,44,46,53,60,62,70], Faecalibac-
terium [37,40,53,60,62], Pseudomonas [42,44,50,58], Acinetobacter [44,52,70], Akkermansia [53,64,67],
Bacillus [40,44,61], Bifidobacterium [50,62,70], Collinsella [50,62,67], and the species Faecalibac-
terium prausnitzii [39,46,60], all in studies that compared CRC tissue with the non-cancerous
mucosal tissue. Klebsiella [35,36,57] and Propionibacterium [35,58,68] had strong negative
associations with CRC in studies comparing the microbiota of CRC patients with that of
healthy controls. Blautia had a strong negative CRC association in both types of compar-
isons [37,46,57,59,60,68].

Taxa with suggestive negative associations with CRC included the family Bifidobacteri-
aceae [62,70] and the genera Methylobacterium [40,61], Oscillibacter [50,52], Paraprevotella [40,42],
and Veillonella [54,67], all reported in studies comparing tumor and non-cancerous mu-
cosal tissues. Additional suggestive negative associations with CRC were identified
for the genera Acinetobacter, Brevundimonas, Faecallibacterium, Neisseria, Pedobacter, and
Stenotrophomonas in comparisons of CRC patients with healthy controls. The full set of taxa
and the respective associations are detailed in Supplementary Table S6.

Finally, microbiome correlation network analysis was performed in six of the included
studies [33,39,50,59,69,70], most of them reporting positive and/or negative correlations
between Fusobacterium and other taxa, and in general, bacteria found enriched in CRC
tissues tended to co-occur.



Cancers 2022, 14, 3385 15 of 23

Table 5. Qualitative synthesis showing the strong microbial taxonomic associations with CRC and
the geographic origin of the populations in the studies.

Microbial Taxa
CRC vs. HC

N (%) Studies *
Origin CRC vs. NCT

N (%) Studies **
Origin

E W E W
Phylum Actinobacteria 4 (14%) 3 1

Bacteroidetes 5 (17%) 1 4
Fusobacteria 4 (40%) 2 2 8 (28%) 3 5

Family Fusobacteriaceae 3 (10%) 2 1
Porphyromonadaceae 4 (14%) 2 2
Rikenellaceae 4 (14%) 2 2
Ruminococcaceae 7 (24%) 5 2

Genus Acinetobacter 3 (10%) 2 1
Akkermansia 3 (10%) 2 1
Bacillus 3 (10%) 3 0
Bifidobacterium 3 (10%) 3 0
Blautia 3 (30%) 2 1 4 (14%) 1 3
Campylobacter 4 (40%) 3 1 9 (31%) 5 4
Collinsella 3 (10%) 3 0
Faecalibacterium 5 (17%) 3 2
Fusobacterium 6 (60%) 4 2 19 (66%) 10 9
Gemella 3 (10%) 2 1
Granulicatella 3 (30%) 2 1 3 (10%) 2 1
Klebsiella 3 (30%) 1 2
Parabacteroides 9 (31%) 5 4
Parvimonas 4 (40%) 3 1 8 (28%) 6 2
Peptostreptococcus 5 (50%) 4 1 6 (21%) 5 1
Propionibacterium 3 (30%) 2 1
Pseudomonas 5 (17%) 4 1
Ruminococcus 6 (21%) 3 3
Selenomonas 4 (14%) 4 0
Streptococcus 3 (30%) 2 1 7 (24%) 4 3

Species Bacteroides fragilis 4 (40%) 2 2 3 (10%) 2 1
Faecalibacterium
prausnitzii 3 (10%) 0 3

Fusobacterium
nucleatum 3 (10%) 1 2

* [33,35,36,57–61,65,68]; ** [37,39–46,48,50–67,70]; E, Eastern origin; W, Western origin; Cells in magenta represent
strong positive associations (≥3 studies in same direction; none in opposite direction); Cells in blue represent
strong negative associations (≥3 studies in same direction; none in opposite direction).

3.5. Microbiota and Clinicopathological Features

Although the relationships between the microbiota and CRC clinical and pathological
parameters were not the primary outcomes of this review, we summarized the major findings
of the 14 included studies that performed these analyses [34,35,41,44,46–48,51–53,57–60]. One
study reported differences in the microbiota of late-stage CRC, with decreased α-diversity,
increased abundance of Fusobacterium, Peptostreptococcus, and Streptococcus, and lower levels
of Akkermansia, Ruminococcus, Granulicatella, Lactobacillus, and, Bacteroides fragilis [51]. An
enrichment of Fusobacterium and Campylobacter in the tumor in comparison to the normal
mucosa was also reported in patients with T4 tumors [48]. Other studies, however, reported
Fusobacterium as more abundant in early-stage CRC [46,59]. Enrichment of Parvimonas,
Gemella, and Leptotrichia [59], Eikenella corrodens and Eubacterium ventriosum [68], and Bac-
teroides fragilis [46] was also reported in early- compared to late-stage CRC. Low levels of
Bacteroides, Blautia, F. prausnitzii, Sutterella, Collinsella aerofaciens and Alistipes putredinis in
early-stage CRC were also reported [59], as well as increased abundance of Prevotella inter-
media, Harryflintia acetispora and Dialister pneumosintes in advanced CRC [68]. Thomas et al.
found an increased abundance of Coprococcus, Dorea, Roseburia, and Mogibacterium in CRC
with lymph node metastasis [35]. Mira-Pascual et al. analyzed the relationship between
tumor stage and the microbiota composition, and identified lower abundance of Staphylo-
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coccus in T2 vs. T3 tumors, and within the T3 stage, Streptococcus was significantly more
abundant in tumor than in healthy tissues [34]. Kinross et al. identified a cluster of bacteria,
comprising Lachnospiracea intertie sedis, Streptococcus, Prevotella, and Paraprevotella, associ-
ated with patients with T4 adenocarcinomas, and poor tumor differentiation [47]. Poorly
differentiated tumors had overrepresentation of Fusobacterium, Streptococcus, Solobacterium,
and Clostridium XI, and underrepresentation of Subdoligranulum. This study also reported
an association between increased Bacteroides with extramural vascular invasion and lower
levels of Roseburia with the presence of lymphovascular invasion. One study evaluated the
microbiota according to the histological subtype of CRC and identified increased Fusobac-
terium and Campylobacter and low levels of Brevundimonas in adenocarcinoma vs. normal
tissue, whereas no such differences were identified in the mucinous subtype [48]. The
same study also reported higher relative abundance of Fusobacterium and Campylobacter,
and decreased Brevundimonas in CRC tissue compared to normal mucosa in patients with
lower survival time (below 20 months), whereas no such differences could be identified in
patients with higher survival (20–40 months and over 40 months) [48].

Six studies evaluated the relationship between the colonic microbiota and tumor loca-
tion in CRC, with differences in the microbial composition between proximal and distal
cancer [52,53,57,58,63,65]. Halomonas and Shewanella [57], Fusobacterium, Escherichia-Shigella,
and Leptotrichia [58] and Parvimonas micra [52] were predominant in distal CRC, whereas
Faecalibacterium, Blautia, and Clostridium [57], Prevotella, Pyramidobacterium, Selenomonas,
and Peptostreptoccus [58] prevailed in proximal CRC. In contrast, in another study, Fu-
sobacterium and Bacteroides fragilis were found more abundant in proximal tumors [52].
Others reported Akkermansia muciniphila, Granulicatella adiacens, Streptococcus intermedius,
and Gemella haemolysans as significantly more abundant, and Alistipes spp., Bacteroides spp.,
and Parabacteroides distasonis as significantly less abundant, in the sigma-descending colon
than in the ascending colon [65]. One study reported an increase in microbial richness from
proximal colon to rectal cancer [58], while these differences were not found in samples of
healthy controls [57]. Overall, no major consensus could be identified as to which specific
taxon is associated with different clinicopathological features.

4. Discussion

The characterization of the microbiome–host interactions in CRC is crucial for gener-
ating knowledge that bridges the gap towards the understanding of the mechanisms of
colorectal carcinogenesis mediated by microorganisms. For that, it is key to have solid in-
formation on the microbiota that is present in the tissues and likely plays a more important
role in promoting chronic inflammation and tumorigenesis in CRC [25], rather than the
more variable and non-adhered fecal microbiota [23,24]. Such knowledge may ultimately
be used in novel strategies that aim to prevent, detect, and treat CRC.

Systematic reviews presenting evidence of gut microbiota differences between CRC
and healthy status, based on the fecal microbiota [26] or on the combination of fecal and
tissue microbiota [32], already exist. As per our knowledge, this is the first systematic
review focusing entirely on the microbiota in tissue samples in the context of CRC. This
systematic review included 39 studies that examined the differences between the mucosal
microbiota in patients with CRC and healthy controls, and within CRC patients, the
differences between the microbiota in the cancerous and in the non-cancerous tissues. We
consider that these results reflect the best available evidence about microbiota composition
and colorectal health. Although a meta-analysis was not performed due to the considerable
heterogeneity in the parameters evaluated by the different studies, a qualitative synthesis
of microbial taxonomy was presented.

The large variability in findings for both α- and β-diversity across studies did not
allow drawing major conclusions. Reduced microbial diversity appears to be a key aspect of
many disorders [71], and significantly lower diversity in cancer tissues was reported in nine
studies [40,46,50,51,55,62,66,69,70]. Still, a large number of studies reported no significant
differences [36,37,42,44,45,47,48,53,59,60,63–65]. In fact, significantly lower diversity of the



Cancers 2022, 14, 3385 17 of 23

microbiota in fecal samples from patients with CRC compared with normal subjects has
been described [72–74]. As for the β-diversity, the microbial structure could distinguish
CRC patients from healthy controls in 50% of the studies. In contrast, in 75% of the studies
comparing cancerous with non-cancerous tissues from the same patient, the microbiota
could not distinguish the two conditions. This suggests that the mucosal microbiota
may have an influence not only in the tumor tissue but also in the surrounding non-
cancerous tissues.

The microbial taxonomic findings showed that the mucosal microbiota differs not only
between patients with CRC and healthy individuals, but also in CRC patients between their
cancerous and non-cancerous tissues. Several taxa were found consistently associated with
CRC across different studies. We defined a core of six genera enriched in CRC, including
Fusobacterium, Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella.
Importantly, these genera were identified in studies including patients from Eastern and
Western origins, reinforcing their positive association with CRC, independently of the
patient origin. These bacteria tended to co-occur, clustering into groups with positive
correlations with each other and negative correlations with networks of bacteria depleted
in CRC [59].

High levels of F. nucleatum and Campylobacter have been associated with poor outcomes
of CRC, with bacterial load increasing with disease progression [48,75,76]. Importantly,
F. nucleatum has been found to promote CRC resistance to chemotherapy, being abundant
in tumor tissues of patients with recurrence after chemotherapy, and by targeting innate
immune signaling, specific microRNAs, and autophagy [77]. This suggests that decreasing
the abundance of Fusobacterium may be helpful to reduce not only CRC progression but
also resistance to chemotherapy.

Fusobacterium, and in particular F. nucleatum, attaches to and invades human cells
via the FadA adhesin, activating β-catenin signaling, increasing expression of transcrip-
tion factors LEF/TCF and NF-κB and cytokines IL-6, IL-8, and IL-18, thus being able to
generate a pro-inflammatory microenvironment and promote growth of CRC cells [78].
Mechanistic evidence in CRC pathogenesis has also been identified for Campylobacter and
Streptococcus. C. jejuni can promote CRC tumorigenesis through cytolethal distending toxin
in germ-free ApcMin/+ mice [79]. Streptococcus gallolyticus can selectively colonize tumor
cells and promote chronic inflammation and angiogenesis, contributing to the maintenance
and development of pre-existing neoplastic lesions [80,81]. Interestingly, Fusobacterium
has a strong ability to induce co-aggregation, and it has been suggested that it facili-
tates the internalization of normally non-invasive bacteria into epithelial cells, including
Campylobacter spp. and Streptococcus spp. [82,83].

Additional mechanistic data for a role of other bacterial taxa in CRC pathogenesis
have been increasing. Parvimonas micra was shown to promote intestinal carcinogenesis
in ApcMin/+ and germ-free mice, through alteration of immune responses, increased ex-
pression of pro-inflammatory cytokines including TNF-α, IL-6 and IL-12, and proliferation
of colon cells [84]. Peptostreptococcus anaerobius surface protein PCWBR2 interacts with
host cell α2/β1 integrins, enhancing cell proliferation and a pro-inflammatory immune
environment, which promotes CRC development in mice [85]. Furthermore, P. anaerobius
interacts with TLR2 and TLR4 to increase intracellular levels of reactive oxidative species
leading to cell proliferation, intestinal dysplasia, and CRC progression [86]. Enterotoxigenic
Bacteroides fragilis has been also associated with colorectal carcinogenesis, through the frag-
ilysin virulence metalloprotease that increases epithelial cell permeability, inflammation,
and TCF-dependent β-catenin nuclear signaling [87,88].

In this systematic review, other bacterial taxa were defined to have strong negative
associations with CRC, including Faecalibacterium, Parabacteroides, and Blautia. Faecalibac-
terium, namely F. prausnitzii, was found to be depleted in cancer tissues in comparison with
the non-cancerous mucosa of CRC patients, suggesting that the microenvironment at the
cancer site is not favorable to this bacterium. F. prausnitzii is the major butyrate producer
in the colon, inhibiting NF-κB and promoting IL-10 secretion, leading to inhibition of the
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production of inflammatory mediators [89]. F. prausnitzii and its metabolites were shown to
ameliorate colitis lesions [90]. Parabacteroides distasonis suppresses colonic tumorigenesis
and maintains the intestinal epithelial barrier in azoxymethane-treated mice [91]. Blautia
produces bacteriocins that maintain microbiome homeostasis and prevent inflammation by
upregulation of intestinal regulatory T cells [92].

CRC carcinogenesis is a long process that may take decades to develop [93]. Dysbiotic
changes in the gut bacterial community associated with inflammation and tumorigenesis
were shown to occur prior to the first signs of macroscopic tumor formation [94]. Still, it is
difficult to ascertain the true meaning of the associations between the microbial taxa and
CRC. Changes that occur in the tumor microenvironment along with disease progression
may lead to selective pressure on the microbial community [95]. As a result, there may be a
temporally different CRC-associated microbiota during tumor development, and bacteria
with pro-carcinogenic features that initiate CRC carcinogenesis, may be outcompeted by
opportunistic bacteria that thrive and proliferate in the tumor microenvironment [95].

Adding to the above and despite having defined bacterial genera with strong CRC
associations, many taxa inconsistencies between studies were also identified. Apart from
methodologic differences, one should also take into consideration the microbiome func-
tional redundancy, where different taxa may have similar metabolic signatures and func-
tions [96]. Thus, the lack of consistency found for some bacterial taxa may still be in line
with consistency in functionality.

Although the reviewed evidence revealed differences between the microbial commu-
nities of CRC and non-cancerous tissues (from both healthy controls and CRC patients), the
capacity to draw definite conclusions was limited by different aspects. The methodologies
used for DNA extraction, sample handling, and PCR were heterogeneous between studies.
Adding to this, the absence of negative controls throughout sample processing and the
use of dissimilar sequencing technologies may have also contributed to variation in the
results [97]. Another important issue was the selection of the hypervariable regions of
the 16S rRNA gene analyzed, as the lack of standardized usage of variable regions can
lead to distinct taxonomic profiles and diversity estimates [98]. Finally, differences in
bioinformatics and statistical analyses also contributed to inconsistencies between studies.
For example, taxonomic classification was performed using distinct taxonomic classifiers
and reference databases, and different versions of both. This, coupled with the application
of methods with different assumptions and statistical power, can also lead to heterogeneity
in results. Other limiting factors were the small number of subjects included and their
poor characterization, with minimal reporting of factors that interfere with the microbiome,
such as the use of antimicrobial therapy, probiotics, and body mass index. In addition,
bowel cleansing for colonoscopy, used as a selection method in some studies, can influence
the colon microbiome and was not considered as an exclusion criterion. Considering the
importance of these factors as potential confounders, we included in the study quality
assessment the use of antibiotics as an exclusion criterion. While studies comparing tumor
and matched non-cancerous mucosa do not present variation in age, sex, diet, and other
characteristics, those comparing CRC and healthy controls had differences in these potential
confounders, which may have influenced the results. Another limiting factor was variation
in populations from distinct geographical regions, with different genetic backgrounds and
diet and lifestyle habits that may have impacted colorectal microbiome composition [99].
This is in line with the findings from Allali et al. reporting significantly different microbial
diversity between US and Spanish cohorts [37]. Finally, none of the included studies had
longitudinal follow-up, thus not allowing the establishment of causal relationships between
the microbiota and the maintenance of health or the development of disease.

5. Conclusions

Although having herein defined a core microbiota associated with CRC, many micro-
biota features were inconsistent and lacked strong evidence to draw definite conclusions
about their role in CRC. It is, therefore, urgent to standardize methodologies for micro-



Cancers 2022, 14, 3385 19 of 23

biome analysis and reporting in order to increase the comparability of results. Future,
well-designed prospective studies including large numbers of subjects and taking into
consideration potential confounding factors will be key to clarifying the causal associa-
tion between the microbiome and CRC. Ultimately, a better understanding of the CRC
microbiome and its interaction with the host will contribute to novel microbiome-based
prevention, diagnosis, and treatment strategies aimed at controlling and decreasing the
CRC burden.
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//www.mdpi.com/article/10.3390/cancers14143385/s1, Table S1: Microbiome methodological anal-
ysis of included studies of the mucosal microbiota of CRC patients and healthy controls; Table S2: Mi-
crobiome methodological analysis of included studies of CRC and non-cancerous mucosal tissues;
Table S3: Quality of included CRC vs. HC studies based on the Newcastle–Ottawa quality assessment
scale; Table S4: Quality of included CRC vs. NCT studies based on the Newcastle–Ottawa quality
assessment scale; Table S5: Summary of the statistically significant microbial taxa identified in studies
comparing CRC vs. HC and CRC vs. NCT; Table S6. Qualitative synthesis showing the strong and
the suggestive microbial taxonomic associations with CRC. References [19,33–70] are cited in the
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