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ABSTRACT

Current treatment of periodontitis is still associated with a high degree of variability in clinical out-
comes. Recent advances in regenerative medicine by mesenchymal cells, including adipose stromal
cells (ASC) have paved the way to improved periodontal regeneration (PD) but little is known about
the biological processes involved. Here, we aimed to use syngeneic ASCs for periodontal regeneration
ina new, relevant, bacteria-induced periodontitis model in mice. Periodontal defects were induced in
female C57BL6/) mice by oral gavage with periodontal pathogens. We grafted 2 X 10° syngeneic
mouse ASCs expressing green fluorescent protein (GFP) (GFP+/ASC) within a collagen vehicle in
the lingual part of the first lower molar periodontium (experimental) while carrier alone was
implanted in the contralateral side (control). Animals were sacrificed 0, 1, 6, and 12 weeks after treat-
ment by GFP+/ASC or vehicle graft, and microscopic examination, immunofluorescence, and innova-
tive bio-informatics histomorphometry methods were used to reveal deep periodontium changes.
From 1 to 6 weeks after surgery, GFP+ cells were identified in the periodontal ligament (PDL), in ex-
perimental sites only. After 12 weeks, cementum regeneration, the organization of PDL fibers, the
number of PD vessels, and bone morphogenetic protein-2 and osteopontin expression were greater
in experimental sites than in controls. Specific stromal cell subsets were recruited in the newly
formed tissue in ASC-implanted periodontium only. These data suggest that ASC grafting in dis-
eased deep periodontium, relevant to human pathology, induces a significant improvement of
the PDL microenvironment, leading to a recovery of tooth-supporting tissue homeostasis. STEM CELLS
TRANSLATIONAL MEDICINE 2017;6:656-665

SIGNIFICANCE STATEMENT

Human periodontitis is a chronic, highly prevalent infectious disease characterized by the loss of both
soft and hard tissues supporting the teeth. Current available treatments are insufficient, associated
with a high degree of variability in clinical outcomes. The data in this study suggest that adipose-
derived mesenchymal stromal/stem cell (ASC) grafting in diseased deep periodontium, relevant to
human pathology, promoted regeneration of deep periodontium, both in quantity and in quality,
in comparison with controls. Even if mechanisms underlying periodontal regeneration by exogenous
mesenchymal stromal cells are yet to be understood, this study brought to light new data regarding
periodontal pocket regeneration induced by ASCs in mice.

bone) induces the formation of crevices called “peri-

odontal pockets” between the tooth root and its

bony socket [5], leading to tooth loss.
Periodontal regeneration aims to restore

INTRODUCTION

Periodontitis is a chronic immuno-infectious dis-
ease, characterized by loss of the tissues support-

ing the teeth, and leading to or aggravating
systemic disorders such as diabetes, polyarthritis,
or atherosclerosis [1]. The defects result from a
local homeostasis disruption caused by both the
virulence of a periodontal pathogenic microflora
[2] and an inappropriate immune response [3, 4].
From a pathophysiology point of view [3, 4], the de-
struction of deep periodontium tissues (i.e., root ce-
mentum, periodontal ligament [PDL], and alveolar

both the architecture and function of tooth sup-
porting tissues through the recruitment and ac-
tivation of endogenous progenitors, especially
those expressing CD146 markers [5], leading
to renewal of the connective attachment under-
lying the new junctional epithelium. The restitution
of dense connective fibers of PDL, anchored be-
tween the newly formed alveolar bone and root
cementum, is critical for the long-term prognosis
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[6, 7]. A broad range of periodontal regenerative procedures has
been proposed, including guided tissue regeneration, enamel
matrix-derived proteins, platelet-rich plasma, and bone graft,
but these procedures have been reported to lack efficiency and
mainly result in incomplete defect reconstruction and poor repro-
ducibility [8, 9]. Persistence of low-grade inflammation and infec-
tion, poor dental plague control, blood clot stability, and systemic
diseases may be involved in these unpredictable outcomes by pre-
venting the activities of periodontal progenitors in situ [10].

Regenerative treatment of connective tissues therefore aims
to create a microenvironment suitable for the migration, prolifer-
ation, and commitment of endogenous mesenchymal progeni-
tors toward specific differentiation cell phenotypes involved in
the synthesis of extracellular matrix components, such as bone
morphogenetic proteins (BMP) or osteopontin (OPN) [6]. Recent
advances in regenerative medicine and the biology of mesenchy-
mal stem cells have paved the way for new strategies based on
tissue engineering [11]. By their capacity to differentiate and ac-
quire different phenotypes, to be stimulated by the local micro-
environment, and to exhibit paracrine potential (e.g., mitogenic,
angiogenic, antiapoptotic, immunomodulatory factor), exoge-
nous mesenchymal stromal cells (MSCs) would favor the produc-
tion of new tissues, by their own action or by stimulating the
activity of endogenous progenitors [12, 13]. MSCs can potentially
beisolated from almost all organs [14] and are commonly purified
from bone marrow, adipose tissue, and umbilical cord. For many
reasons related to safety in tissue sample processing, access to
cell sources, and availability, adipose-derived mesenchymal stro-
mal cells (ASCs) are expected to be a valuable source of cells and
are being increasingly tested at the clinical level [15, 16].

A previous systematic review of the literature demonstrated
the efficacy and safety of oral or extraoral MSCs (including ASCs)
to regenerate periodontal tissues [17], but most of the studies
were performed on poorly relevant defect models [17]. Animal
periodontal defects were usually induced mechanically using
dental burs, with or without additional procedures (ligature orim-
pression paste to favor bacterial colonization) [17-19] that did
not create lesions or a tissue environment close to the pathophys-
iology of periodontitis.

In this study, we aimed to avoid such limitations by using
a model with periodontal lesions induced by oral gavage with
periopathogens, which led to periodontal defects relevant to hu-
man pathophysiology [17, 18]. In this context, we investigated the
use of syngeneic ASCs that expressed the green fluorescent pro-
tein (GFP) for in situ tracking and pointed out their ability to en-
hance deep periodontal tissue wound healing using classic and
innovative bioinformatics measurements.

MATERIALS AND IMIETHODS

Periodontitis Mouse Model

The periodontitis model in mice was induced, as has already been
described [20]. This protocol was in accordance with the ARRIVE
guidelines for reporting animal research [21]. All procedures per-
formed on mice were approved by the local ethics committees of
Toulouse University Hospital and INSERM under the authoriza-
tion number C3155507. C57BL6/J wild-type female mice (Charles
River, L’Arbresle, France, http://www.criver.com) were group-
housed (five per cage) in a specific pathogen-free controlled en-
vironment with inverted 12-hour daylight cycle in our animal
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facilities. Drinking water was supplemented with sulfamethoxa-
zole (200 mg/5 ml) and trimethoprime (40 mg/5 ml) 10 days be-
fore bacterial oral gavage at a daily dose of 95 mg/kg.

Under isoflurane anesthesia at 8 weeks of age, the mice re-
ceived 1 ml of a mix of 10° colony-forming unit of Porphyromonas
gingivalis (ATCC33277), Fusobacterium nucleatum, and Prevotella
intermedia, as has been previously identified [18], in 2% carboxy-
methylcellulose in the molar regions. This step was repeated 4
times a week for 1 month to induce periodontal lesions.

Isolation of GFP+ ASCs

Transgenic C57BL6/J mice constitutively expressing GFP were anes-
thetized by intraperitoneal administration of 100 mg/kg ketamine
(Merial, Gerland, France, http://merial.com) and 10 mg/kg xylazin
(Bayer, Puteaux, France, https://www.bayer.fr). Inguinal subcuta-
neous adipose tissues were processed as previously described to iso-
late ASCs [22]. Briefly, inguinal adipose tissues were digested at 37°C
for 45 minutes in phosphate-buffered saline (PBS) containing 2%
bovine serum albumin and 2 mg/ml collagenase 1 (Sigma-Aldrich,
St. Louis, MO, https://www.sigmaaldrich.com), filtrated at 25 pum,
then centrifuged at 600 g for 10 minutes, to remove mature adipo-
cytes. Red blood cells were lysed into buffer containing 140 mM
NH,Cl and 20 mM Tris for 5 minutes at 4°C. Cells were centrifuged
at 600 g for 5 minutes, and the vascular stromal fraction was
seeded at 30 X 10° cells per square centimeter in Dulbecco’s mod-
ified Eagle’s medium-F12, supplemented with 10% newborn calf
serum, 0.25 wg/ml amphotericin, 100 ug/ml streptomycin, and
100 Ul/ml penicillin, and maintained in a 5% CO, atmosphere.

Characterization of ASC From GFP+ Mice

The ASC phenotype (passage 1) was confirmed by flow cytometry
[23] using fluorescent- labeled anti-SCA-1 antibodies as a positive
marker and anti-CD45 and anti-CD31 antibodies as negative
markers (supplemental online Table 1) (BD Biosciences, East
Rutherford, NJ, https://www.bdbiosciences.com). Exclusion of
4’ 6-diamidino-2-phenylindole was used for cell viability assess-
ment. Fluorescence-activated cell sorting (FACS Fortessa and
FACS Diva software; BD Biosciences) revealed that 97% of ASC
were positive for GFP (supplemental online Fig. 1A, 1B). Addition-
ally, ASC/GFP+ were submitted to adipogenic or osteogenic me-
dia for 7 and 14 days. Multilineage differentiation was confirmed
using quantitative polymerase chain reaction by Osterix, alkaline
phosphatase 2, runt-related transcription factor 1, adipocyte
fatty acid-binding protein, lipoprotein lipase, adiponectin, and
peroxisome proliferator-activated receptor-y expression, respec-
tively (details on primers are found in supplemental online
Table 1). Results are provided in supplemental online Figure 1C.

Cell Grafting Into Mouse Periodontium

At 80% confluence, GFP+/ASC (passage 1) were trypsinized,
counted, washed once in PBS, then used for transplantation. A
gingival lingual flap was performed under binocular microscopy
in the first lower molar region. A split mouth design was used: on
oneside, 2 X 10° ASCs were applied in 20 uL of physiologic serum
using 3 mm?3 2% type | collagen as the carrier, and the other side
was used as a control and treated with the vehicle only (adapted
from preliminary results and Tobita et al. [24]). A total of 24 mice
(48 periodontal defects) were used, distributed over four time
points (0, 1, 6, and 12 weeks).
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Optical Microscopic Examination and Measurements

At the end of each time interval, mice were anesthetized and sac-
rificed by cervical dislocation; mandibles were collected, fixed in
4% formaldehyde, embedded in paraffin, then cut at 4 umusing a
microtome (Jung 2055 Autocut, Leica Biosystems, Wetzler, Ger-
many, http://www?2.leicabiosystems.com). Sections were stained
with Masson’s trichrome and photographed under a light micro-
scope equipped with a Nikon CoolPix 4500. Bone regeneration
was assessed by measuring the distance between the cemento-
enamel junction (CEJ) and the top of the alveolar crest. A frame of
1,000 pixels? (px?) surface area, representative of the cementum de-
fect after 4 weeks of periopathogen infection, was drawn downward
from the CEJ to the remaining cementum. An example of cementum
measurement in an animal at 0 weeks (day of surgery) is provided in
supplemental online Figure 2. The number of vessels inside the PDL
was also counted. Each measurement was performed twice (blinded
to previous assessment), on at least five sections per periodontal de-
fect, and the mean of these five measurements was considered.

Immunofluorescence Analyses

Immunofluorescence analyses were used to investigate the distri-
bution of mineralized tissue markers (BMP-2 and OPN), vessels
(CD31), and connective progenitor subsets (supplemental online
Table 1). Because endogenous GFP expression was too weak (data
not shown) to highlightimplanted cells, a rabbit alexa-488 anti-GFP
was used to localize grafted GFP+/ASC (supplemental online
Table 1). Paraffin was removed with xylene, and sections were
rehydrated using a descending ethanol series. For the detection
of intracellular markers only, permeabilization was performed first,
using Triton X100 in PBS at 0.1% for 15 minutes. Antigens were
unmasked by incubation in citrate buffer (10 mM, pH 6.0) in an
80°C water bath for 20 minutes. Saturation of nonspecific sites
was achieved by incubating the sections for 15 minutes at room
temperature (RT) in PBS containing 5% normal serum from the
same species as the host of the secondary antibody. Primary anti-
bodies were used at the specified concentration (supplemental
online Table 1) for 2 hoursin a humidified chamber at RT for surface
markers, or overnight at 4°C for intracellular targets. Slides were
rinsed three times for 5 minutes in PBS containing 0.2% Tween
20. Secondary antibodies were then used at the specified concen-
tration (supplemental online Table 1) for 1 hour at RT, then washed.
Slides were mounted using ProLong© containing Hoechst (Thermo
Fisher Scientific, Waltham, MA, https://www.thermofisher.com)
and photographed using a confocal microscope (Zeiss LSM 780;
Carl Zeiss AG, Oberkochen, Germany, http://www.zeiss.com).

Hough Transform Analyses to Quantify Entropy of
PDL Fibers

A measure of the PDL fiber architecture was achieved using the
Hough transform (HT). Images were first oriented vertically using
a line tangent to the root. The red component of the color image
was kept to better visualize the fibers. We submitted the oblique
and horizontal fibers of PDL to HT using Matlab 2012 software
(Mathworks, Meudon, France, http://www.mathworks.com).
Supplemental online Figure 3 summarizes the processing steps.
Using HT, we drew lines corresponding to the main directions
of detected fibers. The probability for each angular direction was
derived from the Hough transform matrix and plotted as a histo-
gram distribution. The entropy of this distribution was computed,

© 2016 The Authors

which provided a statistical measure of randomness. A decrease
of this parameter means that fibers are better orientated [25].

Statistical Analysis

An analysis of variance with some random effect was used to de-
termine whether a difference between the experimental side and
the control side could be detected in noncolonized tissues, at
0 weeks (baseline), 6 weeks, or 12 weeks. Parameters in the exper-
imental side were compared with the corresponding side of non-
colonized and 0-week mice, corrected by multiple comparisons
using the Bonferroni adjustment. The level of significance was
set to 0.05. Graphics and statistics were performed using Stata
13.1 (StataCorp, College Station, TX, http://www.stata.com).

RESULTS

Grafted GFP-Expressing ASC Were Identified in PDL
From 1 to 6 Weeks After Surgery

During the course of the periodontal wound healing, we used immu-
nofluorescence (IF) microscopy to follow the distribution and fate of
grafted GFP+/ASC (Fig. 1A—1E). From 1 to 6 weeks after surgery, ASC
were localized only in the experimental site close to the wound bed
near the CEJ, toward the apical part of the PDL, and surrounding PDL
and alveolar bone blood vessels (Fig. 1 A-1C). Cells expressing the
GFP marker were almost undetectable at ASC-implanted sites after
12 weeks (Fig. 1D) and at control-treated sites (Fig. 1E).

ASC Grafting Enhanced Cementum Regeneration, PDL
Fiber Organization, and Number of Vessels

Overall, 12 weeks after treatment of diseased deep periodontium
by ASC or vehicle, ASC-grafted sites exhibited higher cementum
deposition, enhanced periodontal fiber organization, with denser
Sharpey’sfibers,and anincrease in PDLvascularization in compar-
ison with controls (Fig. 2). From 6 weeks after treatment, cementum
and PDL regeneration occurred in both control and experimental
sites (Figs. 3, 4). Microscopic examination of 12-week ASC-treated
periodontium showed that newly deposited cementum-like tissue
was thicker than at contralateral vehicle-only grafted sites and
was similar to healthy cementum (Fig. 3A-3D), as confirmed by
histomorphometry. This demonstrated that the cementum thickness
was entirely recovered only on experimental sides (Fig. 3E; p <.001).
The amount of cementum regeneration increased over time and
was significantly higher that at the starting point (0 week).

PDL fiber organization (orientation, length, and density) was
stronger in the experimental side than the control side. Sharpey
anchorage appeared denser and more homogenous in ASC-
grafted PDL tissues than in controls. As for cementum regenera-
tion, PDL microscopic appearance was close to that of healthy
structures in experimental sites but not in vehicle-only treated
sites (Fig. 4A-4D). The Hough transform (HT) was used to quantify
oblique and horizontal fiber organization by determination of the
structure entropy (supplemental online Fig. 3). Twelve weeks af-
ter treatment, the entropy of both oblique and horizontal PDL
fibers was significantly lower in experimental sites than in control
sites, suggesting that the ASC graft enhanced periodontal connec-
tive attachment regeneration (Fig. 4E, 4F). Interestingly, fiber
entropy time decay was confirmed, and fiber organization
completely rescued in ASC- implanted sites only.

The microscopic evaluation of PDL vascularization showed
that grafting ASCs promoted a significant increase in the number
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Apical part

Cervical part

12 weeks PDL

Control

Figure 1. Localization of the grafted green fluorescent protein
(GFP)+/adipose stromal cells (ASCs). Cells were tracked by immuno-
fluorescence. (A): GFP+/ASC were identified in the experimental,
periodontium-implanted site at 1 week, not only close to the wound
bed near the cervical part but also toward the apical part of the peri-
odontal ligament (PDL) and surrounding the ligament and alveolar
bone blood vessels. (B, C): GFP+/ASC localization surrounding PDL
and alveolar bone blood vessels (B) and in the apical part of the PDL
(C). (D): Undistinguishable GFP+/ASC in the grafted side at week 12.
(E): Undistinguishable cells in vehicle-only treated control sites. Scale
bar = 100 wm. Abbreviations: AB, alveolar bone; D, dentin; DP, dental
pulp; DR, dental root; G, gingiva; PDL, periodontal ligament.

of both small- and large-diameter PDL vessels, from two- to four-
fold, in comparison with control at 6 and 12 weeks (Fig. 5A, 5B), in
PDL, in alveolar bone at 6 weeks (Fig. 5C), and in gingiva at 6 and
12 weeks (Fig. 5D). These observations were confirmed by CD31
distribution in controls and experimental periodontium at 6 weeks
(supplemental online Fig. 4). Six weeks after treatment, the

www.StemCellsTM.com

~ +ASC

-ASC

Figure 2. Adipose stromal cell (ASC) graft improved deep periodontium
regeneration. Histological section of mouse deep periodontium 12
weeks after vehicle (A) or ASC (B) grafting. Cementum deposition
(blue arrow), PDL fiber organization (black arrows), and number of
vessels (black stars) had increased in the experimental condition.
Scale bar: 50 um. Abbreviations: AB, alveolar bone; CEJ, cemento-
enamel junction; D, dentin; PDL, periodontal ligament.

number of PDL vessels was greater than at the starting point and
in healthy tissues but decreased later.

Taken together, these data indicate that cementum regener-
ation, PDL fiber organization and PDL vessel number were im-
proved in experimental conditions in relation to control sites.

Deep Periodontium BMP-2 and OPN Expression Is
Modified by ASC Graft

To investigate the distribution of noncollagen matrix markers
during the periodontal regeneration, we analyzed the change
in BMP-2 and OPN expression by immunofluorescence micros-
copy (Fig. 6). One week after treatment, BMP-2 staining was mainly
identified in the cervical part of the PDL in both vehicle- and ASC-
grafted tissues (Fig. 6A, 6D). Six weeks after surgery, BIMP-2 expression
was stronger in ASC-grafted sites than in control sites and extended
toward the apical part of the PDL on the experimental side only
(Fig. 6G, 6J). Twelve weeks after challenge, the expression of BMP-2
had returned to normal in experimental and control sites (Fig. 6M, 6P).

During the course of periodontal tissue regeneration with or
without ASC grafting, OPN expression underscored the cemen-
tum deposition and was clearly more enhanced in experimental
sites than in controls. As for BMP-2 expression, OPN staining high-
lighted the PDL reorganization (Fig. 6B, 6E, 6H, 6K, 6N, 6Q). PDL
examination revealed OPN and BMP-2 colocalization (Fig. 6C,
6C’, 6F, 6F', 6l, 6I', 6L, 6L", 60, 60, 6R, 6R’), but strong OPN
deposition only sustained the PDL/cementum and PDL/alveolar
bone interfaces in comparison with BMP-2 staining.

ASC Graft Impacted the PDL Expression of SCA-1 and
CD146 During Periodontal Healing

Next, we used IF to compare the expression of SCA-1 and CD146,
two surface markers for connective tissue progenitors, in healing
periodontal tissues with or without ASC grafting (Fig. 7). SCA-1

© 2016 The Authors
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Figure 3. Adipose stromal cell (ASC) graft improved cementum regeneration. Histological sections of healthy (A) and diseased cementum be-
fore treatment (0 week) (B) and with 12-week vehicle-only treated tissue (C) or ASC-treated tissue (D). (E): Histomorphometry analysis of ce-
mentum deposition. The area of cementum was measured in square pixels on the control side (white bars) and the ASC-grafted side (black bars).
Twelve weeks after grafting, the cementum was rescued in the ASC-treated side only. Scale bars: 50 um. :*:, p < .001, indicating a significant
difference between treatment and control sides. Abbreviations: AB, alveolar bone; b, indicates a significant difference in the treatment side
between each time point and 0 week (baseline); C, cementum; CEJ, cemento-enamel junction; D, dentin; n, indicates a significant difference of
the treatment side at each time point and not colonized; NC, not colonized; PDL, periodontal ligament; px, pixel; wk, week.

and CD146 expression in the PDL cell population were clearly One week after treatment of mouse altered periodontium by
modified by ASC implantation from 1 to 12 weeks after surgery, syngeneic ASC, numerous distinct SCA-1+/CD146— and SCA-1—/
in comparison with vehicle-only treated sites. CD146+ cell populations were localized in the alveolar bone side
© 2016 The Authors STEM CELLS TRANSLATIONAL MEDICINE
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Figure 4. Adipose stromal cell (ASC) graft improved periodontal ligament (PDL) fiber reorganization. (A-D): Histological sections of healthy (A) and
diseased PDL fibers before treatment (0 week) (B) and 12-week vehicle treated (C) or ASC treated (D). Black arrows indicate horizontal fibers and white
arrows oblique fibers. (E-F): Histomorphometry analysis of PDL. Twelve weeks after treatment, the entropy calculated from the Hough transform was
significantly lower in ASC-grafted sites than in controls, for both horizontal (E) and oblique (F) fibers, and close to that of healthy PDL. Scale bar: 50 pum.
sk, p < .01; *#%, p < .001, indicating a significant difference between treatment and control sides. Abbreviations: AB, alveolar bone; ASC, adipose
stromal cell; b, indicates a significant difference in the treatment side between each time point and 0 week (baseline); C, cementum; D, dentin; n, in-
dicates a significant difference in the treatment side at each time point and not colonized; NC, not colonized; PDL, periodontal ligament; wk, week.

of the PDL, mainly surrounding blood vessels, whereas these cell
subsets were hardly seen in control PDL (Fig. 7A, 7A’, 7B, 7B’). After
6 weeks, experimental sites exhibited SCA-1—/CD146+ PDL cells
underlining the putative cementoblast layer, while SCA-1+/CD146—
subsets remained located around PDL vessels. Interestingly, a tran-
sient perivascular SCA-1+/CD146+ PDL cell population emerged at this
stage and was completely lacking at control sites (Fig. 7C, 7C’, 7D, 7D’).
Finally, in 12-week challenged animals, SCA-1 expression had almost
entirely disappeared in PDL. The SCA-1—/CD146+ PDL cell population
remained highlighted in the PDL/alveolar bone interface in ASC-
grafted sites only (Fig. 7E, 7E’, 7F, 7F').

DiscussioN

Our data point out that syngeneic exogenous ASC may be very
useful in periodontal regeneration [18]. In a murine model rele-
vant for human tooth-supporting tissue pathophysiology and af-
ter ASC transplantation, we highlighted structural and functional
changes occurring in deep periodontal tissues during the regen-
eration process. Moreover, our data show, for the first time, that
ASC graft enhances all the deep periodontium healing: cementum
regeneration as well as PDL organization, neocapillarization, and
expression of progenitor/matrix markers.

A complete cementum recovery is crucial for sustaining a
long-term favorable outcome because it is essential for strong

www.StemCellsTM.com

anchoring of Sharpey PDL fibers in the root and, thus, the main-
taining of the tooth in its socket [26]. Such cementum regenera-
tionis clearly enhanced by ASC grafting, in line with a recent study
in dogs [27]. The improvement we report here of OPN and BMP-2
expression on the experimental side confirms the positive effect
of ASC grafting in cementum regeneration. Such an increase in
OPN has been documented in a periodontal fenestration rat model
in which PDL cells were grafted [28]. This is consistent with the cru-
cial role of OPN in the recruitment and maintenance of selective
cells at the root surface [26]. Moreover, OPN expression is critical
for local innate immunity, inducing macrophage recruitment on
site, and tissue remodeling [29]. Indeed, the immunomodulatory
properties of ASCs are frequently presented as an attractive and
major effect to consider to modulating immune as well as inflam-
matory responses in vitro and in vivo, such effect being mediated
by cytokine secretion and cell-cell interaction. This close relation-
ship suggests the existence of a dynamic and reciprocal regulation
network between immune and mesenchymal stromal cells.

Fiber orientation and density encourage a nurturing role for
cementum, a uniform distribution of masticatory forces, and a
remodeling of the alveolar bone [30]. The present results suggest
that ASC use may enhance the formation of new functional PDL,
by the increase of well-oriented oblique and horizontal fibers [17].
Moreover, BMP-2 distribution was found to emphasize the reorga-
nization and orientation of PDL fibers during the periodontal

© 2016 The Authors
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Figure 5. Adipose stromal cell (ASC) graft enhanced periodontal ligament (PDL) neovascularization. (A-D): Six weeks after treatment, the number
of >50-um diameter PDL vessels (A), <50-um diameter PDL vessels (B), alveolar bone PDL vessels (C), and gingival PDL vessels (D) was significantly
higher in ASC-treated sites than in vehicle-treated sites. *, p <.05; #*, p < .01; ***, p < .001, indicating a significant difference between treatment
and control sides. Abbreviations: ASC, adipose stromal cell; b, indicates a significant difference in the treatment side between each time point and
0 week (baseline); n, indicates a significant difference of the treatment side at each time point and not colonized; PDL, periodontal ligament.

wound healing and was transiently upregulated in ASC-treated
sides in comparison with controls. In a rat fenestration model, re-
generation of PDL fibers, well-orientated perpendicularly to the
root surface, was observed after bone marrow-MSC grafting [31].
Moreover, in an acute rat rotator cuff repair model, with special fo-
cus on the healing of the tendon-to-bone insertion, grafted ASCin a
collagen carrier led to significantly more elastic and less scarred
newly formed tissue than in control [32]. The use of MSC for scarring
in aged mice demonstrated increased wound tensile strength [33].
Altogether, these data strongly suggest that ASC therapy enhances
collagen fiber reorganization during PDL wound healing.

Because the blood supply is critical for optimal wound heal-
ing, we investigated the impact of ASC use in periodontal neoan-
giogenesis. As described in a murine skin wound healing model
[34], an increase in the number of PDL vessels was shown at
the cell-treated site. Interestingly, both endogenous and grafted
MSC were found to be located around blood vessels, as has been
already reported [34], suggesting cross-talk between mesenchy-
mal progenitors and endothelial cells. ASC have been reported to
stabilize endothelial cell networks by enhancing pericyte proper-
ties, thus improving vascular network formation [35, 36]. More-
over, pericytes are suggested to share MSC features and may be
involved in tissue regeneration/repair by differentiation toward
specialized connective phenotypes [37, 38]. However, the mech-
anisms by which ASCimprove vascular network are still unknown.

© 2016 The Authors

Regeneration of connective tissue is mainly based on the ac-
tivation of specific signaling pathways involved in the recruitment
and mobilization of endogenous MSC in the wound bed [39].
Whether grafted ASCs act through transdifferentiation or recruit-
ment and commitment of local stem/progenitor cells remains
under discussion. The current consensus based on experimental
models and cell tracking argues that even if transdifferentiation
events may occur, ASCs are more likely acting by supporting endog-
enous cell differentiation potentials [22, 40]. Indeed, although
CD146 and SCA-1 proteins may be expressed by subsets of grafted
murine ASC [37, 38, 41], the progressive fade-out of grafted cells
conversely to the increase of CD146 and SCA-1 [5, 42, 43] (osteo-
cementogenic precursors marker) expression in PDL strongly sug-
gests that implanted cells do not themselves differentiate toward
specialized target phenotypes but rather induce a microenviron-
ment suitable for progenitor recruitment from substratum. Thus,
these data suggest that ASC graft in situ activities may be mediated
via a paracrine effect, although their progressive phasing in
implanted sites could also provide signaling for the local envi-
ronment, as has been already reported [44, 45].

Six weeks after implantation, experimental sites exhibited
SCA-1 positive cells, some of which expressed CD146, surrounding
blood vessels. Because SCA-1 was shown to characterize undiffer-
entiated mesenchymal pools [46], this paravascular cell popula-
tion, mainly emerging in grafted sites, may be considered early
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Figure 6. Effect of adipose stromal cell (ASC) graft on bone morphogenetic protein (BMP)-2 and osteopontin (OPN) expression during periodontal
healing. BMP-2 (green; A, D, G, J, M, P) and OPN staining (magenta; B, E, H, K, N, Q), and their colocalization (C, F, 1, L, O, R) 1, 6, and 12 weeks after deep
periodontium grafting =ASC. Six weeks after surgery, BMP-2 expression extended toward the apical part of the periodontal ligament on the exper-
imental side only. OPN expression underlined the cementum deposition and was clearly enhanced by ASCimplantation in comparison with control. High
magnifications of colocalization are displayed (C’, F’, I, L', O’, R’). Cell nuclei are in blue. Scale bar: 100 wm. Abbreviations: AB, alveolar bone; ASC,
adipose stromal cell; BMP-2, bone morphogenetic protein-2; D, dentin; GE, gingival epithelium; OPN, osteopontin; PDL, periodontal ligament.

periodontal precursors. Moreover, our results point out that a
CD146+ SCA-1— cell subpopulation is located under the cemento-
blast layer. This subset may be regarded as a predifferentiated pop-
ulation, already committed to the cementoblasticlineage [5]. In
line with this result, it was reported that the expression of
theinsulin-like growth factor binding protein 6 can be enhanced
in human periodontal ligament cell (hPDLC) by coculture with
ASCs, which release appropriate trophic factors, thus support-
ing hPDLC differentiation into mineralized tissue-forming
cells, such as osteoblasts and cementoblasts [47]. Overall, these
data suggest that ASC grafting may enhance the recruitment
and commitment of endogenous periodontal progenitors that
correlate with the promotion of deep periodontal tissue regener-
ation, as was previously reported in other applications of ASC
therapy [48-53].

www.StemCellsTM.com

Surprisingly, we did not find any marked effect of ASC in alveolar
bone regeneration (supplemental online Fig. 5). Alveolar bone regen-
eration by cell therapy is controversial and depends on the animal
species, the defect designs, and the sources and carriers of grafted
cells. Conversely to infrabony defects, well-known to be regenerated
with high predictability, our periodontitis-pathogen-induced alveolar
bone defect model had a horizontal shape. Thus, we can hypothesize
that the morphology of these defects could be unsuitable for assess-
ing the effect of ASC grafting in alveolar bone reconstruction.

Altogether, our data show, in a very relevant model of rodent
periodontitis, that ASC grafting significantly supports the peri-
odontal regeneration linked not only to enhanced cementum
regeneration, as earlier reported [24] but for the first time en-
hanced PDL fiber organization and number of vessels, as well
as specific progenitors and periodontal cell lineage marker

© 2016 The Authors
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Figure 7. Adipose stromal cell (ASC) graft affected the periodontal ligament (PDL) expression of SCA-1 and CD146 during periodontal healing.
Colocalization of SCA-1 (green) and CD146 (magenta) expression 1 week (A, A’, B, B’), 6 weeks (C, C’, D, D’), and 12 weeks (E, E’, F, F’) after deep
periodontium grafting =ASC. After 6 weeks, ASC periodontium implantation only clearly promoted the emergence of SCA-1+/CD146— (green
arrows) and SCA-1+/CD146+ (white arrows) populations in perivascular locations, and an SCA-1—/CD146+ (magenta arrows) subset indicating
the cementum-lining cells. Cell nuclei are in blue. Scale bar: 50 um. Abbreviations: AB, alveolar bone; ASC, adipose stromal cell; D, dentin; DP,

dental pulp; GE, gingival epithelium; m, epithelial cell rests of Malassez; PDL, periodontal ligament; v, vessel.

expression. These data suggest that ASC-cell grafting could be a
future clinical therapy for periodontal disease.
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