S International Journal of
Molecular Sciences

Review

Functional Interplay between Methyltransferases and
Inflammasomes in Inflammatory Responses and Diseases

Young-Su Yi

check for

updates
Citation: Yi, Y.-S. Functional
Interplay between Methyltransferases
and Inflammasomes in Inflammatory
Responses and Diseases. Int. J. Mol.
Sci. 2021, 22, 7580. https:/ /doi.org/
10.3390/1jms22147580

Academic Editors: Amedeo Amedei
and A. Phillip West

Received: 17 June 2021
Accepted: 13 July 2021
Published: 15 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Life Sciences, Kyonggi University, Suwon 16227, Korea; ysyi@kgu.ac.kr; Tel.: +82-31-249-9644

Abstract: An inflammasome is an intracellular protein complex that is activated in response to a
pathogenic infection and cellular damage. It triggers inflammatory responses by promoting inflam-
matory cell death (called pyroptosis) and the secretion of pro-inflammatory cytokines, interleukin
(IL)-1B and IL-18. Many types of inflammasomes have been identified and demonstrated to play a
central role in inducing inflammatory responses, leading to the onset and progression of numerous
inflammatory diseases. Methylation is a biological process by which methyl groups are transferred
from methyl donors to proteins, nucleic acids, and other cellular molecules. Methylation plays
critical roles in various biological functions by modulating gene expression, protein activity, pro-
tein localization, and molecular stability, and aberrant regulation of methylation causes deleterious
outcomes in various human diseases. Methylation is a key determinant of inflammatory responses
and diseases. This review highlights the current understanding of the functional relationship be-
tween inflammasome regulation and methylation of cellular molecules in inflammatory responses
and diseases.
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1. Introduction

Inflammation is an innate immune response that protects the body from microbial
infection and cellular stress [1,2]. The inflammatory response relies on pattern-recognition
receptors (PRRs) by recognition of a variety of pathogen-associated molecular patterns
(PAMPs) and danger-associated molecular patterns (DAMPs) through receptor-ligand
interaction [1,2]. The inflammatory response comprises two steps: priming and triggering.
Priming is a preparatory step in the inflammatory response, and involves the inducing
of the transcription of pro-inflammatory molecules. It occurs via the cell surface and
endosomal PRRs, such as toll-like receptors (TLRs) that activate nuclear factor-kappa B
(NF-«B), activator protein-1 (AP-1), and interferon (IFN)-regulatory factors (IRFs) [3-5].
Triggering, on the other hand, is an activation step of the inflammatory response, which
involves the activation of inflammasomes, intracellular protein complexes comprising
PRRs and inflammatory molecules and typically occurs via intracellular PRRs, such as
the nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), absent in
melanoma 2 (AIM2), and inflammatory caspases, mouse caspase-11, human caspase-4, and
caspase-5 [6-11]. Inflammasome activation is a key feature of the triggering step of inflam-
matory responses, and dysregulation of inflammasome activation has been considered the
key risk factor for chronic inflammation and numerous human diseases [12-16].

Posttranslational modifications (PTMs) are critical determinants of innate immunity
and inflammatory responses [17,18]. The functional cooperation between inflammasomes
and PTMs has been demonstrated to play pivotal roles in various biological functions.
PTMs occur in the components of inflammasomes and regulate the activities and functions
of inflammasomes [19-21].

Methylation is a biological process by which methyl groups are added to a subset of
proteins and nucleic acids, which leads to the epigenetic modifications of these cellular
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molecules. These molecules achieve the functions required for cellular homeostasis via
methylation; therefore, changes in the methylation status have been implicated in various
biological conditions and human diseases, including inflammatory responses and diseases.
Previous studies have demonstrated the roles of methyltransferases (MTs) in this context,
as well as the potential therapeutic strategies that could target these enzymes [22-26]. Dif-
ferent criteria, including substrates and structural features, have been used to classify MTs.
Protein MTs (PMTs) methylate proteins; although histone proteins have been identified
as the predominant substrates of PMTs at lysine and arginine residues [27-32], emerging
studies suggest that non-histone proteins are also substrates of PMTs [33-36]. DNA MTs
(DNMTs) methylate DNA by catalyzing CpG methylation in the promoter regions of many
genes responsible for various biological functions and human diseases. Accordingly, dys-
regulated DNA methylation has been considered a major risk factor for aberrant gene
expression and human diseases [23,37-41]. MTs also catalyze the methylation of other
biological and chemical molecules, such as natural products, organic compounds, chemical
elements, and phospholipids, resulting in the modulation of their biological functions
[42-46]. Given the roles of MTs, MTs are thought to play pivotal roles in the cooperation of
inflammasomes in inflammatory responses and diseases.

This review discusses the functional relationship and interplay between inflamma-
somes and MTs and assists in better understanding the cooperative roles of these molecules
in inflammatory responses and diseases. This review will also provide insight into the
development of anti-inflammatory therapeutics that selectively target inflammasomes
and MTs.

2. Methyltransferases

MTs comprise a large group of enzymes that transfer methyl groups from methyl
donors to their substrates. These enzymes share a general mechanism by which MT binds
with S-adenosyl-L-methionine (SAM) (the universal methyl donor for MTs) as well as the
target substrate by the different mechanisms, and transfers a methyl group from SAM
directly to the target substrate via the classic SN2 reaction. During this process, SAM is
converted to S-adenosyl-L-homocysteine (SAH), and the methylated substrates are generated
(Figure 1) [47]. MTs are classified using different criteria. Most common way to classify
MTs is based on their substrates, such as PMTs, DNMTs, phospholipid MTs, and natural
product MTs (Figure 1). MTs are also classified based on their structural features. Here,
class I MTs bind SAM using a Rossman fold motif, whereas class II MTs contain a SET
(Enhancer-of-zeste and Trithorax) domain for binding SAM. Class III methyltransferases
are membrane-associated [48].

2.1. DNA Methyltransferases

DNA methylation is a major regulatory process of chromatin structural modification
that plays a pivotal role in modulating gene expression during a variety of biological activi-
ties. DNA methylation is an essential epigenetic mechanism that functions in combination
with other epigenetic changes, such as histone methylation [49,50]. DNA methylation
occurs only at cytosine residues in eukaryotic cells, and at both cytosine and adenosine
residues in bacteria [51]. Although DNA methylation is generally observed at the palin-
dromic CpG sites of both sense and anti-sense DNA strands, reports have described
single-stranded DNA methylation at non-CpG sites [51-53]. Correlations of changes in
the epigenetic status of DNA with several human diseases, including immune-related
diseases, cancers, neurodegenerative diseases, diabetes, and infectious diseases, have been
suggested [54-58].

DNMTs catalyze DNA methylation by depositing a methyl group on the C-5 position
of a cytosine (Figure 2A). Five human DNMTs with highly conserved catalytic motifs
were identified: DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L (Figure 2B). The
canonical DNMTs (DNMT1, DNMT3A, and DNMT3B) catalyze DNA methylation, whereas
DNMT2 and DNMTB3L are non-canonical DNMTs that are not catalytically able to methylate
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DNA [23]. Conserved DNMTs have also been identified in plants with more extensive
DNMT gene sequence variations [59], and DNMT4, DNMT5, and DNMT6 have been
discovered in fungi and algae [60,61]. During DNA replication, DNA methylation can be
reversed by active or passive demethylation processes; however, DNMT1, which is also
known as a maintenance DNMT, induces hemimethylation at the CpG sites of the DNA
strand that lose methylation during DNA replication. In contrast, DNMT3A and DNMT3B
do not exert hemimethylation activity at CpG sites, but instead generate de novo DNA
methylation patterns during development and early germ cell differentiation [37].
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Figure 1. Methylation reaction by methyltransferases. Methyltransferases catalyzes the methylation of cellular molecules,
such as proteins, DNA, and phospholipids and some natural products by transferring methyl groups from methyl donor,
SAM to their specific substrates, producing methylated substrates and SAH. SAM, S—adenosyl—; —methionine; SAH,

S—adenosyl—1 —homocysteine.

DNMTs are major epigenetic modulators of the genes expressed in various physiolog-
ical functions, suggesting that DNMTs could be involved in the pathogenesis of human
diseases. Several studies have reported the regulatory roles of DNMTs in human diseases.
Interestingly, mutations in DNMT genes have been reported in human diseases. DNMT1
mutation has been identified in neurological diseases [62,63], and DNMT3A mutation was
observed in Tatton-Brown-Rahman syndrome, which involves overgrowth and intellec-
tual disability [64]. DNMT3B mutation has been described in several diseases, including
immunodeficiency, facial abnormality syndrome, and centromeric instability [65,66]. Many
reports have described the roles of DNMTs in cancers, as epigenetic changes in DNA
methylation patterns comprise one of the most significant molecular alterations associated
with tumorigenesis [67,68]. Therefore, DNMT mutation repair may be a potential approach
to the treatment of various human diseases. The modulation of DNMTs via approved
DNMT inhibitors, such as 5-azacytidine and 2’-deoxy-5-azacytidine [69,70], could also be a
promising cancer epigenome-targeting strategy for cancer treatment. Further investigations
of the functional roles of specific DNMT activities in other human disorders, including
inflammatory, metabolic, cardiovascular, and neurological diseases, are urgently needed.
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Figure 2. DNMT-mediated methylation reaction and domain structure of human DNMTs. (A) Chemical reaction of DNMT-
mediated methylation. DNMTs catalyze the methylation at cytosines of CpG in the gene promoter regions by transferring
methyl groups from methyl donor, SAM, producing 5-methyl-cytosine in the gene promoter regions and SAH. (B) Domain
structures of human DNMT (hDNMT) family members. hDNMTs consist of five members; hDNMT1 (1616 amino acids),
hDNMT?2 (391 amino acids), hDNMT3A (912 amino acids), hDNMT3B (853 amino acids), and hDNMT3L (386 amino acids).
hDNMTs have two main domains; the regulatory and catalytic domains. The catalytic domain is conserved in all hDNMTs.
hDNMT1 is the longest member with DMAP, RFTD, CXXC, and two BAHs in the regulatory domain. hDNMT?2 is the
smallest member existing only catalytic domain. hDNMT3A and hDNMT3B have PWWP and ADD in the regulatory
domain in common, but hDNMT3B is little bit smaller than hDNMT3A. hDNMT3L has only ADD in the regulatory
domain with the shorter catalytic domain. Bars in the catalytic domain (I, IV, VI, VIII, IX, and X) represent the catalytic
active sites. SAM, S-adenosyl-L-methionine; SAH, S-adenosyl-L-homocysteine; DNMT, DNA methyltransferase; DMAP, DNA
methyltransferase-associated protein 1-interacting domain; RFT, replication foci targeting sequence domain; CXXC, CXXC
domain; BAH, bromo-adjacent homology domain; PWWP, PWWP domain; ADD, ATRX-DNMT3-DNMT3L domain.

2.2. Protein Methyltransferases

PMTs catalyze the methylation of target proteins at the nitrogen-containing side chains
of lysine, arginine, and histidine [71,72], but also at the carboxyl group of the prenylated
cysteine [73,74] by transferring methyl groups from methyl donors. Although these several
amino acids have been identified as methylation residues of target proteins by PMTs,
most of the studies have been focusing on the PMTs that methylate lysine and arginine
residues. This family of protein-lysine MTs (PKMTs) and protein-arginine MTs (PRMTs)
comprises more than 60 members, which mediate the methylation of histone or non-histone
substrates on lysine or arginine residues, respectively. PKMTs can transfer up to three
methyl groups to the side-chain nitrogen of lysine, thus generating four different states of
lysine: non-methyl, mono-methyl, di-methyl, or tri-methyl lysine (Figure 3A). Similarly;,
PRMTs transfer methyl groups to one or both of the two side-chain nitrogens of arginine,
thus producing four different states of arginine: non-methyl, mono-methyl, symmetric
di-methyl, or asymmetric di-methyl arginine (Figure 3B).
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Figure 3. Methylation reactions by PKMT and PRMT. (A) Chemical reactions of PKMT-mediated methylation. PKMTs
catalyze the methylation at lysine residue of proteins, producing mono-methyl lysine, di-methyl lysine, and tri-methyl
lysine. (B) Chemical reactions of PRMT-mediated methylation. PRMTs catalyze the methylation at arginine residue of
proteins, producing mono-methyl arginine and either of symmetric di-methyl arginine or asymmetric di-methyl arginine.
PKMT, protein-lysine methyltransferases; PRMT, protein-arginine methyltransferases.

Histones have received a great deal of attention among the known target proteins of
MTs [71,75]; as these proteins are essential components of nucleosomes, the regulation of
histone methylation plays pivotal roles in gene expression in various biological processes.
Moreover, the enzymatic actions of PMTs are thought to be crucial modulators of gene
expression, and many studies have demonstrated the active involvement of these PMTs
in the pathogenesis of various human diseases, including inflammatory and neurodegen-
erative diseases, cancers, and other conditions [71,76-82]. Therefore, PKMTs and PRMTs
have elicited substantial interest in the fields of medicinal chemistry and drug discovery
through attempts to prevent and treat these diseases, and several anticancer drugs that
target MTs have already been developed [71].

3. Inflammasomes

Inflammasomes are intracellular protein complexes that induce inflammatory re-
sponses and consist of the PRRs localized in the cells and the inflammatory effector
molecules, such as inflammatory caspases [7,83,84]. Intracellular PRRs recognize spe-
cific PAMPs and DAMPs and, subsequently, form inflammasomes by interacting with
inflammatory effector molecules with or without the help of the bipartite adaptor, apoptosis-
associated speck-like protein containing a caspase recruitment domain (ASC), leading to in-
flammasome activation and inflammasome-induced inflammatory responses [7,83,84]. The
classification of inflammasomes and the signaling pathways of inflammasome-activated
inflammatory responses will be discussed in future studies.

3.1. Classification and Molecular Architecture of Inflammasomes

Several different types of inflammasomes can be named after PRRs that promote their
assembly. PRRs are distinguished by their structure and assembled into inflammasomes
by recognizing different types of PRR-specific PAMPs and DAMPs [7,85]. Inflammasomes
are classified into two main groups: canonical and non-canonical inflammasomes [7,85].
Canonical inflammasomes include the NLR family, pyrin, and AIM2 inflammasomes,
whereas non-canonical inflammasomes include caspase-11, caspase-4, and caspase-5 in-
flammasomes [7,85].

NLR family PRRs are subclassified into five different subfamilies: NLRA, NLRB,
NLRC, NLRP, and NLRX [86-88]. To date, 14 NLRP (NLRP1-14) and five NLRC subfamily
members (NLRC1-4) have been identified [86-88], but only some subfamily members,
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such as NLRP1, NLRP3, NLRC4, NLRP6, and NLRP9 have been demonstrated to form
inflammasomes and activate inflammasome-induced inflammatory responses [7]. NLRP1
is the first NLR family PRR identified and demonstrated to assemble inflammasomes [89].
NLRP1 has the most complex structure comprising an N-terminal PYD, a nucleotide-
binding and oligomerization domain (NACHT), leucine-rich repeats (LRRs), a functional-
to-find domain (FIIND), and a C-terminal caspase recruitment domain (CARD) (Figure 4A).
Unlike human NLRP1, three isoforms of NLRP1 (NLRP1a, NLRP1b, and NLRP1c) have
been discovered in mice; however, an N-terminal PYD in human NLRP1 is absent in mouse
NLRP1 (Figure 4A). This provides a different mechanism of inflammasome assembly
with ASC between human and mouse NLRP1. NLRP3, NLRP6, and NLRP9 have the
same domain structure comprising an N-terminal PYD, a NACHT, and C-terminal LRRs
(Figure 4A); however, they have different amino acid lengths and LRR numbers. NLRP3,
NLRP6, and NLRP9 are 1036, 892, and 991 amino acids in length and have nine, six, and six
LRRs, respectively. NLRC4 has a domain structure similar to that of NLRP3, NLRP6, and
NLRP9, but has CARD instead of PYD at the N-terminus (Figure 4A). Non-NLR family
PRRs include pyrin and AIM2, which form canonical inflammasomes, as well as mouse
caspase-11, and human caspase-4 and -5, which form non-canonical inflammasomes. Pyrin
has a different domain structure compared to that of NLR family PRRs and consists of an
N-terminal PYD, a B-box-type zinc finger (Bbox), a coiled-coil (CC), and a C-terminal B30.2,
which includes two subdomains, PRY and SPRY (Figure 4A). AIM2 is a member of the
IFN-inducible p200 protein family [90], and consists of an N-terminal PYD and a C-terminal
hematopoietic IFN-inducible nuclear protein 200 (HIN200) (Figure 4A). Caspase-11 was
unexpectedly discovered as an intracellular PRR in mice [91-93], and its homolog was not
initially identified in humans. Later, much effort has demonstrated that human caspase-4
and caspase-5 are the homologs of mouse caspase-11 [94]. Mouse caspase-11, human
caspase-4, and caspase-5 have the same domain structure comprising an N-terminal CARD,
a p20, and a C-terminal p10 (Figure 4A), but their molecule sizes are different. Mouse
caspase-11, human caspase-4, and caspase-5 are 373, 377, and 434 amino acids in length,
respectively [10].

The PRRs recognize different types of PAMPs and DAMPs inside the cells in a PRR-
specific manner, and are subsequently activated by assembling inflammasomes [7]. Imme-
diately after the sensing of ligands by PRRs, NLR family, pyrin, and AIM2 PRRs assemble
canonical inflammasomes via interacting with pro-caspase-1 with or without the help of
ASC (Figure 4B) [7,85]. However, mouse caspase-11, human caspase-4, and caspase-5
directly sense their common ligand, intracellular lipopolysaccharide (LPS), which leads
to the assembly and activation of non-canonical inflammasomes without the recruitment
of pro-caspase-1 and ASC (Figure 4B) [7,79]. The structure and activating ligands of
inflammasomes are summarized in Table 1.

3.2. Inflammasome-Activated Inflammatory Signaling

As discussed earlier, PRRs recognize the unique types of ligands in a PRR-specific
manner (Table 1), and the architecture and mechanism of inflammasome formation are
different from one another (Figure 4B). However, inflammasomes share downstream
signaling pathways during inflammasome-activated inflammatory responses. Canonical
inflammasomes in response to ligands have a molecular architecture that interacts with an
inactive form of pro-caspase-1 with or without an adaptor, ASC, leading to the activation of
pro-caspase-1 by autoproteolysis removing CARD and the generation of the active form of
caspase-1 consisting of p20—p10 dimers [7,79]. The activated caspase-1, in turn, promotes
two downstream inflammatory events. Caspase-1 promotes proteolysis of gasdermin D
(GSDMD) at Asp276 residue, producing N-terminal (N-GSDMD) and C-terminal fragments
(C-GSDMD). The N-GSDMD then moves to the cell membranes and forms the GSDMD
pores in the membranes, leading to GSDMD pore-mediated pyroptosis, an inflammatory
form of cell death [7,79]. Caspase-1 also facilitates the maturation and activation of the
inactive pro-forms of pro-inflammatory cytokines, such as pro-interleukin (pro-IL)-1
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and pro-IL-18 by the proteolytic cleavage of N-terminal propeptides and produces the
active forms of IL-1 and IL-18, which are secreted from the cells through the GSDMD

pores [7,79].
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Figure 4. Inflammasome-activated inflammatory signaling (A) the domain structure of PRRs. Inflammasome PRRs are
intracellular sensors that include PYD and/or CARD. The PRRs also include NACHT, LRRs, and FIIND in NLR family
members. Pyrin includes Bbox, CC, and B30.2 and AIM2 includes HIN200. Caspase-4/5/11 have the same domain structure
that includes CARD, p20, and p10. *Absence in mouse NLRP1 isoforms (B) The structure of inflammasomes. Inflammasome
PRRs that include a PYD, such as human NLRP1, NLRP3, NLRP6, NLRP9, pyrin, and AIM2 recruit a bipartite adaptor,
ASC to mediate CARD-CARD interactions with pro-caspase-1 (ASC-positive scaffolds). While inflammasome PRRs that
include CARD instead of PYD, such as mouse NLRP1b and NLRC#4 interact directly with pro-caspase-1 without the help
of ASC (ASC-negative scaffolds). PRRs of non-canonical inflammasomes, such as mouse caspase-11, human caspase-4,
and caspase-5 that include CARD sense directly intracellular LPS and mediate CARD-CARD interaction without the
binding of ASC and pro-caspase-1. (C) Inflammasome-activated inflammatory signaling pathways. Inflammasomes are
activated in response to PAMPs and DAMPs. The PRRs of canonical inflammasomes directly interact with their specific
ligands and respond to various cellular danger signals. The canonical inflammasomes activate caspase-1 by the proteolytic
cleavage of CARD and produce active caspase-1 dimers. Activated caspase-1 induces proteolytic cleavage of GSDMD to
generate N-GSDMD that then generates GSDMD pores and induces pyroptosis. Activated caspase-1 also induces proteolytic
maturation of IL-1f and IL-18 into their active forms, which are secreted through GSDMD pores. PRRs of non-canonical
inflammasomes (mouse caspase-11, human caspase-4, and caspase-5) directly interact with intracellular LPS derived from
Gram-negative bacteria. The activation of non-canonical inflammasomes also induces proteolytic cleavage of GSDMD,
leading to pyroptosis. Non-canonical inflammasomes activate NLRP3 canonical inflammasome by facilitating K* efflux,
which subsequently induces proteolytic maturation and secretion of IL-1f3 and IL-18 through GSDMD pores. PYD, pyrin
domain; CARD, caspase recruitment domain; NACHT, nucleotide-binding and oligomerization domain, LRRs, leucine-rich
repeats, FIIND, a functional-to-find domain; Bbox, B-box-type zinc finger; CC, coiled-coil; AIM2, absent in melanoma 2;
HIN200, hematopoietic interferon-inducible nuclear protein 200; ASC, apoptosis-associated speck-like protein containing a
caspase recruitment domain; GSDMD, gasdermin D; LPS, lipopolysaccharide.
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Table 1. Summary of the structure and activating ligands of inflammasomes.

Categories PRRs PRR Domains Inflammasome Activating Ligands
Components
PYD, NACHT, LRRs, NLRP1, ASC, . . .
NLRP1 FIIND, CARD pro-caspase-1 Bacillus anthracis toxin
Bacteria, protozoans, viruses, fungi, ATP,
cell volume fluctuation, cGAMP,
cardiolipin translocation, dsRNA, ER
stress, imiquimod, K* efflux,
NLRP3 PYD, NACHT, LRRs NLRP3, ASC, m1tochondr1al DNA, mitochondrial ROS,
pro-caspase-1 particulate matter, lysosomal rupture,
RNA-DNA hybrids, nucleic acid hybrids,
pore-generating toxins, hyaluronan,
extracellular 3-amyloids, uric acid, alum,
silica
Canonical NLRCA CARD, NACHT, NLRC4, Bacterial needle-like,
LRRs pro-caspase-1 bacterial flagellin
NLRP6, ASC, . . . .
NLRP6 PYD, NACHT, LRRs pro-caspase-11, Bile acid-derived taurine,
lipoteichoic acid
pro-caspase-1
NLRP9 PYD, NACHT, LRRs NLRP9, ASC, Short dsRNA
pro-caspase-1
. Pyrin, ASC, Bacterial toxin-modified
Pyrin PYD, Bbox, CC, B30.2 pro-caspase-1 Rho GTPases
AIM2 PYD, HIN200 AIM2, ASC, dsDNA
pro-caspase-1
Caspase-4 CARD, p20, p10 Caspase-4, LPS LPS
Non-canonical Caspase-5 CARD, p20, p10 Caspase-5, LPS LPS
Caspase-11 CARD, p20, p10 Caspase-11, LPS LPS

Although the PRRs in canonical inflammasomes recognize a variety of ligands and
form inflammasomes with pro-caspase-1 and ASC, the PRRs in non-canonical inflamma-
somes are activated by very limited types of ligands, and assemble inflammasomes without
interacting with pro-caspase-1 and ASC. LPS, an endotoxin of Gram-negative bacterial
cell walls, is the first ligand to be identified to activate non-canonical inflammasomes.
Mouse caspase-11, human caspase-4, and caspase-5 recognize intracellular LPS internal-
ized by Gram-negative bacteria through direct interaction [7-10,95-97]. Recent studies
have identified new ligands, such as lipophosphoglycan (LPG) of Leishmania parasites,
the oxidized form of endogenous phospholipids, 1-palmitoyl-2-arachidonoyl-sn-glycero-
3-phosphorylcholine (0xPAPC), the secreted aspartyl proteinases of Candida albicans to
activate non-canonical inflammasomes and inflammatory responses [98-100]. Despite the
discovery of these new ligands, the molecular mechanisms by which these ligands activate
non-canonical inflammasomes are poorly understood, and most studies demonstrating
the non-canonical inflammasome-activated signaling pathways have been mainly focused
on LPS.

To trigger the activation of non-canonical inflammasomes, the LPS of Gram-negative
bacteria should enter the cells to interact with caspase-4/5/11 and activate non-canonical
inflammasomes. Recent studies have demonstrated that extracellular LPS is internalized
by bacterial outer membrane vesicles (OMVs), clathrin, caveolin, lipid rafts, and endo-
cytosis with the help of receptors, such as TLR4, the receptor for advanced glycation
end-product (RAGE), and syndecan-1 [101-105]. Internalized LPS by endocytosis is still
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in the endosomes and should be released from the endosomes to activate non-canonical
inflammasomes. Guanylate-binding proteins (GBPs), members of the GTPase family
whose expression is increased by IFN, bind to the LPS-containing endosomal membranes
and modify the stability of the membranes. This leads to disruption of the endosomal
membranes and LPS release from the endosomes to the cytosol to be exposed to caspase-
4/5/11 [106-108].

LPS internalized and exposed in the cytosol directly interacts with caspase-4/5/11
through its lipid A moiety to the caspase CARD, and LPS-caspase-4/5/11 complexes
form caspase-4/5/11 non-canonical inflammasomes by oligomerization via CARD-CARD
interaction, resulting in the activation of non-canonical inflammasomes [7-10,89-91]. The
activated non-canonical inflammasomes induce the proteolytic cleavage of GSDMD, lead-
ing to GSDMD pore formation in cell membranes and GSDMD pore-mediated pyropto-
sis [7-10,89-91]. It is still unclear whether non-canonical inflammasomes directly induce
caspase-1 activation and caspase-1-mediated maturation and secretion of IL-1p3 and IL-18.
Recent studies have reported the functional cooperation between non-canonical and canon-
ical inflammasomes during inflammatory responses and demonstrated that non-canonical
inflammasomes activate the NLRP3 canonical inflammasome by facilitating K* efflux
through P2X7, THIK1/TWIK2, pannexin-1, and GSDMD pores in membranes, which are
key and essential determinants of NLRP3 inflammasome activation [11,109,110]. This then
leads to the proteolytic activation of caspase-1 and the caspase-1-mediated maturation and
secretion of IL-1(3 and IL-18 through GSDMD pores [7-10,89-91]. A schematic summary of
inflammasome-activated inflammatory signaling pathways is shown in Figure 4C.

4. Functional Interplay between Methyltransferases and Inflammasomes
4.1. Roles of DNMTs in Inflammasome Functions

DNMTs catalyze DNA methylation, which plays diverse roles in various biological
functions and diseases [111]. Interestingly, recent studies have reported the regulatory
roles of DNMT-mediated DNA methylation in inflammasome functions, which provides
clues that DNMTs might be critical modulators in inflammasome-mediated inflammatory
responses and diseases.

Tang et al. investigated the role of DNMT3B in glycolic acid (GA)-mediated anti-
inflammatory responses by inhibiting the expression of inflammasome complex genes in
human keratinocytes and HaCaT cells. This study reported that while the expression of
NLRP3, NLRC4, AIM2, and ASC genes was decreased by GA, GA increased the protein
expression and activity of DNMT3B, resulting in the hypermethylation of the promoters
of NLRC4 and ASC genes, resulting in the downregulation of the expression of these
genes in HaCaT cells [112]. This study suggests that DNMT3B plays an anti-inflammatory
role in inflammasome-induced inflammatory responses by inhibiting the expression of
inflammasome complex genes, such as NLRC4 and ASC, via hypermethylation of these
gene promoters. This study also demonstrates the potential of GA as an anti-inflammatory
agent that targets inflammasomes by activating DNMT3B.

Wei et al. reported that NLRP3 inflammasome activation was regulated by DNMT Sss I-
induced methylation in Mycobacterium tuberculosis (Mtb)-infected human monocytes, THP-1
cells. NLRP3 promoter activity was decreased by DNMT Sss I-induced methylation, leading
to the downregulation of NLRP3 expression, while the inhibition of NLRP3 promoter
methylation by DNMT inhibitor upregulated NLRP3 expression in THP-1 cells [113]. In
addition, the promoter of the NLRP3 gene was demethylated by Mtb infection, resulting
in the upregulation of NLRP3 genes in THP-1 cells [113]. These results indicate that
demethylation of the NLRP3 gene promoter by DNMT Sss I leads to the inhibition of
NLRP3 inflammasome activation by decreasing NLRP3 expression, and Mtb infection
promotes inflammasome-induced inflammatory responses by suppressing DNMT Sss
I-induced methylation of inflammasome gene promoter in human monocytes.

Haldar et al. reported chemotherapeutic-induced DNA damage by global methy-
lation and silencing of DNA damage repair genes in hemorrhagic cystitis, an inflam-
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matory and ulcerative bladder condition. Systemic treatment with chemotherapeutics,
cyclophosphamide (CPX), facilitated the accumulation of DNA damage by downregulating
the expression of the DNA damage repair gene, Oggl, and induced subsequent NLRP3
inflammasome-activated pyroptosis of bladder muscle cells in CPX-treated mice [114].
Interestingly, DNMT1 and DNMT3B methylated the promoter of the Oggl gene, leading to
the Ogg]l silencing and the induction of NLRP3 inflammasome-activated inflammatory
responses [114]. Inhibition of Ogg]1 silencing by DNA de-methylation suppressed NLRP3
inflammasome activation and NLRP3 inflammasome-induced inflammatory responses,
such as pyroptosis and IL-1f3 secretion in bladder muscle cells [114]. This study is the first
to demonstrate the mechanism by which Ogg1 silencing by DNMT-mediated methylation
induces NLRP3 inflammasome-activated inflammatory responses in bladder muscle cells
and also provides a functional relationship between DNMTs and inflammasomes in sys-
temic chemotherapeutics-induced DNA damage and inflammatory and ulcerative bladder
disease, hemorrhagic cystitis.

Huang et al. investigated the DNA methylation levels of NLR family inflammasomes
and subsequent inflammatory responses in KD patients with Kawasaki disease (KD). The
expression of NLR family PRRs, such as NLRC4 and NLRP12, and pro-inflammatory
cytokine, IL-1f3, was increased, but the methylation levels of the CpG sites of these genes
were much lower in the white blood cells of the KD patients than in the normal control
subjects [115], indicating that the hypomethylation of the genes of the inflammasome PRRs,
NLRC4, and NLRP12 and pro-inflammatory cytokine IL-1 plays a regulatory role in the
upregulation of the expression of these genes, resulting in the induction of inflammatory
responses and the pathogenesis of KD.

Zhong et al. reported the regulatory role of DNMT1 in microRNA (miR) expression
and inflammasome activation in atherosclerosis in ApoE knockout (KO) mice. DNMT1
hypermethylated the promoter of miR-145, which decreased plaque formation and conse-
quently reduced the expression of miR-145 in vessels, leading to the activation of NLRP3
inflammasome and subsequent inflammatory responses, including the production and
secretion of IL-1f3 in ApoE KO mice [116]. This study provides insights linking DNA
methylation and inflammasome activation in atherosclerosis and also provides the po-
tential for developing new therapeutics by targeting DNMT and inflammasomes for the
treatment of atherosclerosis as well as other inflammatory diseases.

Sun et al. explored the functional relationship between DNA methylation and inflam-
masome activation in osteoarthritis (OA) using human osteoarthritic cells and OA patients.
The C-terminal-binding proteins (CtBPs) that are highly expressed in OA promote the
activation of the NLRP3 inflammasome and downstream inflammatory signaling, such
as caspase-1 activation and IL-1(3 maturation in osteoarthritic cells and OA patients [117].
Interestingly, the expression levels of DNMT1 and DNMT3A were lowered in OA patients,
and the knockdown of DNMT1 and DNMT3A resulted in the hypomethylation of CtBP
promoters, leading to CtBP overexpression and NLRP3 inflammasome activation in OA
patients [117]. These results indicate that DNMTs play an inhibitory role in inflammasome
activation and inflammatory responses, whilst also providing insight into the functional
relationship between DNMTs and inflammasomes in the pathogenesis of OA.

Zhai et al. reported on the role of O%-methylguanine-DNA methyltransferase (MGMT),
an enzyme that repairs drug-induced DNA damage in acquired drug resistance by mod-
ulating inflammasome activation in melanoma cell lines. Melanoma cells treated with
temozolomide (TMZ) over two months upregulated the expression of MGMT and became
TMZ resistant [118]. Furthermore, TMZ-resistant melanoma cells showed increased expres-
sion of NLRP1 and activation of the NLRP1 inflammasome, leading to the maturation and
secretion of IL-1f3 [118]. Although inflammation has been demonstrated to be associated
with drug resistance in various cancers in previous studies, this study provides a critical
clue for the functional interplay between DNMT and inflammasome in the development of
acquired drug resistance in cancers. It also provides invaluable insight into the develop-
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ment of anti-cancer therapeutics against drug-resistant cancers via selective targeting of
DNMTs or inflammasomes.

Abplanalp et al. demonstrated the functional cooperation between DNMT mutations
and inflammasome activation in the alteration of immune cells in chronic heart failure.
Monocytes derived from chronic heart failure patients carrying DNMT3A mutations re-
vealed a significantly increased expression of inflammasome genes, such as NLRP3 and
IL-1$3, compared with the monocytes isolated from chronic heart failure patients with no
DNMT3A mutations [119]. DNMT3A silencing in monocytes also increased the secretion of
pro-inflammatory cytokines [119]. Interestingly, monocytes of DNMT3A mutation carriers
showed increased expression of T-cell-stimulating molecules and the changes in signatures
of T-cell subsets, such as Ty1, Ty2, Ty17, CD4+ memory, CD8 cytotoxic, and regulatory T
cells [119]. These results suggest that the monocytes and T-cells with clonal hematopoiesis-
driver mutations in DNMT3A play a cooperative role in inducing inflammatory responses
in chronic heart failure by promoting the production of a highly inflamed transcriptome
and inflammasome activation that may lead to the exacerbation of chronic heart failure.

Yu et al. reported ethanol-induced inflammasome activation and inflammatory re-
sponses by modulating the methylation of DNA encoding fat mass and obesity-associated
protein (FTO), the m®A demethylase in alcohol-induced kidney injury. Ethanol admin-
istration induces NLRP3 inflammasome activation, the production of pro-inflammatory
cytokines, and renal inflammation in the alcoholic kidneys of mice and human kidney
tubular epithelial HK?2 cells [120]. Interestingly, ethanol administration highly methylated
the DNA encoding FTO and consequently downregulated its expression in the alcoholic
kidneys of mice and HK2 cells [120]. Moreover, inhibition of DNMTs, such as DNMT]1,
DNMT3A, and DNMT3B by their specific inhibitor, 5-azacytidine, recovered FTO expres-
sion and alcohol-induced kidney injury in mice and HK2 cells, indicating that alcohol
promotes FTO methylation through DNMTs [120]. Moreover, FTO promoted PPAR-oc m®A
methylation and PPARa-induced NLRP3 inflammasome activation in the alcoholic kidneys
of mice and HK2 cells [120]. This study suggests that alcohol induces inflammasome
activation and renal inflammation by increasing the expression of DNMTs and inducing
the subsequent epigenetic modification of FTO and PPAR-« in the kidney. This study also
provides a functional association between DNMTs and inflammasomes in alcoholic kidney
disease. The regulatory roles of DNMTs in inflammasome function during inflammatory
responses and diseases discussed in this study are described in Figure 5 and summarized
in Table 2.

4.2. Roles of Histone MTs in Inflammasome Functions

Histone proteins have been demonstrated as the major substrates of PMTs [27-29].
Histone methylation can be generated at various sites in histone proteins primarily at lysine
and arginine residues [121]. Histone methylation can be governed by various positive
and negative modulators, resulting in activation or repression of gene transcription [121].
Histone methylation is essential for ensuring the subsequent coordinated transcriptional
regulation of gene networks that are critical for normal animal development and almost
all biological events—inappropriate histone methylation can cause multiple human dis-
eases [121-123]. Recently emerging studies have demonstrated the regulatory roles of
histone MTs in inflammasome activation, suggesting that, similar to DNMTs, histone MTs
also cooperate with inflammasomes and play regulatory roles in inflammasome-induced
inflammatory responses and diseases.

The nuclear receptor-binding SET domain protein 1 (NSD1) is a lysine methyltrans-
ferase that preferentially methylates histone 3 (H3) and H4 on lysine 36 residue (K36)
and K20, respectively and alters transcription by interacting with the protein NSD1-
interacting zinc finger protein 1 (NIZP1) [124-126]. Sakhon et al. demonstrated the
regulatory role of NSD1 in the activation of caspase-1, a downstream effector of inflam-
masome activation and caspase-1-mediated inflammatory responses during Listeria mono-
cytogenes listeriolysin O (LLO) stimulation of macrophages. LLO induced NLRP3 inflam-
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masome activation and IL-1f secretion and upregulated NSD1 expression in mouse bone
marrow-derived macrophages (BMDMs) [127]. Unexpectedly, NSD1 inhibited NLRP3
inflammasome-induced maturation and secretion of IL-13 and IL-18, but neither restricted
NLRP3 inflammasome activation at the chromatin level nor influenced NLRP3 gene ex-
pression in the LLO-stimulated BMDMSs [127]. Interestingly, NSD1 inhibition induced
caspase-1 activation and IL-1§ secretion in the LLO-stimulated BMDMs [127]. This study
suggests a functional association between histone MT, NSD1, and inflammasome sig-
naling during bacterial infection-induced inflammatory responses and further provides
the therapeutic potential of infectious diseases by selectively targeting or modulating
histone MTs and inflammasome signaling pathways during inflammasome-mediated
inflammatory responses.
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Figure 5. Regulatory role of MTs in inflammasome activation in inflammatory responses and dis-
eases. (A) DNMTs induce hypermethylation in the promoter regions or genes of inflammasome
components, such as PRRs, ASC, pro-caspase-1, and pro-inflammatory cytokines, and consequently
inhibit the transcriptional expression of these genes and inflammasome activation. As a result, the
caspase-1-mediated GSDMD pore formation and pro-inflammatory cytokine secretion are subse-
quently inhibited, resulting in the suppression of inflammasome-activated inflammatory responses
and diseases. (B) NSD1, Blimp-1, and histone MTs directly or indirectly induce the hypermethylation
or hypomethylation of histone proteins at lysine (K) and arginine (R) residues and close the chromatin
structure, leading to the inhibition of the transcriptional expression of inflammasome component
genes and inflammasome activation. As a result, the caspase-1-mediated GSDMD pore formation
and pro-inflammatory cytokine secretion are subsequently suppressed, resulting in the amelioration
of inflammasome-activated inflammatory responses and diseases. MTs, methyltransferases; DN-
MTs, DNA methyltransferases, ASC, apoptosis-associated speck-like protein containing a caspase
recruitment domain; GSDMD, gasdermin D.

B lymphocyte-induced maturation protein-1 (Blimp-1) is a DNA-binding zinc finger-
containing transcriptional repressor that induces promoter silencing by recruiting his-
tone lysine MTs, histone arginine MTs, histone deacetylase, and co-repressors [128-130].
Shi et al. reported the functional crosstalk between the TLR4-Blimp-1 axis and NLRP12
inflammasome in inflammatory responses in dendritic cells and BMDMs, as well as an
experimental mouse colitis model. Dextran sodium sulfate (DSS) stimulation induced
caspase-1 activation and IL-1f3 secretion, and inhibition of NLRP12 increased IL-1f3 secre-
tion in dendritic DC2.4 cells and BMDMs [131]. DSS-induced overexpression of Blimp-1
resulted in the downregulation of NLRP12 expression in DSS-stimulated DC2.4 cells and
BMDMs [131]. Moreover, TLR4 was implicated in Blimp-1 upregulation, which subse-
quently leads to Blimp-1-mediated NLRP12 downregulation and IL-1(3 secretion in DSS-
induced colitis mice [131]. These results indicate that Blimp-1 recruiting and modulating
histone MT functions induces inflammatory responses and colitis by inhibiting NLRP12
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inflammasome activation in dendritic cells and macrophages. This also suggests evidence
of the negative correlation between histone MTs and inflammasomes during inflammatory
responses and diseases.

Papale et al. also demonstrated a functional correlation between the NLRP12 in-
flammasome and Blimp-1 in allergic contact dermatitis in human skin. Contact allergens,
such as p-phenylenediamine (PPD) and 2,4-dinitrochlorobenzene (DNCB), increased the
expression of Blimp-1 and IL-18, which are critical players in allergic diseases [132], but
decrease NLRP12 expression in human keratinocytes, NCTC 2544 cells [133]. This result is
in accordance with the previous study by Shi et al. [131], which showed that NLRP12 and
Blimp-1 expression is inversely correlated, further demonstrating that Blimp-1 silencing
increased NLRP12 expression and reduced contact allergen-induced IL-18 production in
NCTC 2544 cells [133]. These results indicate that contact allergens induced allergic contact
dermatitis by producing IL-18 through differentially modulating the expression of NLRP12
and Blimp-1 in keratinocytes. It also suggests that histone MTs recruited by Blimp-1 to
NLRP12 promoter may play a pivotal role in the inhibition of NLRP12 inflammasome
activation and the production of allergic IL-18 in the skin. Furthermore, the study by
Shi et al. study [131] provides insight into the development of potential therapeutics for
allergic diseases by selectively modulating NLRP12 inflammasome and Blimp-1 activities.
Although Blimp-1 suppressed the transcription of inflammasome components by inhibiting
the recruitment of histone arginine MTs in these two studies, these studies did not provide
the direct evidence that histone arginine MTs are critical players by actively participating
in the transcriptional control of inflammasome components, which demands the further
studies demonstrating the regulatory roles of histone arginine as well as lysine MTs in
transcriptional regulation of inflammasome genes.

IFN-y-inducible protein 16 (IFI16) is an intracellular sensor of foreign DNA that
induces inflammasome-mediated inflammatory responses [134-136]. A previous study
demonstrated that IFI16 inhibition resulted in the disruption of Kaposi’s sarcoma-associated
herpesvirus (KSHV) latency and induced lytic transcript [137], but the underlying molec-
ular mechanism is unknown. Roy et al. investigated the mechanism of IFI16-mediated
transcriptional regulation of the KSHYV lytic pathway. The study reported the regula-
tory role of two different histone MTs that methylate H3K9, SUV39H1, and GLP by
epigenetic modification of KSHV genomes in IFI16-induced inflammasome responses
during host defense immunity. IFI16 interacts with SUV39H1 and GLP to generate the
IFI16/SUV39H1/GLP complex, and the complex is recruited to the KSHV genome, lead-
ing to the methylation of H3K9 during viral infection and latency [138]. The methylated
H3K9 serves as a docking site for HP1x, a heterochromatin-inducing factor, resulting in
IFI16-mediated H3K9-trimethylation and silencing of KSHV lytic genes [138]. This study
suggests that IFI16 cooperation with histone MTs is one of the critical mechanisms by which
IFI16 regulates host innate immunity by sensing foreign DNA and inducing epigenetic
modification during viral infection. However, this study did not show direct evidence of
how the cooperation between IFI16 and histone MTs regulates the inflammasome signaling
pathway in host cells against viral infection, which raises the demand for future studies
in this regard. The regulatory roles of histone MTs in inflammasome function during
inflammatory responses and diseases discussed in this study are described in Figure 5 and
summarized in Table 2.
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Table 2. Summary of functional cooperation between MTs and inflammasomes.

Types

Study Results Exp. Models

Ref.

DNMTs

GA decreased expression of NLRP3, NLRC4, AIM2, and
ASC genes in HaCaT cells.

GA increased protein expression and activity of
DNMT3B in HaCaT cells.

GA induced hypermethylation of NLRC4 and ASC gene
promoters in HaCaT cells.

Human keratinocytes (HaCaT cells)

[112]

Mtb infection induced inflammatory responses by

increasing NLRP3 gene expression by demethylation of

NLRP3 gene promoter in THP-1 cells.

NLRP3 promoter activity was decreased by the DNMT Human monocytes
Sss I-induced methylation, leading to downregulation of (HP-1 cells)
NLRP3 expression in THP-1 cells.

Inhibition of NLRP3 promoter methylation by DNMT

inhibitor upregulated NLRP3 expression in THP-1 cells.

[113]

CPX facilitated accumulation of DNA damage by
downregulating the Ogg1 gene expression and induced
subsequent NLRP3 inflammasome-activated pyroptosis
of the bladder muscle cells in the CPX-treated mice.
DNMT1 and DNMT3B methylated Oggl gene promoter
and promoted Ogg1 gene silencing, resulting in
induction of NLRP3 inflammasome-activated
inflammatory responses in the bladder muscle cells in
the CPX-treated mice.

Inhibition of Ogg1 silencing by DNA de-methylation
suppressed NLRP3 inflammasome activation and
NLRP3 inflammasome-induced inflammatory responses
(pyroptosis and IL-1(3 secretion) in bladder muscle cells.

CPX-treated mice
Mouse bladder muscle cells

[114]

Expression of NLRC4, NLRP12, and IL-13 was increased
in KD patients.

NLRC4, NLRP12, and IL-1j3 genes were
hypomethylated in KD patients.

White blood cells from KD patients

[115]

miR-145 decreased plaque formation in vessels of ApoE
KO mice.

DNMT1 induced hypermethylation of miR-145
promoter and decreased miR-145 expression in vessels
of ApoE KO mice.

DNMT1-mediated downregulation of miR-145
expression induced NLRP3 inflammasome activation
and IL-1p secretion in ApoE KO mice.

ApoE KO mice

[116]

CtBPs are highly expressed in OA.

CtBPs promoted activation of NLRP3 inflammasome,

caspase-1, and IL-1 in osteoarthritic cells and OA

patients.

Expression levels of DNMT1 and DNMT3A were OA patients
lowered in OA patients. Human osteoarthritic cells
Knockdown of DNMT1 and DNMT3A resulted in

hypomethylation of CtBP promoters, leading to CtBP

overexpression and NLRP3 inflammasome activation in

OA patients.

[117]
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Table 2. Cont.

Types

Study Results

Exp. Models

Ref.

Melanoma cells treated with TMZ over two months
upregulated MGMT expression and became TMZ
resistant.

TMZ-resistant melanoma cells increased NLRP1
expression and induced NLRP1 inflammasome
activation, leading to the maturation and secretion of
IL-1p.

Human melanoma cells (1205Lu
and HS294T cells)

[118]

Monocytes derived from chronic heart failure patients
carrying DNMT3A mutations revealed a significantly
increased expression of inflammasome genes, such as
NLRP3 and IL-13 compared with monocytes isolated
from chronic heart failure patients with no DNMT3A
mutations.

DNMT3A silencing in monocytes also increased
secretion of pro-inflammatory cytokines.

Monocytes of DNMT3A mutation carriers showed
increased expression of T-cell-stimulating molecules and
changes in T-cell signatures.

Monocytes and T-cells from chronic
heart failure patients

[119]

Ethanol administration induced NLRP3 inflammasome
activation, pro-inflammatory cytokine production, and
renal inflammation in alcoholic kidneys of mice and
HK2 cells.

Ethanol administration highly methylated FTO DNA
and downregulated FTO expression in alcoholic kidneys
of mice and HK2 cells.

Inhibition of DNMT1, DNMT3A, and DNMT3B
recovered FTO expression and alcohol-induced kidney
injury in mice and HK2 cells.

FTO promoted PPAR-x mPA methylation and
PPAR-a-induced NLRP3 inflammasome activation in
alcoholic kidneys of mice and HK2 cells.

Alcohol-induced kidney injury mice
Human kidney tubular epithelial
cells (HK2 cells)

[120]

Histone
MTs

LLO induced NLRP3 inflammasome activation and
IL-1B secretion and upregulated NSD1 expression in
mouse BMDMs.

NSD1 inhibited NLRP3 inflammasome-induced
maturation and secretion of IL-1f3 and IL-18 in
LLO-stimulated BMDMs.

NSD1 neither restricted NLRP3 inflammasome
activation at the chromatin level nor influenced NLRP3
gene expression in LLO-stimulated BMDMs.

NSD1 inhibition induced caspase-1 activation and IL-1/3
secretion in LLO-stimulated BMDMs.

Mouse BMDMs

[127]




Int. J. Mol. Sci. 2021, 22, 7580

16 of 22

Table 2. Cont.

Types

Study Results

Exp. Models

Ref.

DSS stimulation induced caspase-1 activation and IL-1
secretion in dendritic DC2.4 cells and BMDMs.
Inhibition of NLRP12 increased IL-1§ secretion in
DSS-stimulated dendritic DC2.4 cells and BMDMs.
DSS-induced overexpression of Blimp-1 resulted in
downregulation of NLRP12 expression in
DSS-stimulated DC2.4 cells and BMDMs.

TLR4 expression upregulated Blimp-1 expression and
leads to Blimp-1-mediated NLRP12 downregulation and
IL-1p secretion in DSS-induced colitis mice.

DSS-treated mice
Mouse dendritic cells (DC2.4) and
BMDMs

[131]

Contact allergens increased expression of Blimp-1 and
IL-18 and decreased NLRP12 expression in NCTC 2544
cells.

Blimp-1 silencing increased NLRP12 expression and
reduced contact allergen-induced IL-18 production in
NCTC 2544 cells.

Human keratinocytes
(NCTC 2544 cells)

[133]

IFI16 interacted with SUV39H1 and GLP generating the
IFI16/SUV39H1/GLP complex.

IFI16/SUV39H1/GLP complex was recruited to KSHV
genome and induced H3K9 methylation during viral
infection and latency.

The methylated H3K9 served as a docking site for HP1«,
resulting in IFI16-mediated epigenetic modification and

KSHV-positive PEL cells (BCBL-1
and BC-3 cells)
KSHV-negative BJAB cells

[138]

silencing of KSHYV lytic genes.

5. Conclusions

Although inflammation is essential for protecting the body from invading pathogens
and cellular danger signals, chronic inflammation has been considered as a major risk
factor and secret killer for a variety of human diseases. For this reason, much effort has
been made to elucidate the mechanisms of inflammatory responses and development of
therapeutics against human inflammatory diseases. Between the two steps of inflamma-
tory responses, triggering has been regarded as the critical step in activating and further
boosting the inflammatory responses by activating intracellular inflammatory protein
complexes, inflammasomes, and subsequent inflammasome-induced effector responses,
such as pyroptosis and release of pro-inflammatory cytokines. This has led to extensive
studies demonstrating the regulatory roles of inflammasomes in inflammatory responses
and diseases. However, despite efforts over the last several decades, it is still under ac-
tive investigation how inflammasomes are regulated and cooperate with other molecules
during inflammatory responses.

The methylation of cellular molecules, such as DNA and proteins, is critical for
regulating gene expression and protein activity in various cellular biological functions.
In addition, the methylation of non-histone proteins, lipids, and other cellular molecules
plays a pivotal role in modulating various cellular functions. Many research groups have
therefore investigated the regulatory roles of methyltransferases in multiple physiological
and pathological conditions, and have demonstrated the active involvement of DNMTs and
PMTs in various biological processes and human diseases by the epigenetic modification
of gene promoters and proteins, especially histones. Moreover, studies have attempted to
selectively target methyltransferases to develop effective therapeutics for human diseases.

The important role of MT methylation in the regulation of inflammasome functions
has gained attention due to the functional cooperation of MTs with inflammasomes in
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inflammatory responses. This understanding is crucial to the development of novel anti-
inflammatory therapeutics by targeting MTs and inflammasomes. Given the evidence
discussed in this study, various DNMTs and PMTs, especially histone MTs, play critical
roles in regulating inflammasome functions and inflammasome-activated downstream
effects in inflammatory responses and diseases. However, despite these successful studies,
the regulatory roles of MTs in inflammasome functions have been demonstrated, focusing
only on several types of DNMTs and histone MTs, and the functional cooperation between
other types of MTs, such as MTs of non-histone proteins, lipids, and other cellular molecules,
is poorly understood. In addition, most of the studies have mainly focused on NLRP3
inflammasome and other NLR family inflammasomes—further studies are required to
investigate the regulatory role of MTs in the functioning of other types of inflammasomes,
especially non-canonical inflammasomes that were recently discovered and demonstrated
to play a crucial role in infection-mediated inflammatory responses and diseases.

In conclusion, MTs are critical players in inflammasome functions by the epigenetic
modification of DNA and proteins in inflammatory responses and diseases. The selective
modulation of MT and inflammasome functions could be a potential strategy to develop
novel anti-inflammatory therapeutics to prevent and treat inflammatory and inflammation-
mediated diseases.
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Abbreviations

PRR Pattern recognition receptor

PAMP Pattern-associated molecular pattern
DAMP Danger-associated molecular pattern
NLR NOD-like receptor

AIM2 Absent in melanoma 2

MT Methyltransferase

DNMT  DNA methyltransferase

PMT Protein methyltransferase

SAM S-adenosyl-L-methionine

SAH S-adenosyl-L-homocysteine

PKMT Protein-lysine methyltransferase
PRMT Protein-arginine methyltransferase
HMT Histone methyltransferase

PYD Pyrin domain

ASC Apoptosis-associated speck-like protein containing a caspase recruitment domain

CARD Caspase recruit domain
HIN200  Hematopoietic interferon-inducible nuclear protein 200

LPS Lipopolysaccharide

GSDMD  Gasdermin D

OMV Outer membrane vesicle

RAGE Receptor for advanced glycation end-product
GBP Guanylate-binding proteins

Blimp-1 B lymphocyte-induced maturation protein-1
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