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Introduction

Ultraviolet germicidal irradiation (UVGI) can cause suffi-
cient damage to the deoxy-ribonucleic acid (DNA) and cel-
lular structures of microorganisms so as to render them 
incapable of replication.1,2 Multiple trials have demon-
strated the effectiveness of ultraviolet (UV) light devices in 
reducing the environmental bioburden of pathogenic organ-
isms such as methicillin-resistant Staphylococcus aureus 
(MRSA), vancomycin-resistant Enterococcus spp (VRE), 
Clostridioides difficile (C. diff), Acinetobacter spp., and 
norovirus.3–6 Furthermore, many studies have shown that 
UVGI produced from a portable pulsed-xenon UV emitting 
device (PPX-UV) used in conjunction with manual disin-
fection of the patients environment reduces the risk of 
healthcare-acquired infections (HAI).2,7

Transmission of mycobacterial infections is not uncommon 
in healthcare settings.8 Infections from Mycobacterium can be 
related to environmental exposure of patients and healthcare 
workers to these organisms.9 UV-based air system purification 

has been previously used and found to be effective.9 Besides 
the primary airborne route of transmission from person to per-
son, the bacilli can survive for prolonged periods outside the 
body on surfaces if they are protected from direct sunlight, that 
is, in dark areas. Inadequate environmental cleaning is an addi-
tional risk for HAI, and the use of PPX-UV can help to mitigate 
this risk. Bacilli residing on surfaces can be transferred through 
multiple routes including equipment (bronchoscope or an 
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endotracheal intubation and suctioning with mechanical venti-
lation) and/or supplies that can introduce the organism into the 
respiratory tract. The susceptibility of mycobacteria to UVGI 
varies with the species tested.10–12 Since Mycobacterium tuber-
culosis (MTB) is a highly pathogenic organism it was thought 
best to conduct a feasibility study on a similar organism before 
conducting the study on the more biologically dangerous and 
pathogenic organism, MTB.

Mycobacterium fortuitum has been shown to be more 
resistant to UV than its more pathogenic cousin MTB.

Most information concerning the susceptibility of  
M. fortuitum to UVGI has been done using mercury vapor 
lamps which emit continuous UVGI with a narrow emission 
spectrum centered at 254 nm. M. fortuitum is naturally more 
resistant to mercury generated UVGI than non-mycobacteria 
and also more resistant than other mycobacteria. Lee et al.13 
found that 20 mJ/cm2 of mercury generated UV light resulted 
in more than 3 log reduction of Mycobacterium avium, 
Mycobacterium intracellulare, and Mycobacterium lentifla-
vum but 50 mJ/cm2 were required for a 3 log reduction of M. 
fortuitum. The irradiation Ct value for a 3 log inactivation of 
M. fortuitum was 600 times higher than for Escherichia coli. 
Other mycobacteria were only 2–10 times more resistant to 
UV killing than E. coli. The effectiveness of different UV 
technologies on MTB have been tested previously both in a 
hospital setting and in the environment.14–17 Pulsed UV, a 
new UV device that delivers high-intensity bursts of energy 
in short time periods and thereby, better penetration than the 
commonly used mercury generated UVGI sources. By exam-
ining the impact of PPX-UV on M. fortuitum, a species that 
is more resistant to UVGI than MTB, insight can be gained 
on the potential for PPX-UV technology which emits high-
intensity pulsed light ranging from 200 to 315 nm to reduce 
the level of MTB contamination in clinical environments.

Methods

The experiments were approved by the Research & 
Development Committee and conducted at Central Texas 
Veterans Health Care System, Temple, TX over a 11-month 
period in a BSL-3 facility. The study was designed as labora-
tory based with quantitative analysis. The effect of UV expo-
sure for the survival of M. fortuitum was quantified as log 
reduction of colony forming unit of M. fortuitum. Strain type 
of M. fortuitum (ATCC 6841) was purchased from ATCC. 
On day 1, a 7-day culture of M. fortuitum on Lowenstein 
Jensen medium was inoculated to Middlebrook 7H9 broth 
containing 6–8 sterile 3 mm glass beads to disperse clumps. 
On days 2–5, the 7H9 broth culture was incubated and vor-
texed daily for 20 s. On day 7, the turbidity of the 7H9 broth 
culture was adjusted to a MacFarland 1 density standard. 
Serial 10-fold dilutions of 10−1 through 10−6 of the standard-
ized suspension were prepared in sterile 7H9 broth contain-
ing glass beads. We modified the bead mixing method of 
Kent and Kubica;18 after each suspension or dilution was 
prepared it was vortexed for 20 s and allowed to settle for 

10 min before transfer. Dilution or inoculum transfers were 
aspirated from the top of the solution to minimize transfer of 
large clumps of mycobacteria.

Duplicate 100 mm petri dishes containing 7H11 media 
were inoculated with 0.1 mL of 10−3 through 10−6 dilutions of 
7H9 broth suspensions. Colonies were enumerated after 
5–7 days in a 35°C incubator containing 5% CO2. Triplicate 
150 mm plates containing 7H11 agar was inoculated with 
0.1 mL of the MacFarland 1 suspension. Inoculum was 
spread to avoid small scratches in the media which would 
allow organisms to evade irradiation and form colonies to 
prevent blocking of UV rays by the sides of the petri dish, or 
shielding of organisms between the media edges and the 
petri dish. Uncovered plates were placed on a rack in the 
front of a biological safety cabinet (BSC) at a 45° angle from 
horizontal, a height of 0.83 m, 4 feet from the PPX-UV 
device. This position prevented the glass front of the BSC 
from blocking UV rays. The plates were irradiated for 5, 10, 
and 15 min. The lids were replaced and the plates incubated 
at 35°C in a dark CO2 incubator. Surviving colonies were 
enumerated after 5–7 days of incubation. The experiment 
was repeated on five different days. The log-kill was calcu-
lated by: Log survivors − Log inoculum = Log-kill.

Statistical analysis

A Bayesian multilevel linear regression model was used to 
determine the mean log-kill at each timepoint, while partially 
pooling the data across the experiments. Log-kill was mod-
eled as a function of time and included a varying intercept for 
the experiment. Results are expressed as the model estimated 
mean log-kill and 95% uncertainty interval at each time point. 
The raw data are plotted and color coded by experiment. The 
Bayesian model was run in the “brms” package in R, which 
uses the Bayesian inference software Stan. Plots were created 
using “ggplot2” package in R version 3.6.3.

Results

The log-kills of M. fortuitum (ATCC 6841) at 5, 10, and 
15 min of PPX-UV exposure are shown graphically in Figure 
1. The mean (SD) log-kill at 5 min was 3.98 (0.60), at 10 min 
was 4.96 (0.42), and at 15 min was 5.64 (0.52). The model 
estimated mean log-kill partially pooled across the experi-
ments was 4.03 (3.36–4.68) at 5 min, 4.86 (4.25–5.50) at 
10 min, and 5.69 (5.04–6.39) at 15 min.

Discussion

Prior studies have shown mycobacteria to be more resistant to 
traditional UVGI than other bacteria such as E. coli.10,12,13 In 
contrast, our results using PPX-UV showed a 10-min irradiation 
kill rate of 5 logs for M. fortuitum; similar to Hosein’s study 
using PPX-UV against multi-drug resistant organisms like 
MRSA and VRE.6 This demonstrates the efficacy of PPX-UV 
against M. fortuitum and potentially MTB. We attribute the 
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higher kill rate at 5 min in our study to facilitate killing of single 
or very small aggregates of organisms on the surface of the 
growth medium by our modified bead mixing method.18 Larger 
aggregates of organisms likely take more UV exposure to be 
inactivated but would still form a colony if there was only one 
survivor in the aggregate. The slowing of the kill rate between 
10 and 15 min may be due to inaccessibility of organisms in 
aggregates or moisture from the media rather than resistance to 
killing by irradiation. Similarly, our modified bead mixing 
method resulted in more organisms in higher dilution plate 
counts than lower dilutions. Bacterial aggregates usually cause 
problems in assessing susceptibility to irradiation since the 
depth of UV penetration for polymers is about 25 µm. 
Organisms on the bottom of a medium to large clump or a thin 
film would likely be protected from irradiation and thus form a 
colony.19 This could also be correlated to the presence of organic 
material in a real hospital room in the absence of manual clean-
ing. More studies are needed to confirm our initial findings.

This study adds to the existing literature on the use of 
portable UV devices for surface disinfection in the hospi-
tal setting.2,13,18 M. fortuitum serves as a logical surrogate 
for MTB due to its decreased virulence and increased 
resistance to UVGI and potentially validates the use of 
PPX-UV for disinfection of surfaces in rooms occupied by 
patients with MTB.

Our study has limitations. The experimental conditions 
used in this study does not fully reproduce the UV disinfec-
tion of M. fortuitum in a clinical setting. The use of UV device 
for germicidal purpose becomes less effective if the distance 
between the target and the UV source increases. In addition, 
the UV dose which depends on the intensity and the duration 
functions best at a shorter distance and when in direct line of 
the source. Therefore, the objects in proximity to the light 
source would need shorter disinfection cycles compared to 
objects further away. Shadowed areas would require longer 
disinfection cycles. Type of material also affects the efficacy 
of UV radiation, in particular a few organic materials are 
known to have poor reflection rates and UV can penetrate 
them. The experiments designed in this manuscript to test the 

efficacy of the PPX-UV on M. fortuitum were performed at a 
shorter distance and in direct line of the UV source.

Conclusion

Our study demonstrates that PPX-UV device can act as an 
effective bactericidal source for M. fortuitum. Furthermore, 
the germicidal activity of PPX-UV increases in a time-
dependent manner. This study is significant because portable 
UVGI devices are becoming commonly used for area disin-
fection in hospital settings.
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