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Abstract
Purpose of review This review article discusses the evolution of extracellular volume (ECV) quantification using both cardio-
vascular magnetic resonance (CMR) and computed tomography (CT).

Recent findings Visualizing diffuse myocardial fibrosis is challenging and until recently, was restricted to the domain of the
pathologist. CMR and CT both use extravascular, extracellular contrast agents, permitting ECV measurement. The evidence base
around ECV quantification by CMR is growing rapidly and just starting in CT. In conditions with high ECV (amyloid, oedema
and fibrosis), this technique is already being used clinically and as a surrogate endpoint. Non-invasive diffuse fibrosis quanti-
fication is also generating new biological insights into key cardiac diseases.

Summary CMR and CT can estimate ECV and in turn diffuse myocardial fibrosis, obviating the need for invasive
endomyocardial biopsy. CT is an attractive alternative to CMR particularly in those individuals with contraindications to the
latter. Further studies are needed, particularly in CT.
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AS Aortic stenosis

AR Aortic regurgitation

CMR Cardiovascular magnetic resonance
CT Computed tomography

CVF Collagen volume fraction
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DCM Dilated cardiomyopathy

ECM Extracellular matrix

ECV Extracellular volume

ECVcemr  Extracellular volume quantified by cardiovascular
magnetic resonance

ECVcer  Extracellular volume quantified by computed

tomography
HCM Hypertrophic cardiomyopathy
HF Heart Failure
GBCAs  Gadolinium based contrast agents
IHD Ischaemic heart disease
LGE Late gadolinium enhancement
MI Myocardial infarction
MR Mitral regurgitation
SAP Serum amyloid P component
Introduction

Myocardial fibrosis is a frequently unwanted, common end
point in the majority of pathological mechanisms affecting
heart muscle. It can occur as focal scarring due to replacement
fibrosis following myocyte death (apoptosis, autophagy or
necrosis) or as diffuse fibrosis due to expansion of the colla-
gen fibre network around individual myocytes or myocyte
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bundles [1]. The best non-invasive technique for visualising
focal fibrosis is cardiovascular magnetic resonance (CMR) using
late gadolinium enhancement (LGE), because of the high con-
trast, high spatial resolution and whole heart coverage. Although
resultant image quality is currently reduced, myocardial fibrosis
can also be assessed with cardiac computed tomography (CT)—
both use an extracellular, extravascular contrast agent that lingers
in extracellular water in areas of scar, due to a higher volume of
distribution and slower kinetics. Visualization of diffuse fibrosis
until now has remained challenging and limited to the domain of
the pathologist, who was able to measure the extracellular matrix
(ECM) directly on histological sections using stains specific for
connective tissue [2]. Coupled with this, no useful blood bio-
markers of myocardial fibrosis are currently extant. In the last
7 years, the same contrast agents have begun to be used to
measure diffuse interstitial expansion (as well as focal scar), by
measuring the extracellular volume (ECV). This review will
focus on the quantification of ECV using the two most common-
ly used contrast agents: gadolinium and iodine based.

Development of an Extracellular Contrast
Agent

An extracellular contrast agent has a key set of properties: (1)
homogeneous distribution; (2) high water, but no fat solubil-
ity; (3) not adsorbed, actively transported, protein-bound or
metabolized; (4) non-toxic, stable and freely cleared from the
body and (5) readily measurable. lodine and gadolinium com-
pounds both fulfil these requirements as contrast agents. They
diffuse rapidly and passively from the vascular space into
extracellular tissue, but not into the intracellular space—Ilead-
ing to the term ‘extracellular, extravascular contrast agent’.
Following an intravenous bolus, they enter the myocardium
down a concentration gradient (‘wash-in phase’), and later,
while being cleared, they return to the blood pool down the
reverse concentration gradient (‘wash-out phase’). This occurs
over seconds to minutes in healthy myocardium, but in scar
tissue (focal or diffuse), these pharmacokinetics are delayed
due to changes in coronary flow rates, capillary permeability,
functional capillary density and the presence of a dense, hy-
drated collagen matrix [3]. In addition, the increased volume
of extracellular water present in scar compared to normal
myocardium means total accumulation is higher. The com-
bined result is that, at a certain time ‘late’ after a bolus, there
is more contrast agent in scar than in the blood or remote
myocardium and measurable signal is therefore changed.

In CMR, gadolinium-based contrast agents (GBCAs) are
used due to their unique magnetic properties (gadolinium is a
paramagnetic metal with the most unpaired electrons) [4].
They are particularly efficient T1-relaxing agents, resulting
in increased signal on T1-weighted images and typically
appearing bright on a T1 inversion recovery image. The
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relaxation rate (R1 or 1/T1) is directly proportional to the
concentration of gadolinium. In CT, non-ionic iodinated con-
trast agents have become the most commonly used contrast
agents [4, 5]; they are water-soluble, extracellular, extravascu-
lar contrast agents, which are not metabolized and are excreted
by the kidneys [6, 7]. CT attenuation values (represented as
Hounsfield units, HU) are directly proportional to the concen-
tration of iodine.

Extracellular Volume Imaging by CMR

Until recently, the gold standard of diagnosing diffuse fibrosis
was endomyocardial biopsy, which is invasive (carrying risk)
and is prone to sampling errors. This has led to the develop-
ment of new, non-invasive techniques to better quantify dif-
fuse fibrosis. CMR allows non-invasive tissue characteriza-
tion of the myocardium and as such, is being increasingly used
to identify the aetiology of a range of cardiomyopathies. LGE
is the mainstay of this myocardial characterization and allows
the detection of focal fibrosis [3, 8]. This technique combined
with functional imaging is the main reason that CMR is so
useful clinically. LGE imaging relies on the delayed post-
contrast difference in T1 between areas of fibrosis (more gad-
olinium, shorter T1) and healthy myocardium (less gadolini-
um, longer T1) [9], making it ideal for identifying focal areas
of fibrosis. In diffuse fibrosis, this relative difference is lost, so
conventional LGE imaging struggles—being a difference test
where the operator selects one ‘normal’ tissue to null making
all other tissues ‘bright’[9, 10+¢]. GBCAs change tissue T1;
however, the native (non-contrast) T1 also changes with pa-
thology. Advances in CMR sequences now permit its quanti-
fication via T1 mapping, which offers absolute values of T1,
rather than relative differences in signal intensity. [10e¢]

Native T1 describes the signal in the whole of the measured
myocardium and therefore represents a composite signal from
all species present—this signal is swamped by iron or gado-
linium if present and in their absence is measuring the signal
of both the cardiac myocytes and the ECM [10e¢]. Therefore,
fibrosis/oedema/amyloid and associated water increase T1,
and conversely increased cellularity (athleticism), iron
(thalassemia) or fat (Anderson Fabry disease) decrease T1
[10ee, 11e, 12¢].

The use of extracellular GBCAs in CMR offers the oppor-
tunity to quantify the extracellular (i.e. interstitial) space, rel-
ative to the intracellular (i.e. myocyte) space, which is the
essence of ECV quantification. It dichotomises the myocardi-
um into myocytes and matrix. In conjunction with myocardial
volume, ECV can be used to calculate the relative volumes of
each compartment. It is expressed as a volume fraction and
provides us with unique insights into the pathophysiology of a
range of myocardial diseases [10e].
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T1 mapping and ECV may provide an advantage over con-
ventional LGE imaging, by enabling us to more accurately
quantify diffuse fibrosis and potentially detect early fibrosis-
related changes not always detectable by LGE [13]. Indeed,
increases in ECV seen on CMR are associated with an in-
creased mortality and may be as important to prognosis as left
ventricular ejection fraction [13, 14¢¢]. In-depth discussion of
the advantages and limitations of native T1 mapping are be-
yond the scope of this review and have been described else-
where [8, 11¢]; instead, this review will focus on ECV imag-
ing, which combines pre- and post-contrast images.

Evolution of ECV by CMR

Initial validation in humans utilizing CMR to quantify ECV
(ECVemr) and in turn diffuse myocardial fibrosis was per-
formed in 2010 by Flett et al. [15]. They employed a technique
they termed ‘equilibrium contrast CMR’, which involved an
initial bolus of GBCA, followed by a continuous infusion to
achieve an equilibrium of contrast between the blood pool and
the myocardium [15]. They estimated the blood volume of
distribution from 1-haematocrit and then used CMR to mea-
sure the pre- and post-contrast equilibrium T1 [15]. Using the
formula below, they then calculated the ECV.

ECVceumr = (1-haematocrit) x (A(I/Tlmyo)/A(I/lelood))

They validated this technique by direct comparison
with histological fibrosis quantification using picrosirius
red staining on surgical biopsy samples from patients un-
dergoing aortic valve replacement for aortic stenosis (AS,
n=18) and myomectomy for hypertrophic cardiomyopa-
thy (HCM, n=8) and showed excellent correlation (com-
bined * = 0.80) [15]. Similar studies correlating ECV g
with histology have been reproduced in patients with aor-
tic and mitral regurgitation [16], dilated cardiomyopathy
(DCM) or ischaemic heart disease (IHD) awaiting cardiac
transplantation [17], heart failure [18] and myocarditis
[19]. See Table 1 for more details.

A significant barrier to the adoption of the ECVcumr
technique was the use of the primed infusion protocol.
This involved the patient being removed from the scanner
after conventional LGE imaging and being given another
bolus of GBCA, followed by a 15-min pause and then an
infusion. The patient would then be returned to the scanner
any time between 45 and 80 min after the bolus for repeat
T1 measurement [15].

A bolus-only approach was proposed by Schelbert et al.,
who demonstrated in 10 volunteers that myocardial
ECVcMmr could be reliably measured 15-20 min after a
single bolus of GBCA [20]. Further work by White et al.,
this time in 147 subjects, demonstrated a strong correlation

between 15-min bolus only and infusion ECVyr mea-
surement (#*>=0.97) [21]. They did note that when the
ECV was >40%, the bolus only technique consistently
measured a higher ECV than the infusion [21]. Finally,
the validation of ECV R as part of a split-dose protocol
(e.g. as part of stress perfusion) by McDiarmid et al. further
increased the potential clinical utility of the technique [22];
however, there are suggestions that ECVy\r values may
differ depending on the dose of GBCA used [23].

Most recently, a synthetic ECV can be automatically gen-
erated during scanning, in which the haematocrit of blood is
inferred from the T1 of the blood pool (as the relationship
between haematocrit and R1 [1/T1p)004] 18 linear), removing
the need for a blood test [24]. It has also been replicated at 1.5
and 3T on other scanner platforms [25]. The key advantage of
this technique is the simplification of the ECV workflow—by
removing the need for blood tests to measure haematocrit,
which is burdensome in busy departments, is a source of user
error and introduces reporting delay. Implementation of inline
synthetic ECV tools (with instantaneous ECV maps) would
reduce the barriers to clinical use of ECV and potentially in-
crease quality of care as review is immediately available.

ECV by CMR in Clinical Practice

Normal ECV values depend on the field strength, T1 mapping
sequence and scanner manufacturer, but range between 20 and
26%, and appear to be slightly higher in women compared to
men [26]. With the exception of cardiac amyloidosis and oe-
dema [27], increases in myocardial ECV are generally due to
an increased collagen volume fraction (CVF)—making it a
marker of fibrosis [8, 10¢]. For example, acute myocardial
infarction (MI) results in some of the highest ECV values
(58.5£7.6%) and chronic MI is not far behind (51 +8%)
[26, 28]. Diffuse fibrosis, however, rarely increases beyond
40%. Cardiac amyloidosis, which is characterized by the
extracellular deposition of misfolded protein, produces large
increases in ECV (greater than any other non-ischemic cardio-
myopathy) in the region of 46.6 +7% [26, 27, 29].

ECV is also mildly elevated in both hypertrophic cardio-
myopathy (29.1 £0.5%) and dilated cardiomyopathy (28 +
0.4%) [26]. On the other hand, Anderson Fabry disease ap-
pears to have a similar ECV to healthy volunteers (25.0 +
2.3%), at least in the early stages of the disease [8, 26]. For
an overview of ECV variability in health and disease, see
Fig. 1 and Table 2.

Evolution of ECV by CT

ECV imaging by cardiac CT (ECV¢t) lags behind the
CMR field, but is potentially an attractive alternative.
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Table 1 Histological validation of ECV by modality
Reference Year Population Number Finding
ECV by CMR
Flett et al. [15] 2010 AS/HCM 26 Strong correlation with histological fibrosis in AS
(*=0.86) and HCM (* = 0.62).
White et al. [21] 2013  AS 18 Bolus only and infusion ECV measurements correlated
with histological CVF (2 =0.69 and 0.71).
Miller et al. [17] 2013 DCM/IHD (transplant) 6 Significant linear relationship with histological CVF

using either the 10- or 15-min post-contrast T1 (» <0.001).

De Meester et al. [16] 2015 AS/AR/MR 31 Strong correlation with the magnitude
of histological fibrosis (= 0.78).
Kammerlander et al. [18] 2016 Mixed HF 36 Significant correlation with histological CVF (= 0.493).
Lurz et al. [19] 2016 Myocarditis 129 ECV adequately estimated the degree of LV fibrosis percentage
only in patients without inflammation (r =0.72) and not
in those with inflammation (»=0.24).
ECV by CT
Bandula et al. [34] 2013 AS 23 Strong correlation with histological measures of fibrosis (»=0.71).
Yoon et al. [43] 2015 Hepatic fibrosis 141 Significant correlation with histological hepatic fibrosis staging (» = 0.493).

AS aortic stenosis, AR aortic regurgitation, CVF collagen volume fraction, DCM dilated cardiomyopathy, HCM hypertrophic cardiomyopathy, HF heart
failure, /HD ischemic heart disease, MR mitral regurgitation

ECVcr relies upon the same principle as ECVcpr and is
calculated using the following formula:

ECVcr = (1-haematocrit) X (AHUpyo/AHUpig0a)

where AHU is the change in Hounsfield unit attenuation

Early data was presented in abstract form by Ugander et al.
in 2011, which showed, in dogs that underwent coronary oc-
clusion and reperfusion (n = 10), that ECVt and ECVcumr
correlated well (R2 =0.80, p <0.001), with a small mean dif-
ference between ECVeyr and ECVer (3+£9%) [33].

Myocardial ECVct was first validated in humans by Nacif

re- and post-contrast (i.e. HU,s-contrast = HUpre-contras . .
P P ( post-contrast pre-contrast) et al. in 2012 [30]. They compared ECVcyr and ECVer in

[30-32].

Fig. 1 Extracellular volume

fraction (ECV) variability and .
outcome at 1.5T by myocardial High
pathologies. Top panel depicts /
ECV and associated outcome
across health and disease with
increasing ECV on the y-axis and
outcome on the x-axis. Bottom
panel shows four exemplar ECV
maps of a healthy volunteer with
normal ECV of 24% (a), a patient
with aortic stenosis with mild
ECV elevation at 30% (b), a
patient with an inferior
myocardial infarct (c), and a
patient with AL cardiac
amyloidosis with an ECV of 50%
and the poorest outcome (d). Low
(Adapted from Ugander 2014)
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Table 2 Overview of ECV

imaging in myocardial discase Process Disease Number of patients ECV
Athletic hypertrophy
Physiological hypertrophy [12¢] 30 !
Fibrosis
Focal Myocardial infarction [26, 28] 56 "1
Diffuse Aortic stenosis [26, 61, 62] 136 —n
Systolic heart failure [63] 40 1
Diastolic heart failure [63] 62 1
Hypertrophic cardiomyopathy [64, 65] 102 1
Non-ischemic dilated cardiomyopathy [65, 66] 116 1
Mitochondrial cardiomyopathy [67] 1 1
Diabetes [14¢¢] 231 1
Hypertensive heart disease [68, 69] 89 -
Obesity [70] 21 i
Congenital heart disease [71] 14 1
Inflammation
Rheumatoid arthritis [72] 39 "
Systemic sclerosis [73, 74] 49 "
Systemic lupus erythematosus [75] 33 "
Oedema
Regional Myocarditis [76, 77] 135 1
Global Anti-synthetase syndrome [78] 1 "
Chronic systemic capillary leak syndrome [79] 6 "
Acute cardiac allograft rejection [80] 22 -
Infiltration
Amyloid AL amyloid [81] 100 T
TTR amyloidosis [82] 102 "M
Glycosphingolipid Anderson-Fabry disease [83] 31 -
Toxins
Uraemia in chronic kidney disease [84] 43 1
Anthracycline-toxicity [85] 30 —n"

Reference list is non-exhaustive—several other references may exist that are not listed here

— No significant change; 1 Significant increase; | Significant decrease.
(Adapted from Captur et al. Heart 2016, Sep 15;102 (18):1429-35, with permission from BMJ Publishing Group

Ltd.) [87].

24 subjects (both healthy volunteers and those with heart fail-
ure) and found good correlation between the two (»=0.82,
p<0.001) [30]. Post-contrast images were taken after a 10-
min delay, copying the exact parameters of the initial pre-
contrast calcium score scan. Overall radiation dose was low
(<2 mSv) [30]. The average duration of ECVr in this study
was 13+ 1.5 min, compared to 47 £ 5 min for ECVcpg [30].
ECV Mg results were slightly lower (28.6 =4.4%) compared
to ECVer (31.6£5.1%) [30]. The same group went on to
compare ECVr in healthy volunteers and those with either
systolic or diastolic heart failure [31]. They used a similar
protocol, only this time, taking the post-contrast images after
a shorter 7-min delay [31]. They found that the ECV was
significantly higher in participants with systolic heart failure

(41 £6%) compared to healthy subjects (33 £2%) and those
with diastolic heart failure (35 +5%) [31].

Bandula et al. in the same year validated ECV -t against the
gold standard—invasive endomyocardial biopsy, as well as
ECVeumr in 23 patients with severe aortic stenosis [34]. This
time, they used an initial bolus of contrast agent, followed by a
slow infusion to achieve equilibrium. They found that ECVcr
showed significant correlation with both histological mea-
sures of fibrosis (r=0.71, p <0.001) and ECVcpmr (7=0.73)
[34]. We subsequently compared 5- and 15-minute time points
post-contrast bolus for equilibrium cardiac CT in 53 patients
(26 with systemic amyloidosis and 27 with aortic stenosis)
[32]. We demonstrated that ECVt at 5-minute post-contrast
showed a stronger correlation with ECV g than at 15-minute
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post-contrast (= 0.85 compared to 0.74) [32]. We think this
is because, although earlier imaging risks non-equilibration,
iodine is a weaker contrast agent than GBCAs, so the higher
signal-to-noise ratio of earlier imaging outweighs this. ECVcr
was consistently higher in those patients with confirmed car-
diac amyloid compared to those with aortic stenosis (54 £ 11%
compared to 28 +4%, p < 0.001) and was able to discriminate
between patients with definite cardiac amyloid and those with
aortic stenosis in all cases [32]. ECVcr also tracked various
important clinical parameters including reduced 6-min walk
test distance and increasing NT-proBNP, as well as amyloid
burden in transthyretin-related amyloid—when measured
semi-quantitatively by 99mTc-3,3-diphsphono-1,2-
propanodicarboxylic acid (DPD) scintigraphy [32].

Work is also being done using dual-energy CT to quantify
myocardial ECV, which is an attractive concept, as it would
potentially avoid mis-registration errors associated with the
separate pre- and post-contrast scans, by obviating the need
for the pre-contrast scan [35, 36]. Hong et al. used dual-energy
CT to estimate myocardial ECV in doxorubicin-induced dilat-
ed cardiomyopathy in rabbits [36]. They showed equivalent
ECV results by dual-energy CT from 3 up to 20 minute post-
contrast administration [36]. ECV values were significantly
higher at 6, 12 and 16 weeks after starting twice weekly doxo-
rubicin injections than at baseline (35.3, 41.9, 42.1% vs.
28.5%) [36]. ECV measured by dual-energy CT showed ex-
cellent correlation with ECVeyr (7=0.888, p<0.001) and
with collagen volume fraction on histology (r=0.925,
p<0.001) [36]. Work has also been done in humans using
dual energy CT—involving 30 subjects (7 healthy, 23 with
hypertrophic or dilated cardiomyopathy, amyloidosis or sar-
coidosis) [37]. The post-contrast dual-energy CT scan was
performed at 12 minute and results for ECV were compared
with CMRgcy and showed good agreement. Those partici-
pants with disease had significantly higher myocardial ECV
by dual-energy CT compared to healthy subjects (p <0.01)
[37].

More recently, synthetic ECV has also been successfully
implemented in CT, where the haematocrit of blood is inferred
from the attenuation of the blood pool (as the relationship
between haematocrit and HU is also linear), simplifying the
ECV workflow and allowing instantaneous display of ECV
maps [38].

CT versus CMR for Myocardial ECV
Quantification

While the evidence base for ECVyr may be larger and ex-
perience greater, the use of CT in this regard does have some
distinct advantages. Likely to prove the biggest advantage is
that ECV 1 measures the direct effect of iodine-based contrast
agents on the measured signal (through the effect of iodine on
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x-ray absorption), whereas ECVcyr relies on measuring the
effect of GBCAs on protons (therefore making two assump-
tions—the first is that the relaxivity of tissues compared to
blood is the same and the second is that water is rapidly ex-
changed between intra- and extracellular compartments).
Also, common contraindications to CMR such as claustropho-
bia and pacemaker implantation (the latter being not uncom-
mon in patients with for example cardiac amyloid—where
ECV quantification could prove helpful) do not apply for CT.

ECVwmr is likely to be costly, both financially and in terms
of patient throughput—with scans taking up to 60 min, where-
as CT scans are significantly faster and more widely available.
Indeed, CT availability is only likely to increase, particularly
in the UK, given the expanded role for CT coronary angiog-
raphy in the 2016 update of the National Institute for Health
and Care Excllence clinical guideline (CG95) on the assess-
ment of chest pain of recent onset [39]. CT also offers higher
spatial resolution particularly inplane and allows isotropic re-
construction. Of course, these potential advantages should be
weighed up against the risks of ionizing radiation from CT,
especially in younger patients. Furthermore, CT is also prone
to artefacts, e.g. beam hardening and streak artefacts that may
hamper the evaluation of myocardial ECV. Finally, in delayed
acquisitions, iodine contrast media provide less signal com-
pared to GBCAs and differentiation between myocardium and
left ventricular cavity is hampered, particularly when the myo-
cardium is thinned (for example in dilated cardiomyopathy).

GBCAs have been associated with the development of
nephrogenic systemic fibrosis, seen with linear chelates rather
than macrocyclic and in patients with significantly impaired
renal function (€GFR < 30 mL/min/1.73 m?) [40]. These lin-
ear agents have also been associated with brain deposition, a
currently evolving story (but apparently not seen with macro-
cyclic chelates [41]. Iodinated contrast agents have in turn
been associated with contrast-induced nephropathy and pre-
existing chronic kidney disease (eGFR < 60 mL/min/1.73 m?)
is the most important risk factor for this [42].

It is important to bear in mind while considering the pros
and cons of both of these modalities that relative to the current
gold standard for diagnosing diffuse fibrosis of invasive
endomyocardial biopsy, both offer very attractive alternatives.

ECVcr in Clinical Practice—from Research
Tool to Clinical Application

For clinical utilization, there needs to be standardized pro-
tocols in place for performing ECVcr. Furthermore, we
need to employ this technique to better diagnose and un-
derstand disease processes and the effect of treatment on
ECV (for example as a surrogate end point in drug trials).
This has been implemented in the T1 mapping consensus
statement, with a second version to be published in mid-
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2017 [10e°]. For ECV¢r to become a technique used in
clinical practice, key steps need to be implemented—sim-
ilar to developments in the CMR community, in particular
standardization with phantom work, multicentre clinical
data in health and disease, a consensus statement by
national/international organizations (e.g. EACVI/SCCT)
and adoption by all major manufacturers.

ECV Quantification beyond the Myocardium

The potential for ECVrand ECVyr extends beyond the
myocardium. Yoon et al. used CT to estimate liver ECV in
order to measure hepatic fibrosis and validated this against
histological hepatic fibrosis staging in 141 participants (» =
0.493, p<0.001) [43]. Bandula et al. also demonstrated el-
evated ECV g in the liver, spleen and skeletal muscle in
patients with systemic amyloidosis, which tracked semi-
quantitative amyloid burden in the liver and spleen by se-
rum amyloid P component (SAP) scintigraphy [44]. Similar
work has been performed by Yeung et al. using ECV 1 [45].
They showed that in patients with hepatic and splenic amy-
loid, there was a significantly higher ECV compared to pa-
tients without liver and spleen involvement (p < 0.0005)
[45]. They were also able to show that increases in ECVcr
positively correlated with the grade of hepatic and splenic
uptake on SAP scintigraphy (»=0.758 for liver, »=0.867
for spleen) [45].

Future Outlook for CT

Currently, a poorer signal-to-noise ratio than CMR and the use
of ionizing radiation have impeded wider application of myo-
cardial tissue characterization by CT. Nevertheless, the possi-
bility of providing an assessment of coronary anatomy, coro-
nary flow and myocardial tissue characterization in a single
modality is an attractive concept, with huge implications for
imaging workflow.

Beyond the optimization of dual-energy CT with minimi-
zation of image artefacts, radiation dose and iodinated contrast
dose (e.g. using low-energy monochromatic imaging [46]),
more advanced technologies are on the horizon. Spectral CT
imaging exploits the different K-edge behaviour of different
tissues (calcium, blood, fat and myocardium) [47]. This tech-
nology goes beyond the two-photon energy levels used in
dual-energy CT, and utilizes energy-sensitive photon-
counting detectors to obtain greater tissue information by dif-
ferentiating photons at different energy levels. Early pre-
clinical data suggests that spectral CT may improve image
quality over conventional CT by eliminating beam hardening
[48].

Future Outlook for CMR

The T1 mapping field has been rapidly advancing to the point
of widespread clinical utility. Since the first T1 quantification
with the original modified look-locker imaging (MOLLI) in
2004 [49], new MOLLI variants, SAIMOLLI (a shortened var-
iation with long T1 advantages) [50], saturation recovery var-
iants such as SASHA (offering complete heart rate insensitiv-
ity) [51] or hybrid approaches [52—54] have been developed,
and incremental developments such as respiratory motion cor-
rection [55] have gradually increased accuracy and precision
[52, 56°]. ECV maps are now routine in some centres [57], but
ECV development and standardization are still on-going and
will require global approaches. Quality control systems, com-
mercial sequences, mega-registries (e.g. the Global CMR
Registry, HCM Registry and UK Biobank) are in progress,
and will provide high volumes and new insights into the cur-
rently most active CMR research area [58, 59]. On the hori-
zon, MR fingerprinting may offer more rapid multi-parametric
tissue characterization in the future by providing myocardial
T1, T2, and Proton Spin Density in a single breath-hold [60].

Conclusion

Myocardial ECV is important, with increases related to myo-
cardial fibrosis, cardiac amyloid or oedema, which in turn are
associated with an increased mortality. Quantification of ECV
enables the detection of diffuse myocardial fibrosis, which
would otherwise potentially be missed using conventional
LGE imaging, making it a useful addition to the armamentar-
um of myocardial characterization techniques.

CT and CMR can be used to estimate myocardial ECV and
in turn diffuse myocardial fibrosis, without the need for inva-
sive endomyocardial biopsy. Each modality has strengths and
weaknesses, with CT an attractive alternative to CMR partic-
ularly in those with contraindications to the latter. Further
studies are needed in this field, especially ECVc, where the
evidence base is less robust.
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