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Abstract

In this study we have used multiplex ligation-dependent probe amplification (MLPA) to measure the copy number of CFHR3
and CFHR1 in DNA samples from 238 individuals from the UK and 439 individuals from the HGDP-CEPH Human Genome
Diversity Cell Line Panel. We have then calculated the allele frequency and frequency of homozygosity for the copy number
polymorphism represented by the CFHR3/CFHR1 deletion. There was a highly significant difference between geographical
locations in both the allele frequency (X2 = 127.7, DF = 11, P-value = 4.97x10-22) and frequency of homozygosity (X2 = 142.3,
DF = 22, P-value = 1.33x10-19). The highest frequency for the deleted allele (54.7%) was seen in DNA samples from Nigeria
and the lowest (0%) in samples from South America and Japan. The observed frequencies in conjunction with the known
association of the deletion with AMD, SLE and IgA nephropathy is in keeping with differences in the prevalence of these
diseases in African and European Americans. This emphasises the importance of identifying copy number polymorphism in
disease.
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Introduction

Complement genes within the RCA (Regulators of Comple-

ment Activation) cluster at chromosome 1q32 are arranged in

tandem within two groups [1]. In a centromeric 360 kb segment

lie the genes for factor H (CFH) (OMIM 134370) and five factor

H-related proteins – CFHR1 (OMIM 134371), CFHR2 (OMIM

600889), CFHR3 (OMIM 605336), CFHR4 (OMIM 605337) and

CFHR5 (OMIM 608593). Sequence analysis of this region shows

evidence of segmental duplications (SDs) resulting in a high degree

of sequence identity between CFH and the genes for the five factor

H related proteins [2–4]. SDs such as those seen in the RCA

cluster are frequently associated with genomic rearrangements [5].

These usually occur as a result of non-allelic homologous

recombination (NAHR) between SDs but can also be a result of

gene conversion and microhomology mediated end joining

(MMEJ) [6]. Genomic disorders at this locus have affected CFH

and the CFHRs in a number of ways. Deletions as a result of

NAHR lead to the loss of CFHR1, CFHR3 and CFHR4. Deletions

within genes, occurring through both NAHR and MMEJ, result in

the formation of hybrid genes (CFH/CFHR1, CFHR1/CFH, CFH/

CFHR3, CFHR3/CFHR1) associated with diseases such as atypical

haemolytic uraemic syndrome (aHUS) and membranoproliferative

glomerulonephritis (MPGN) [7–9]. Complete deficiency of factor

H related proteins 1 and 3 had been found to be occur in ,4% of

a European population in protein studies before DNA studies of

the region [10]. This DNA copy number polymorphism (CNP) has

been extensively characterised in health and disease. It has been

shown that the deletion is associated with the presence of factor H

autoantibodies in aHUS [11,12], with an increased risk of SLE

[13] and a decreased risk of age-related macular degeneration [14]

and IgA nephropathy [15,16]. That there might be differences in

the population frequency of the CFHR3/1 deletion was suggested

from a study published in 2006 which showed that the prevalence

of homozygous deletion in African populations was ,16% [17].

Population difference in the deletion have been confirmed in

subsequent studies [13,18,19]. In this study we have measured

copy number of CFHR3 and CFHR1 with multiplex ligation-

dependent probe amplification (MLPA) [20] in a range of

populations derived from the HGDP-CEPH Human Genome

Diversity Panel (http://www.cephb.fr/en/hgdp/diversity.php)

[21].

Methods

Ethics statement
Use of anonymous human DNA samples in this study was

approved by the Northern and Yorkshire Multi-Centre Research

Ethics Committee.

CFHR1 and CFHR3 copy number was measured in DNA samples

from 238 individuals from the UK and 439 individuals from the

HGDP-CEPH panel. The UK samples comprised 70 DNA samples
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from the Health Protection Agency Culture Collections (http://www.

hpacultures.org.uk/products/dna/hrcdna DNA), 10 samples ob-

tained from local blood donors and 158 DNA samples from control

individuals within the Wellcome Trust Case Control Consortium

[22,23]. The samples from the Health Protection Agency were

originally obtained from a control population of randomly selected,

non-related UK Caucasian blood donors. The full collection of

samples with the HGDP-CEPH panel consists of 1051 individuals

from 51 world populations (http://www.cephb.fr). We selected for

analysis 439 samples from 17 different countries comprising 25

different populations (Table 1). We did not include populations for

which data is either already available (for example European

populations such as France) or where samples numbers were too

small to be representative. There were still some populations with a

small number of samples, including the sub-Saharan region of

Africa. These were combined into 11 geographical locations

(Table 2) for subsequent analysis. In each of these locations the

number of samples was greater than 20. In total 133 samples from

African populations were analysed, including 83 from sub-Saharan

countries. CFHR1 and CFHR3 copy number was measured as

described previously [24] using multiplex ligation-dependent probe

amplification [20] (MLPA) using a kit from MRC Holland (www.

mlpa.com) (SALSA MLPA kit P236-A1 ARMD) and in house

probes.

Statistics
Chi-square analysis was used to test whether there was deviation

from Hardy-Weinberg equilibrium in the geographical locations.

A p value of ,0.05 was considered to be not consistent with

Hardy-Weinberg equilibrium. Chi-square analysis was undertaken

to determine whether there was a significant difference between

geographical locations in either the allele frequency of the

CFHR3/CFHR1 deletion, the genotype frequencies (del+ +/del+

2/del2 2) or the frequency (del+ +) of a homozygous deletion of

CFHR3/CFHR1. Fisher’s exact tests were undertaken to determine

whether in different geographical locations either the allele

frequency of the CFHR3/CFHR1 deletion, the genotype frequen-

cies (del++/del+2/del22) or the frequency of a homozygous

deletion of CFHR3/CFHR1 were significantly different to the

values for these variables in the UK population, or to their values

in all other populations combined.

Results

The allele frequency of the CFHR3/CFHR1 deletion in the

various geographical locations and the individual populations

within these locations is shown in Table 2. There was no deviation

from Hardy-Weinberg equilibrium in any of the geographical

locations. The CFHR3/CFHR1 deletion was not present in either

the South American or Japanese locations. The highest allele

frequency for the deletion was 54.7% in Nigeria. The deletion was

Table 1. HGDP-CEPH samples used for measurement of CFHR3 and CFHR1 copy number.

Country Number of samples analysed Populations (n)

Algeria 29 Mzab (29)

Brazil 22 Surui (8)

Karitiana (14)

Central African Republic 23 Biaka pygmy (23)

China 50 Han (44)

Dai (6)

Colombia 7 Colombian (7)

Democratic Republic of Congo 13 Mbuti pygmy (13)

Italy 49 North Italy (13)

Tuscan (8)

Sardinian (28)

Japan 29 Japanese (29)

Kenya 11 Bantu (11)

Mexico 34 Pima (14)

Maya (20)

Namibia 6 San (6)

Nigeria 21 Yoruba (21)

Pakistan 50 Hazara (21)

Burusho (25)

Pathan (4)

Russia 41 Adygei (16)

Russian (25)

Senegal 22 Mandenka (22)

Siberia 24 Yakut (24)

South Africa 8 Bantu (8)

TOTAL 439

doi:10.1371/journal.pone.0060352.t001
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present in all other locations studied, with allele frequencies of

1.5%, 2.1% and 6.0% in Mexico, Siberia and China respectively,

15% in Pakistan, 18.3% in the UK, 22.4% in Italy and North

Africa, 25.6% in Russia and 33.7% in Sub-Saharan Africa.

Differences in allele frequencies between locations were highly

significant (X2 = 127.7, DF = 11, P-value = 4.97610222). The level

of statistical significance derived using Fisher’s exact test for the

allele frequency of the CFHR3/CFHR1 deletion in geographical

locations compared to the UK population is shown in Table 2.

The allele frequency of the CFHR3/CFHR1 deletion was

significantly lower in South America, Japan, Mexico, Siberia

and China; was not significantly different in Pakistan, Italy, North

Africa and Russia but was significantly higher in sub-Saharan

Africa and Nigeria.

The CFHR3/CFHR1 deletion was not found in homozygosity in

Mexico, South America, China, Japan, Pakistan or Siberia. The

frequency of homozygous deletion was 3.4% in the UK, between

5–10% in Italy, Russia, North Africa and Sub-Saharan Africa, and

33.3% in Nigeria. Differences in genotype frequencies between

geographical locations were highly significant (X2 = 142.3,

DF = 22, P-value = 1.33610219). Differences in the frequency of

the homozygous del++ genotype were also highly significant

(X2 = 56.8, DF = 11, P-value = 3.6661028). The level of statistical

significance derived using Fisher’s exact test for the del++/del+2/

Table 2. Allele frequencies and counts of the CFHR3/CFHR1 deletion in UK and HGDP-CEPH populations.

Geographical location

Allele frequency
of the CFHR3/CFHR1
deletion (%)

Counts
(del+ +/del+ 2/
del2 2)

Hardy-
Weinberg

Allele frequency of
the CFHR3/CFHR1
deletion in individual
populations (%)

P value
compared to
the UK
population

P value
compared to
all other
populations
combined

UK (n = 238) 18.3 8/71/159 x2 = 0,
p = 0.99

0.941

South America1 (n = 29) 0.0 0/0/29 Surui 0.0 3.5361025 1.2461025

Karitiana 0.0

Colombian 0.0

Japan (n = 29) 0.0 0/0/29 Japanese 0.0 3.5361025 1.2461025

Mexico (n = 34) 1.5 0/1/33 x2 = 0.01,
p = 0.99

Pima 0.0 6.7561025 2.9061025

Maya 2.5

Siberia (n = 24) 2.1 0/1/23 x2 = 0.01,
p = 0.99

Yakut 2.1 0.00189 9.9761024

China (n = 50) 6.0 0/6/44 x2 = 0.2,
p = 0.90

Han 6.8 0.0153 6.1261024

Dai 0.0

Pakistan (n = 50) 15.0 0/15/35 x2 = 1.56,
p = 0.46

Hazara 14.2 0.479 0.499

Burusho 12.0

Pathan 37.5

Italy (n = 49) 22.4 3/16/30 x2 = 0.19,
p = 0.91

North Italy 15.4 0.326 0.275

Tuscan 18.7

Sardinian 26.8

North Africa2 (n = 29) 22.4 2/9/18 x2 = 0.34,
p = 0.85

Mzab 22.4 0.476 0.384

Russia (n = 41) 25.6 3/15/23 x2 = 0.06,
p = 0.97

Adygei 41.2 0.131 0.0756

Russian 14.0

Sub-Saharan Africa3 (n = 83) 33.7 7/42/34 x2 = 1.44,
p = 0.49

Biaka pygmy 8.7 8.3761025 2.4261027

Mbuti pygmy 38.5

Kenya Bantu 50.0

San 8.3

Mandenka 50.0

South African Bantu 43.8

Nigeria (n = 21) 54.7 7/9/5 x2 = 0.38,
p = 0.83

Yoruba 54.7 5.8561027 5.6361028

1Brazil, Colombia; 2Algeria; 3Central African Republic, Democratic Republic of Congo, Kenya, Namibia, Senegal, South Africa.
The P value derived using Fisher’s exact test compares the allele frequency of the CFHR3/CFHR1 deletion in HGDP-CEPH populations to that of the UK population or all
other populations combined.
doi:10.1371/journal.pone.0060352.t002
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del22 genotype frequencies and for the frequency of the CFHR3/

CFHR1 deletion in homozygosity in individual populations,

compared to either the UK population or all other populations

combine , is shown in Table 3. The genotype frequencies were

significantly lower in South America, Japan, Mexico, Siberia and

China; were not significantly different in Pakistan, Italy, North

Africa and Russia but were significantly higher in sub-Saharan

Africa and Nigeria.

Discussion

In this study we have used multiplex ligation-dependent probe

amplification (MLPA) to determine the copy number of CFHR3

and CFHR1 in a variety of different geographical locations derived

from the HGDP-CEPH collection. MLPA has the advantage over

other techniques that have been used in that it provides a specific

determination of copy number. We measured copy number of

both CFHR3 and CFHR1 to determine the deleted allele frequency

because measurement of CFHR1 copy number alone is not specific

to this allele as it also occurs with the CFHR1/CFHR4 deletion

[24,25]. Using MLPA we have been able to determine both the

allele frequency of the deletion and the frequency of a homozygous

deletion. For statistical purposes we have set the UK population as

our reference. The value of 3.4% for the frequency of a

homozygous deletion in the UK population in this study is similar

to values that we have obtained in previous studies [11,24]

(Table 4) and the allele frequency of the deletion is similar to that

which we obtained on introduction of the MLPA assay (17.3% in

Moore et al [24]). The latter value is similar to the frequency of

18.3% that we have obtained in this study.

The values for the allele frequency of the deletion, the genotype

frequencies, and the frequency of a homozygous deletion that we

obtained for world-wide populations using the HGDP-CEPH

collection show marked population differences with the highest

Table 3. Homozygous CFHR3/CFHR1 deletion frequencies in UK and HGDP-CEPH worldwide populations.

Geographical
location

Homozygous
CFHR3/CFHR1
deletion (%)

Homozygous
CFHR3/CFHR1
deletion (%)
in individual
populations

P value
compared to
the UK
population
(genotype
frequencies)

P value
compared to
all other
populations
combined
(genotype
frequencies)

P value
compared
to the UK
population(del++

frequencies)

P value
compared to
all other
populations
combined
(del++

frequencies)

UK (n = 238) 3.4 0.415 0.434

South America
(n = 29)

0.0 Surui 0.0 1.6061024 1.1461024 0.605 0.633

Karitiana 0.0

Colombian 0.0

Japan (n = 29) 0.0 Japanese 0.0 1.6061024 1.1461024 0.605 0.633

Mexico (n = 34) 0.0 Pima 0.0 4.6361024 2.9761024 0.601 0.392

Maya 0.0

Siberia (n = 24) 0.0 Yakut 0.0 0.00920 0.00906 0.999 0.619

China (n = 50) 0.0 Han 0.0 0.00938 0.00495 0.358 0.157

Dai 0.0

Pakistan (n = 50) 0.0 Hazara 0.0 0.578 0.298 0.358 0.157

Burusho 0.0

Pathan 0.0

Italy (n = 49) 6.1 North Italy 7.7 0.470 0.458 0.407 0.472

Tuscan 0.0

Sardinian 7.1

North Africa (n = 29) 6.9 Mzab 6.9 0.425 0.533 0.297 0.372

Russia (n = 41) 7.3 Adygei 17.7 0.219 0.148 0.209 0.418

Russian 4.0

Sub-Saharan Africa
(n = 83)

8.4 Biaka pygmy 0.0 1.1461024 1.4961027 0.0720 0.080

Mbuti pygmy 7.7

Kenya Bantu 18.2

San 0.0

Mandenka 13.6

South African
Bantu 12.5

Nigeria (n = 21) 33.3 Yoruba 33.3 2.0661026 3.4161027 3.5061025 1.2261025

The P value derived using Fisher’s exact test compare either the genotype frequencies (del++/del+2/del22) or the frequency of homozygous CFHR3/CFHR1 deletion
(del++) in HGDP-CEPH populations with that of the UK population or all other populations combined.
doi:10.1371/journal.pone.0060352.t003
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Table 4. Reported population frequencies of the CFHR3/CFHR1 deletion.

Population
Number of
individuals

Allele frequency
of CFHR3/1 del

CFHR3/1
del/del Method Reference

UK 119 6.3% 1.6% MLPA [11]

UK 505 17.3% 3.0% MLPA [24]

France 70 8.6% 2.9% MLPA [48]

Spain 129 24% 7.0% MLPA and WB [25]

European American 275 19.8% 4.4% MLPA [13]

Asian 282 5.7% 0.7% MLPA [13]

Hispanic 196 17.8% 2.6% MLPA [13]

African American 106 42% 16% MLPA [13]

Austria 252 4.4% WB [10]

Germany 100 2.0% WB [11]

Tunisia 59 20% WB [18]

African American 347 15.9% Gene specific PCR [17]

Hispanic 266 6.8% Gene specific PCR [17]

European American 279 4.7% Gene specific PCR [17]

Chinese 94 2.2% Gene specific PCR [17]

HGDP African (sub-saharan) 127 17.3% Gene specific PCR [17]

HGDP North African 29 17.2% Gene specific PCR [17]

HGDP Middle Eastern 211 14.7% Gene specific PCR [17]

HapMap CEU 60 24.2% 8.3% [19]

HapMap CHB 45 8.9% 0% [19]

HapMap JPT 45 6.7% 0% [19]

HapMap YRI 60 55% 28% [19]

Coriell Diversity Panel African
American

100 37% 17% [19]

Coriell Diversity Panel Caucasian 100 21% 4% [19]

Coriell Diversity Panel Chinese 100 4.5% 0% [19]

Coriell Diversity Panel Mexican 100 13% 0% [19]

HapMap III CEU 59 21.2% 1.7% [19]

HapMap III TSI 90 24.4% 5.6% [19]

HapMap III GIH 90 38.3% 18.9% [19]

HapMap III MEX 55 11.8% 1.8% [19]

HapMap III CHB 45 6.7% 0% [19]

HapMap III CHD 50 3.5% 0% [19]

HapMap III JPT 46 3.3% 0% [19]

HapMap III ASW 53 34.0% 9.4% [19]

HapMap III LWK 52 42.3% 19.2% [19]

HapMap III MKK 149 23.8% 3.4% [19]

HapMap III YRI 60 53% 27% [19]

MLPA, multiplex ligation-dependent probe amplification.
WB, western blotting.
PCR, polymerase chain reaction.
CEU, Utah residents with Northern and Western European ancestry from the CEPH collection.
CHB, Han Chinese in Beijing, China.
CHD, Chinese in Metropolitan Denver, Colorado.
GIH, Gujarati Indians in Houston, Texas.
JPT, Japanese in Tokyo, Japan.
LWK, Luhya in Webuye, Kenya.
MEX, Mexican ancestry in Los Angeles, California.
MKK, Maasai in Kinyawa, Kenya.
TSI, Toscans in Italy.
YRI, Yoruba in Ibadan, Nigeria.
ASW, African ancestry in Southwest USA.
doi:10.1371/journal.pone.0060352.t004
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frequencies being seen in African populations. The findings in the

African groups are consistent with those reported (Hageman et al

[17]) in African Americans and validate their findings in HGDP-

CEPH African samples which were based on a gene specific PCR

method that measured frequency of a homozygous deletion

Subsequently there have been several other studies documenting

the frequency of the CFHR3/CFHR1 deletion in a range of

populations. The results from these are shown in Table 4. The

values in this study for both allele frequency and the frequency of

homozygous deletion are consistent with previous studies partic-

ularly for the UK, Japanese, Chinese and Nigerian populations.

We chose in this study to combine several populations from sub-

saharan Africa as the numbers for each group were small.

However, the study of Sivakumaran et al [19] suggests that for this

region there are significant differences in the allele frequency of

the deleted allele between tribes. For instance, they found an allele

frequency of 23.8% in the Maasai tribe of Kenya compared to

42.3% in the Luhya. As can be seen in Table 2 we also observed

differences in the allele frequencies of the different populations

within this geographical location. For instance in the Biaka

pygmyies the allele frequency was 8.7% compared to 50% in the

Kenyan Bantus and Senegal Mandenka tribes. Recent studies

documenting the genetic variation in this region show evidence of

at least two different genetic groups derived from the North and

South of the Kalahari [26,27]. This may explain the differences in

the allele frequency that we have seen in sub-saharan Africa. It is

possible that ancestral African populations with a low allele

frequency of the deletion were the ones which participated in the

‘‘out of Africa’’ dispersal with the associated bottleneck reinforcing

the low allele frequency. That generally the current African

populations with a low allele frequency of the deletion are Hunter-

gatherers is compatible with this [28,29]. The high allele frequency

of the deletion in the African-American population is compatible

with the allele frequency seen in the Yoruba and Mandenka

[27,30].

How in evolution has this deletion arisen and how can the

population differences be explained? The alternative pathway of

complement is thought to be the oldest component of the innate

immune system [31]. The earliest components of the alternative

complement pathway to have been recognised are activators such

as C3 which has been identified in a coral [32] suggesting their

presence in the Cnidria. Regulatory components have been first

recognised in the Agnatha with for instance identification of a C3

cleaving short consensus repeat protein in lamprey [33]. A protein

(called SBP1) with a high degree of homology to human factor H

was first described in the teleost, sand bass [34,35]. Factor H has

also been identified in the zebrafish [36]. In the zebrafish, the

mouse and humans there are genes encoding SCR proteins with a

high degree of homology to factor H in close proximity to the gene

encoding factor H. In man there are the five factor H related

proteins (CFHR1-5), in the mouse there are three factor H related

proteins and in the zebrafish there are 4 factor H like proteins.

Sequence analysis of this region in man suggests that these genes

have arisen through a series of segmental duplication events [2].

Analysis of primate genomes undertaken by Sivakumaran et al

suggests that chimps have more extensive duplication in this region

than humans. The analysis also suggests that the duplications arose

in a common ancestor of the chimp and humans after divergence

from the orang-utan [19]. The duplicated segments predispose to

both non-allelic homologous recombination (NAHR) and gene

conversion [37]. The available evidence would suggest that the

CFHR3/CFHR1 deletion has arisen through NAHR after the

initial formation of the SDs. Sivakuram et al used phylogenetic

and linkage equilibrium analysis to determine the ancestral orgin

of the deletion [19] and found a single origin in Caucasians and

Asians but a recurrent origin in Africans. We believe that in

certain populations that the deletion has resulted in an evolution-

ary benefit. There is evidence to suggest that polymorphisms in

complement proteins are associated with susceptibility to infection

[38]. For instance mannose-binding lectin (MBL) binds to

microbes and activates the lectin pathway. Allelic variants in the

gene (MBL2) encoding this protein are associated with differences

in both the serum level and function of MBL. The frequency of

these allelic variants differs in populations; and the same variants

are associated with a differential risk of pneumococcal disease and

leprosy. Recently it has been shown that variants in CFH and

CFHR3 are associated with susceptibility to meningococcal disease

[39]. These observations taken with the knowledge that comple-

ment plays a significant role in the pathogenesis other diseases

such as malaria [40] would suggest that infection has driven the

geographical variability seen in complement variants such as the

CFHR3/1 deletion.

Since the CFHR3/CFHR1 deletion was first described a number

of studies have documented strong linkage disequilibrium of the

deletion with common CFH haplotypes [41,42]. In some

populations the deletion is present on haplotypes H1-5 and absent

on H6-7 [41]. In other populations the H2 haplotype perfectly tags

the deletion [15]. Likewise in some populations individual SNPs

have been shown to be in complete LD with the deletion. Zhao

et al found that the deletion was in complete LD with rs6677604

in European Americans but not in African Americans (r2 = 0.60).

Whether the deletion confers an independent risk for AMD, SLE

and IgA nephropathy or is simply associated with protective/at-

risk haplotypes is an area of controversy [19,41,43]. However,

factor H related protein 1 blocks the C5 convertase but binds, in

competition with factor H, to host surfaces through its C-terminal

regulatory domain [44]. We are, therefore, of the opinion that

deletion of CFHR1 has a dual effect with reduced inhibition of

terminal complement pathway activity but increased regulation by

factor H of the alternative pathway. This may also explain why in

some diseases (AMD and IgA nephropathy) the deletion is

protective whilst in other others (SLE) it is associated with

increased risk.

It is also possible that CFHR3 has functional activity that

contributes to the disease association seen with the CFHR3/1

deletion. In African Americans with a higher frequency of the

deletion the prevalence of AMD and IgA nephropathy is lower

than in European Americans [45,46] whereas the prevalence of

SLE is higher [47]. Thus studying the population frequency of

disease associated CNPs such as the CFHR3/CFHR1 deletion

provides novel insights into the pathogenesis of such diseases.

However, at an individual level we do not think that screening for

the deletion in the normal population is currently of any clinical

benefit.
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