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Immune checkpoint inhibitors (ICIs) have dramatically transformed oncology by

prolonging overall survival and yielding better patient tolerance compared to other

chemotherapeutic agents. However, numerous questions remain unanswered about

the toxicity profile of ICIs, its relationship with the treatment response, and causes

underlying the excellent treatment response in some patients, while recalcitrance in

others. Research groups have continued to seek biomarkers that may permit the

identification of treatment responders and predict toxicity to facilitate cessation of

immunotherapy before the development of severe toxicity. However, some studies

have found associations between serious adverse events and longer survivorship. The

research question entailed determining whether a biomarker is needed to predict severe

immune-related adverse events prior to their development or whether providing early

treatment for toxicity would inhibit the immune system from attaining a long-lasting anti-

tumor effect. Therefore, this review conducted an in-depth analysis into the molecular

basis of these observations.

Keywords: immune checkpoint proteins, immune-related adverse event (irAE), biomarker, autoimmunity, severe

toxicity

INTRODUCTION

Immune checkpoint inhibitors (ICIs) have sparked a massive revolution in oncology. Immune
checkpoints are a group ofmembrane receptors present on cytotoxic T lymphocytes whose function
is to prevent an indefinite immune response that could severely damage healthy host tissue.
Programmed cell death protein 1 (PD1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) are the
most studied immune checkpoints. ICIs are monoclonal antibodies that target PD-1/programmed
death ligand 1 (PD-L1) or CTLA-4, reactivating the anti-tumor immune response that is inhibited
by the overexpression of these proteins by tumor cells (1). However, not all patients respond to
immune checkpoint blockade. Response rates range from 13 to 40%, depending on monotherapy
or combination treatment and the primary tumor (1). Hence, it imperative to discover biomarkers
that can aid in predicting the treatment response to avoid the administration of ineffective drugs,
which are also exorbitantly expensive. Despite tremendous efforts in this field, PD-L1 expression,
tumor mutational burden (TMB), and microsatellite instability are the only predictors available for
use in routine clinical practice (2), although their specificity is not ideal.
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Moreover, even though the toxicity profile of ICIs is better
than that of chemotherapy, the rate of adverse effects is
significantly high with ICIs. Severe treatment-related toxicity was
observed in 55% of patients treated with the combination of
PD-L1 and CTLA4 inhibitors (3) (grades 3–4 according to the
Common Terminology Criteria for Adverse Events version 5)
(4). Colitis, rash, and hypophysitis are the most frequent adverse
effects of CTLA4 inhibitors, whereas arthralgia, pneumonitis,
vitiligo, and hypothyroidism are most frequent with PD-L1
inhibitors (5), with high temporal unpredictability (6). However,
some studies have shown that immune-related adverse events
(irAEs) could be predictors of the anti-tumor response (7,
8).

The individual irAEs evoked by ICIs bear striking similarities
to classic autoimmune diseases (9),with the main bulk of
evidence being focused on immune-related colitis (10, 11). The
mechanisms that trigger irAE development are incompletely
understood, but are chiefly related to the loss of peripheral
tolerance and increase in self-reactive T-cell clones (12).
They are often poorly reported in clinical trials, and until
recently, principal knowledge about their development was
derived from the retrospective studies, whose a posteriori nature
precludes the collection of samples and analysis of possible
triggers. Usually, irAEs develop in 1 organ at a time and
are considered to be dose independent; however, with anti-
CTLA4, recent studies show differences depending on the
administered dose of ipilimumab (13). Moreover, irAEs can
appear even months after cessation of the drug, which may
be challenging to identify and treat in routine clinical practice
(6, 12).

The initial treatment for severe irAEs entails the
administration of high-dose corticosteroids (specifically,
methylprednisolone 1 mg/kg/day) (3, 14). Other
immunomodulators, such as infliximab, vedolizumab,
tocilizumab, mycophenolate, etc., can be added, if the irAE
cannot be controlled with corticosteroids alone (Table 1).
Usually, treatment must be stopped if the patient develops
severe toxicity, but it is not always linked to cessation of the
anti-tumor benefit, and may even have the opposite effect, i.e.,
years of recurrence-free survival without any treatment (15).
However, other patients experience an explosion of disease
after the administration of high-dose corticosteroids or other
immunosuppressants (16). Therefore, this treatment was initially
contraindicated in patients treated with ICIs, because an abrupt
loss of effectivity was anticipated (17).

The principal hypothesis that motivated this research is
whether a biomarker should be sought to predict severe irAEs
prior to their development, or if early treatment for toxicity
will inhibit the immune system from attaining a long-lasting
anti-tumor effect. This study delved into the molecular basis
of these observations, reviewed the pathogenesis of irAEs, and
sought biomarkers that could specifically predict severe toxicity.
Furthermore, it attempted to elucidate the molecular link
between toxicity and the anti-tumor response, and discussed the
need for these biomarkers in clinical settings and the implications
of possible preventive treatment for irAEs.

IMMUNE-RELATED ADVERSE EVENTS:
MOLECULAR BASIS

Immune checkpoints play a fundamental role in maintaining
immunologic homeostasis (6). Therefore, the blockade of these
checkpoints may increase the anti-tumor activity of the immune
system, which is accompanied by the risk of the loss of self-
tolerance, leading to the occurrence of irAEs, causing damage to
normal cells and tissues.CTLA4 modulates the immune response
in theearly stages, while PD-1 acts later in the immunologic cycle
(1, 12). CTLA-4 blockade induces expansion of the inducible T-
cell costimulatory Th1-like CD4 effect or as well as exhausted-like
TCD8+ cells, while PD-1 blockade primarily induces expansion
of exhausted-like tumor infiltrating TCD8+ cells (18).

The deficiency of CTLA-4 leads to severe autoimmune
diseases (colitis and myocarditis) characterized by T-cell
infiltration inmurine models. This phenomenon also occurs with
the loss of PD-1, but is less straight forward with genetic strain
differences, and may be accompanied by the development of
late-onset autoimmune diseases (such as lupus-like disease) (19).

The self-tolerance of the immune system, in which regulatory
T (Treg) cells play a fundamental role, can be lost in several ways.
Tregs are a subgroup of CD4 + T lymphocytes that maintain
immune tolerance. Usually, a higher count of Tregs in peripheral
blood is related with poor prognosis for several cancers
(20). Nuclear factor kappa B (NF-κB) activation is essential
for Treg-induced homeostasis, and Treg and effector T-cell
expansion (21). Constitutive activation of NF-κB-induced kinase
(NIK) on Tregs induces alteration of its functions and genetic
signature (GITR+CD25+Foxp3+), leading to development of
autoimmune diseases (20). CD25+ T and CD25– lymphocytes
inhibit the development of autoimmunity, which could also be
evoked by FOXP3 expression, which, in turn, increases Treg
and M2 macrophage infiltration (immunosuppression), tipping
the balance in favor of the tumor cells. Polymorphisms in the
Foxp3 locus affect Foxp3 expression and can influence Treg cell
function (22). The increase in NOTCH3 also plays a role in
decreasing the TMB, the GEP-gene expression profile scores, and
the TCD8+ activated lymphocytic infiltration. This mechanism
is correlated with adenosine 2A receptor (ADORA2A) and
CD276 (B7-H3) expression (23), both of which possess potential
therapeutic effects (24, 25). Adenosine, which is generated in
the tumor microenvironment (TME), inhibits the anti-tumor
function of various immune cells, such as cytotoxic T cells and
natural killer (NK) cells. Moreover, ADORA2A is implicated in
the upregulation of inhibitory cytokines, such as transforming
growth factor-beta (TGF-β) and inhibitory receptors, such as PD-
1 itself. Interactions with FOXP3 stimulate the transformation
of CD4+ T-cells into Treg cells, thus inhibiting the immune
response (26).

Furthermore, T-cell activation is markedly sensitive to the
depletion of glutamine and glucose, and the exogenous uptake
of serine and alanine (27). Effect or T cells are consequently
sensitive to the oxidative stress in the TME, which can induce the
exhausted phenotype (27), which may be implicated in response
and toxicity.
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TABLE 1 | Management of the most frequent severe irAEs (14) and biomarkers that may predict them.

irAEs, all grades

(% PD-L1/ CTLA-4/

combination)

Median time to onset (41)

Common

management (grade

≥3) (14)

Special management

considerations (14)

Biomarker: immune cells Biomarker: cytokines

(↑ except indicated)

Other potential

biomarkers

Colitis

(<19, 13–54, 29)

38 days

Consider

patient admission

Infliximab or

vedolizumab

↑CD4TH17

↓Tregs

(41, 42)

↑CD177 and

CEACAM1 genes (46)

IL-17 (31, 42)

↓ IL-6 (31)

IL-8 (31, 42)

Microbiome (21, 79)

↑Faecalibacterium,

↑Firmicutes,

↓Bacteroidetes (colitis)

TGFβ signature (58)

NLR (better accuracy

for pneumonitis) (80)

Eosinophils (41)

Lymphocytes >2000

(41)

Sarcopenia (58)

Body mass index (60)

Vitamin D (on

investigation)

Dermatitis

Incidence of all dermatological

irAEs:

(17–37, 37–70, 48)

25 days

Steroids 1–2

mg/kg/day until grade

1, followed by a

tapered dose for

4–6 weeks*

Topical emollients,

corticosteroids, oral

antihistamines

Consider phototherapy

- ↓Circulating B cells

↑CD21lo B

cells/plasmablasts

(44)

IL-6

IL-10 (19)

Arthritis

(6–12, 5, 11)

3 months

Consider indefinite

suspension of the

drug *

Long- term

administration of TNF

inhibitor or consider

tocilizumab (81)

↓CD8 effectors (12) IL-6

Pneumonitis

(<1, 2,7, 10)

3 months

Infliximab or

mycophenolate mofetil

IV/IVIG or

cyclophosphamide

↑CD4 TH2 (12) -

Thyroid disorders

Hypothyroidism (6, 4, 13),

Hyperthyroidism (3, 2, 8)

14–73 days

Hold the drug until

symptoms resolve to

baseline with

appropriate therapy

Consider IV

levothyroxine for

myxoedema, steroids

and supportive care

↑CD4 TH17 (12) -

*Except thyroid disorders.

(% PD-L1, CTLA-4, or a combination of the 2): Percentage of incidence of these irAEs according to the administered drug(s) (41).

irAEs, immune-related adverse events; PD-L1, programmed cell death ligand 1; CTLA-4, cytotoxic T-lymphocyte antigen 4; NLR, neutrophil to lymphocyte ratio.
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However, T cells are not the only protagonists involved
in the development of irAEs. The possible role of cytokines
and other immune cells involved in the maintenance of self-
tolerance, and consequently, irAE development, such as the
previously mentioned NK cells, B cells, and autoantibodies,
which are products of the humoral immune system, should not
be forgotten.

First, cytokines such as the IL-12 family (IL-12, IL-23, IL-
27, and IL-35) may be related to both tumor immunity and
autoimmunity, necessitating examination of their modulation in
irAEs (28). The other cytokines related to immune inhibition
include IL-10, IL-4, IL-6, and IL-13 (1), and TGF-β, which
is correlated with FoxP3 expression and T-reg infiltration and
immunesuppression in some models (29).

Second, given that autoantibodies are associated with the
development of some autoimmune diseases, such as Hashimoto’s
thyroiditis and rheumatoid arthritis, autoantibodies can be
considered as a potential cause of irAEs (30). However, not all
antibodies play a role in the pathogenesis of irAEs.

Therefore, the development of irAEs could be related to the
following mechanisms: surge in T cell activity against antigens
that are present in tumors and healthy tissue, elevation in the
levels of pre-existing antibodies or inflammatory cytokines, or
enhancement of complement-mediated inflammation due to
direct binding of anti-CTLA4 antibodies with CTLA4 expressed
on normal tissue (6). These interactions could cause cellular
toxicity via antibody-dependent cellular cytotoxicity, antibody-
dependent cellular phagocytosis, and complement-dependent
cytotoxicity (9).

The molecular basis of irAEs differs depending on the
individual drug (31). Usually, anti PD-1toxicity is mediated by
auto antibodies that already exist in patients and are stimulated
after the initiation of ICIs (32). Therefore, irAEs, such as thyroid
disorders or vitiligo, are more frequent with anti-PD-1/PD-
L1 drugs. Hence, we may infer that patients with a history of
spontaneous autoimmune diseases would experience irAEs with
greater frequency and (possibly) greater severity, which may
or may not be related to the underlying autoimmune disease.
The findings of studies and case reports in this regard were
controversial (33–36). The reported frequency of disease flares
was higher with anti-PD-1/PD-L1 drugs (62 vs. 36%), while that
of de novo irAEs was higher with ipilimumab (42 vs. 26%), which
could be related to the previous observation on autoantibodies
(37). However, although irAEs and flares are frequent among
patients with autoimmune diseases (especially those with
rheumatoid arthritis), their toxicities are usually manageable
even without cessation of ICI therapy (38). Further evidence
and guidelines are required in the future to fully understand
the mechanisms underlying irAEs and autoimmunity, and advise
clinicians on the safe prescription of ICIs in this context.

We must reiterate that some irAEs appear more frequently
when ICIs are used for the treatment of specific tumors, albeit
not in all patients. For example, the incidence of vitiligo is
higher in patients with melanoma (39). Since ICIs increase the
anti-tumor response via melanocytes, it is not surprising that
the occurrence of vitiligo may be associated with an increased
anti-tumor response (6, 40).

Colitis is another example highlighting how the development
of different irAEs depends on the culprit drug. If the irAE
is induced by anti-PD-L1, CD8+ T lymphocyte infiltration is
observed in the intestinal mucosa, whereas irAEs caused by
anti-CTLA4 are characterized by the predominance of CD4+T
cells and elevation in TNF-α levels (11). Lower levels of TNF-
α in the intestinal mucosa are related to better sensitivity to
corticosteroids (11).

BIOMARKERS FOR SEVERE TOXICITY

We sought biomarkers to predict irAE occurrence before
their induction, in order to facilitate early treatment to avoid
severe (grade 3) and life-threating (grade 4) toxicity. The more
promising ones are mentioned in this section, although none
of these have been validated yet, and larger prospective studies
focusing on this aspect are vital.

The first potential biomarker is related to enhanced T-cell
activity against antigens present in tumor and healthy tissue;
specific TCR sequences predispose cancer patients to organ-
specific toxicities. For example, a lower proportion of CD8+
effector cells is associated with arthritis, while a higher proportion
of CD4 TH2 cells and CD4 TH17 cells at baseline is related
to pneumonitis and thyroiditis, respectively (12). It is logical to
infer that a reduction in the proportion of Tregs could be related
to higher toxicity, but limited data is available on its predictive
ability for colitis (41, 42). Thus, the future direction for tumor
immunotherapy lies in enhancing the function of tumor-specific
T cells rather than that of other T-cell subtypes (43).

Furthermore, circulating B cells may be useful for predicting
irAEs. Patients with melanoma treated with ICIs who
experienced a 30% or greater reduction in the baseline levels of
total circulating B cells, and increase in CD21lo B cells or plasma
blasts, were significantly more likely to develop high-grade
IRAEs than those without B cell changes (44). Interestingly, PD1
expression was higher in CD21lo B cells (45). Further studies are
needed to validate these observations.

Additionally, the infiltration of digestive neutrophils into the
colon during treatment is associated with digestive toxicity with
anti-CTLA-4, in addition to the increased expression of the
CD177 and CEACAM1 genes, which are markers of neutrophil
activation (46).

First, the following useful biomarkers should be mentioned,
which are simple and inexpensive to detect the neutrophil to
lymphocyte ratio, which is elevated in patients who develop
grade 3 and 4 pneumonitis and colitis after anti-PD-1;the
absolute eosinophil count, which increases before the onset of
>grade 2 endocrine disorders; and the absolute lymphocyte
count (>2,000/mL). These parameters are related to irAEs, albeit
without any specificity (41, 46), and can be easily altered with the
incidence of other conditions such as infectious diseases, which
may alter prognostication.

Second, humoral biomarkers should also be considered,
since elevated levels of pre-existing antibodies or inflammatory
cytokines act as triggers for the development of irAEs; IL-6, IL-
17, and sCD163 are significantly associated with irAEs in cancer
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patients treated with ICIs (7, 47). CD4 TH-17 cells secreting IL-
17, IL-6, and IL-8 appear in patients who develop grade>3 colitis
(with anti CTLA-4) (42, 46). The elevated levels of IL-6 and IL-10
are also linked with dermatological irAEs (19), while lower levels
of IL-6 are reportedly associated with colitis (31).

Although the higher levels of autoantibodies have been
linked to the irAE development, the relationship between auto
antibodies and the pathogenesis of toxicities is unclear. Enhanced
T-cell activation may be the most plausible trigger for irAEs,
while the humoral immune system may play a supporting role.
These phenomena can be measured using protein microarrays,
akin to those for autoimmune diseases (48). However, anti-
thyroid peroxidase (49) is the only antibody that can be employed
in routine in daily clinical practice to predict irAEs. Furthermore,
recent studies have found no association between baseline auto
antibodies and irAE severity (30). These findings have precluded
their use for the prediction of severe toxicity, and consequently,
prophylactic treatment.

Finally, a few studies have posited gene signatures as a
potential predictive measure for irAE incidence and severity, at
least for immune-related colitis (50). A strategy that combined
pharmacovigilance data with omics data identified 2 additional
potential biomarkers associated with the use of PD-1/PD-L1
agents, viz. lymphocyte cytosolic protein 1, which is involved
in T-cell activation, and adenosine diphosphate dependent
glucokinase, which mediates the metabolic shift during T-cell
activation (51). Nevertheless, these findings were derived from
a small sample, and further investigations are needed to validate
these biomarkers.

The microbiome, as well as body mass index (BMI) and
body composition, are the two intriguing potential biomarkers
under investigation.

Fecal microbiome transplantation (FMT) has emerged as
a treatment for immune-related colitis. A study showed
reconstitution of the gut microbiota and elevation in Treg cells
within the colonic mucosa with FMT (52). The baseline gut
microbiota enriched with Faecalibacterium and other Firmicutes
were found to be associated with the clinical response and
CTLA-4-induced enterocolitis (42). The 2 studies reported that
a low abundance of Bacteroidetes was associated with colitis.
Nevertheless, to date, the studies that analyzed this issue have
included a small patient population. A larger prospective studies
exploring other toxicities besides colitis are needed and some of
which are already underway (53).

Furthermore, recent studies show that variations in the
gut microbiome have the potential to enhance the therapeutic
response and reduce the irAEs associated with ICIs in multiple
cancers (54, 55). The gut potential function of intestinal microbes
as an immunemodulator (by increasing the anti-tumor effect
and potentially reduce irAEs) is so considerable that some
ongoing trials are investigating the possibility of combining
them with anti PD-1/PD-L1 and anti-CTLA-4 drugs (21). The
relationship of certain bacteria with vitamin B and poly-amine
transport to the gastrointestinal tract may be the mechanism
underlying the increased efficacy of immunotherapy in the
background of the predominance of certain bacteria (56). The
differences in the microbiome may apparently be responsible

for toxicity or response, depending on the drug. Bacteroides
fragilis, Burkholderia cepacia and the Faecalibacterium genus are
associated with better response and lower incidence of colitis
with anti-CTLA-4, while Bifidobacterium breve and longum,
Akkermansia muciniphila, and Faecalibacterium prausnitzii are
related with better outcomes with anti-PD-1/PD-L1 (56). The
microbiome and its modifications may be responsible for the
negative impact of some antibiotics on survival outcomes in
patients receiving ICIs (57).

Another important biomarker that may be related to worse
outcomes with anti-PD-1 treatment is sarcopenia. Several
possible explanations exist, such as the implication of TGF-β
and IL-6 and the development of chronic inflammation that
results in cancer immune evasion through T cell exhaustion (58).
Sarcopenia is related not only to poorer survival outcomes, but
also to a higher incidence of irAEs (58). Besides, obesity has
been linked with poorer outcomes with classic chemotherapy,
but is apparently associated with improved outcomes in patients
treated with ICIs (obesity paradox) (59). This association was
especially marked when BMI and irAEs were considered in
combination, meaning that the observed therapeutic benefit
is further enhanced in the event of irAEs in the overweight
population (60). Further studies are needed to analyse the
cytokines that could be involved, as obesity is related to
inflammation and metabolism, and its relationship with the
hallmarks of cancer and immunotherapy requires investigation.

As mentioned above, the studies have that link potential
biomarkers with irAEs are limited by their small sample size,
and the unpredictable onset and frequency of these adverse
events poses a challenge for the design of larger (much needed)
prospective trials.

TOXICITY ITSELF AS A BIOMARKER

Several studies have reported a positive association between
the incidence of irAEs and the survival outcomes (6, 61, 62),
while others have found no such association (63). A systematic
review andmeta-analysis has shown that grade≥3 toxicities were
correlated with a better overall response rate, but poor overall
survival (64), while another has linked irAEs with better survival
and response (7).

It is possible that certain immune-related adverse events
possess a more direct relationship with anti-tumor efficacy than
others (6), e.g., vitiligo in patients with melanoma. Thus, the
irAEs could act as biomarkers themselves; however, since the
intensity of irAEs cannot be modulated at present, nor can
their severity be predicted before onset, irAEs cannot be uses as
biomarkers of response. Doing so would jeopardize the patient by
blindly exposing them to life-threatening adverse effects, owing
to the lack of effective treatments that do not compromise the
anti-tumor effect.

Furthermore, a few attempts were made at administering
preventive treatment for the irAEs, which have been unsuccessful
(65). However, it is debatable whether this could be attributed to
the lack of efficacious preventive treatment or the utilization of a
suboptimal biomarker.
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DISCUSSION AND FUTURE DIRECTIONS

This review assessed several potential biomarkers for severe
toxicity evoked by ICIs; however, it could not conclusively
identify a definite predictive biomarker for the timing of onset
and occurrence of irAEs. Unfortunately, these data do not
provide sufficient evidence to design a trial that can provide early
treatment modalities for irAEs. Besides, considering the potential
relationship between irAEs and tumor response, attempts to stop
the onset of irAEs before they effect the modifications in the
immune system needed to achieve longer survival may deprive
patients of the potential long-term and ulterior benefits.

The future of oncological medicine lies in
immunemodulation, and in line with this approach, other
options should be explored for the treatment of irAEs that do
not involve the use of corticosteroids, owing to their ambiguous
effect on the anti-tumor activity of the immune system, if they are
not administered at the optimal time, and substantial toxicity for
patients (osteoporosis, infections, hypertension, hyperglycaemia,
etc.) (66, 67).

Moreover, any discussion on the discovery of
immunemodulators should include not only new combination
drugs, but also physical activity (PA), vitamin D, andmetabolism.

First, by virtue of reducing hypoxia and normalizing
the tumor vasculature (68), PA can modify the TME and
significantly reduce tumor aggressiveness (69). Moreover, PA
induces transformations in the AKT and mTOR pathways,
muscular IL-6, and mitochondrial function, which consequently
inhibit tumor cell proliferation (68). Furthermore, PA stimulates
NK cells by preparing the TME for their arrival, increasing
the expression of NKG2D and NKp46 receptors (70). PA can
increase the cytotoxic activity of T cells and macrophages, thus
lowering the risk of metastasis (69). These modifications are
also observed in patients who respond better to ICIs (71–
73). Hence, it seems feasible that PA could act as a potential
coadjuvant to immunotherapy, as already observed in pre-
clinical models (74).

The potential of vitamin D as an immune modulator has
also garnered interest. Vitamin D seem to benefit patients
with autoimmune diseases; considering that irAEs share some
characteristics with them, it is reasonable to assume that
vitamin D may be useful for treating or even preventing their
development (75, 76). Furthermore, vitamin D may play a role
in the expression of PD-L1, owing to its vast immunemodulation
potential. Moreover, as patients with cancer usually have vitamin
D deficiency, regular testing, and examining its relationship with
the development of irAEs could be an interesting direction for

research. In fact, some ongoing studies have already focused on
this aspect (ClinicalTrials.gov Identifier: NCT04615988).

Furthermore, the epigenetic role of metabolism on
the immune system cannot be ignored (27). Exhausted T
lymphocytes inhibit the AKT and mTOR pathways, stimulating
fatty acid oxidation and increasing reactive oxygen species levels,
and consequently, modifications in the exhausted T lymphocytes
(77). However, active T lymphocytes mainly derive energy from
glycolysis even in the absence of oxygen, which is inhibited by
PD-L1, at least in chronic infections, but could also be relevant
for neoplasms (77). The mitochondria play a fundamental
role in this mechanism, and their potential involvement in
the treatment for chronic infection and tumor control is
being studied. Finally, the methylation pattern for exhausted
T lymphocytes has been described, which seems to confer
resistance to immunotherapy (78), making this mechanism a
possible focus for future investigations.

In conclusion, it is clear that future research in the fields
of immunotherapy and cancer is going to take a complex
route, and an independent biomarker that can predict response,
toxicity, or resistance to immunotherapy is not feasible. However,
the results from studies on the new immune modulators may
eliminate the need for high-dose corticosteroids. Their effects
on the immunesystem, which are complex and sometimes
contradictory, have an immenseimpact on toxicity, which cannot
be allowed in this era of high precision medicine. We should
guide our efforts to attempt to modulate the immune response to
achieve better survival outcomes even without the development
of irAEs.
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