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Purpose: Intratumoral genetic heterogeneity (ITGH) is a common feature of solid tumors.

However, little is known about the effect of neoadjuvant chemoradiation (nCRT) in ITGH

of rectal tumors that exhibit poor response to nCRT. Here, we examined the impact

of nCRT in the mutational profile and ITGH of rectal tumors and its adjacent irradiated

normal mucosa in the setting of incomplete response to nCRT.

Methods and Materials: To evaluate ITGH in rectal tumors, we analyzed whole-exome

sequencing (WES) data from 79 tumors obtained from The Cancer Genome Atlas

(TCGA). We also compared matched peripheral blood cells, irradiated normal rectal

mucosa and pre and post-treatment tumor samples (PRE-T and POS-T) from one

individual to examine the iatrogenic effects of nCRT. Finally, we performed WES

of 7 PRE-T/POST-T matched samples to examine how nCRT affects ITGH. ITGH

was assessed by quantifying subclonal mutations within individual tumors using the

Mutant-Allele Tumor Heterogeneity score (MATH score).

Results: Rectal tumors exhibit remarkable ITGH that is ultimately associated with

disease stage (MATH score stage I/II 35.54 vs. stage III/IV 44.39, p = 0.047) and lymph

node metastasis (MATH score N0 35.87 vs. N+ 45.79, p= 0.026). We also showed that

nCRT does not seem to introduce detectable somaticmutations in the irradiatedmucosa.

Comparison of PRE-T and POST-T matched samples revealed a significant increase in

ITGH in 5 out 7 patients and MATH scores were significantly higher after nCRT (median

41.7 vs. 28.8, p= 0.04). Finally, we were able to identify a subset of “enriched mutations”

with significant changes in MAFs between PRE-T and POST-T samples. These “enriched

mutations” were significantly more frequent in POST-T compared to PRE-T samples

(92.9% vs. 7.1% p < 0.00001) and include mutations in genes associated with genetic

instability and drug resistance in colorectal cancer, indicating the expansion of tumor cell

subpopulations more prone to resist to nCRT.

Conclusions: nCRT increases ITGH and may result in the expansion of resistant tumor

cell populations in residual tumors. The risk of introducing relevant somatic mutations
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in the adjacent mucosa is minimal but non-responsive tumors may have potentially

worse biological behavior when compared to their untreated counterparts. This was an

exploratory study, and due to the limited number of samples analyzed, our results need

to be validated in larger cohorts.

Keywords: neoadjuvant therapy, rectal cancer, intratumoral heterogeneity, clonal evolution, therapy resistance

INTRODUCTION

Neoadjuvant chemoradiotherapy (nCRT) is one of the preferred
treatment strategies for locally advanced rectal cancer (1, 2). In
addition to providing improved local disease control (particularly
for patients with high-risk features for local recurrence), nCRT
may allow the opportunity for organ-preservation among
patients with complete clinical response (cCR). However,
treatment of patients with low-risk for local recurrence with
nCRT, for the sole purpose of organ-preservation, may result in
significant detrimental functional and biological consequences
among patients who do not achieve a cCR and still need
radical surgery.

Intratumoral genetic heterogeneity (ITGH) was first described
in the early 1980’s (3). However, only recently, the full extent
and the functional implications of ITGH have been appreciated
(4). ITGH increases phenotypic variation and is currently
seen as a critical mechanism underlying disease progression
and therapeutic failure (5, 6). We and others have recently
characterized the clonal architecture of locally advanced rectal
tumors through multi-region whole-exome sequencing (WES).
We demonstrated that non-treated rectal tumors exhibit a
complex clonal architecture and significant, ITGH with 27–97%
of exonic somatic mutations shared among all regions of an
individual’s tumor and with a mutant allele frequency (MAF)
correlation between disparate tumor regions ranging from R2 =
0.69–0.96 (7, 8). However, in these studies ITGH, was determined
using a small number of tumors, and the effect of nCRT
in shaping the mutational landscape and clonal architecture
of rectal cancer was not addressed. Ultimately, tumors that
do not respond completely to nCRT may acquire novel
mutations and/or harbor selected tumor cells subpopulations
compared to their baseline counterparts, leading to increased
ITGH. Here, we evaluated ITGH in untreated rectal tumors
and examined its association with disease stage and presence
of lymph node metastasis. Also, we analyzed the impact
of nCRT in the mutational landscape and ITGH of rectal
tumors with incomplete response to nCRT and searched for
somatic mutations introduced by nCRT in the adjacent normal
irradiated mucosa.

MATERIALS AND METHODS

TCGA Data
To evaluate ITGH in rectal tumors and determine its association
with disease stage and presence of lymph node metastasis, we
analyzed whole-exome sequencing (WES) data from 79 rectal
tumors from The Cancer Genome Atlas (TCGA) colorectal

cohort (9, 10). Clinical, pathological and mutational data for all
79 rectal tumors are provided in Supplementary Table 1.

Rectal Cancer Patients and nCRT
Consecutive patients with rectal cancer (adenocarcinoma biopsy-
proven), located no more than 7 cm from the anal verge, and
treated at the Angelita & Joaquim Gama Institute between
2007 and 2010, were eligible for the study. Only patients
undergoing neoadjuvant chemoradiation were recruited for the
study. Inclusion criteria included tumors with cT3/T4 or cN+
disease by radiological staging using magnetic resonance (MR)
or endorectal ultrasound. Additionally, patients with cT2N0
otherwise considered for abdominal perineal excision or ultra-
low anterior resections were also referred for neoadjuvant
chemoradiation and included in the study. Patients with
metastatic disease were excluded from the study. Patients
with clinical and radiological findings consistent with cCR
were also excluded from the present study. Only patients
with ≥10% residual cancer cells in the final pathological
assessment were included in an attempt to avoid contamination
of “incomplete responders” with “near-complete responders”
that could eventually develop complete response if longer
resting intervals had been used (Table 1). Macrodissection of
tumor regions was performed whenever necessary prior to
DNA extraction to increase sample purity. Tumor sections were
required to contain at least 80% tumor cell nuclei with <20%
necrosis for inclusion in the study. We have randomly selected
one of the patients for the analysis of the nCRT effect on
the normal rectal mucosa. Baseline staging and assessment of
patients included digital rectal examination (DRE), proctoscopy
and high-resolution MR. All patients underwent long-course
chemoradiation therapy as described previously (11).

Assessment of Tumor Response
All patients were assessed for tumor response after at least
12 weeks from the last day of nCRT completion. Assessment
of tumor response was performed with DRE, proctoscopy and
MR. Patients with incomplete clinical response (clinical or
radiological) were referred to immediate radical surgery.

Tumor and Blood Samples
Tumor samples were collected at diagnosis (PRE-T samples)
and during surgical removal of the residual tumor (POST-T
samples). Tumor-adjacent normal colonic mucosa exposed to
nCRT (Nrx) was also collected from one patient immediately
after tumor resection. Peripheral blood cells (BC) were collected
from all patients before nCRT. This study was approved by
the Ethics Committee of Hospital Alemão Oswaldo Cruz, São
Paulo, Brazil (reference number 19/08) and was conducted in
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TABLE 1 | Clinical and pathological data of rectal cancer patients submitted to nCRT.

Patient Tumor size (cm) Distance from anal verge (cm) Baseline stage Type of operation Pathology TRG (% tumor)

PT01 5 5 cT3N0M0 LAR ypT3N0 80

PT02 4 6 cT3N1M0 LAR ypT2N1 80

PT03 4 7 cT3N1M0 LAR ypT2N0 90

PT04 3 5 cT2N1M0 LAR ypT2N2 30

PT05 5 4 cT2N1M0 APR ypT3N0 70

PT06 5 6 cT2N1M0 LAR ypT2N0 90

PT07 4 4 cT3N0M0 LAR ypT3N1 80

LAR, low anterior resection; APR, abdominal perineal resection; TRG, tumor regression grade.

accordance with the Declaration of Helsinki. Patients provided
written informed consent for tumor sample collection and
study participation. Samples were processed as described in
Supplementary Material.

Whole Exome Sequencing (WES)
Whole-exome libraries were prepared using SureSelect Human
All Exon Target Enrichment kit (Agilent Technologies, Santa
Clara, CA) and sequences were generated on a 5500xl SOLiD
sequencing platform (Thermo-Fisher Scientific, Waltham,
MA). Sequencing and coverage information are provided in
Supplementary Table 2.

SNV Calling and Somatic Mutation
Detection
SNVs were identified using a combination of published and local
pipelines (8, 12, 13) as described in Supplementary Material.
Somatic point mutations were annotated using ANNOVAR (14).

ITGH and MATH Score
Significant changes in allele frequencies were used as a surrogate
for changes in clonal structure and were detected using exact
binomial tests. False discovery rate (FDR) was calculated using
the p.adjust R function to correct for multiple-testing (15).
ITGHwas measured using the mutant allele tumor heterogeneity
(MATH) score (16, 17). The MATH score is a quantitative
measure of ITGH based on the Mutant Allele Frequency (MAF)
distribution. MATH scores were calculated as the width ratio to
the center of MAFs’ distribution for somatic point mutations
present within individual tumors. Due to the presence of
genetically distinct cellular populations, heterogeneous tumors
exhibit a broader allele frequency distribution compared to
homogeneous tumors and higher scores. The MATH score is the
most cost-effective method to compare ITGH among different
tumors and to monitor global changes in ITGH (16–21).

Mutational Spectrum and Signatures
Mutational spectrum and signature analyses were performed,
according to a previously published pipeline (22) and are detailed
in Supplementary Material.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed using the
Molecular Signatures Database v5.0 (MSigDB) as detailed in
Supplementary Material (23).

RESULTS

ITGH in Rectal Tumors Is Associated With
Disease Stage and Progression
To expand the characterization of ITGH in rectal tumors, we
used WES data from 79 non-treated rectal tumors obtained from
TCGA (Supplementary Figure 1). Since multi-region WES data
was not available for TCGA samples, we used the MATH score to
measure ITGH in these samples (16–21). Rectal tumors exhibit
remarkable variability in ITGH, with MATH scores ranging from
18.2 to 66.7 (median = 40.1; mean = 41; first quartile = 31.1;
third quartile = 49.8; Figure 1A). We also observed a significant
positive association between MATH values, disease stage (Stage
I/II median of 35.54 vs. stage III/IV median of 44.39, p =

0.047, Wilcoxon test, Figure 1B) and lymph node metastases
(N0 median of 35.87 vs. N1+N2 median of 45.79, p = 0.026,
Wilcoxon paired test, Figure 1C).

The MATH score is a simple and cost-effective method
to measure ITGH that shows little influence of copy number
variations (CNVs) and provides a first-order correction for
the presence of contaminating normal tissue in tumor samples
(16–21). To determine the influence of CNVs in our analysis
we examined the correlation between MATH scores and total
number of CNVs in all 79 individual tumors. As shown
in Supplementary Figure 2, there is no significant correlation
between higher MATH scores and aberrant CNV profiles in
rectal tumors (cor = −0.03, p = 0.8, Pearson correlation).
Likewise, we did not observe a significant association between
the total number of CNVs, disease stage (Stage I/II median
of 13.5 vs. stage III/IV median of 17.0, Wilcoxon test, p =

0.53, Supplementary Figure 2) or lymph node metastases (N0
median of 13 vs. N1+N2 median of 17, Wilcoxon paired test
p = 0.42, Supplementary Figure 2). We also evaluated the
impact of tumor sample purity in our results by analyzing
the correlation between MATH scores and sample purity
information provided for all 79 TGCA samples. As shown
in Supplementary Figure 3, there is no significant correlation
between MATH scores and tumor sample purity (cor = −0.037,
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FIGURE 1 | Rectal tumors exhibit continuous variability in ITGH. (A) Distribution of MATH scores among 79 rectal cancers from TCGA. (B) Distribution of MATH

scores according to disease stage (Wilcoxon test p-value=0.047 for I+II vs. III+IV comparisons). (C) Distribution of MATH scores according to lymph node

involvement (Wilcoxon test p = 0.026 for N0 vs. N1+N2).

p = 0.75, Pearson correlation). Therefore, non-treated rectal
tumors exhibit a remarkable variability in ITGH, which is not
significantly influenced by underlying somatic CNVs and tumor
sample purity and is significantly associated with disease stage
and lymph node metastases.

Effects of nCRT in Normal Adjacent
Mucosa
To evaluate the iatrogenic effect of nCRT, we compared the
mutational landscape of a matched set of peripheral blood
cells collected before nCRT (BC), tumor adjacent colonic
mucosa exposed to nCRT (Nrx) and pre (PRE-T) and post-
treatment (POST-T) tumor samples derived from a single rectal
cancer patient.

We first compared the total set of single nucleotide variants
(SNVs) detected in BC and Nrx to determine if nCRT could
introduce novel somaticmutations in the irradiated rectal colonic
mucosa. As expected, since both samples are derived from the
same patient, the majority of the SNVs (99.87%, 9,698/9,711)
was shared between both samples and only a very small fraction
of SNVs is exclusively detected in BC (0.06%, 6/9,711) or in
Nrx sample (0.07%, 7/9,705) (Figure 2A). We next searched
for significant variations in allele frequencies of SNVs shared
between BC and NrX samples. PRE-T and POST-T samples
were used as positive controls for allele frequency variations.
Significant variations in allele frequencies were observed in the
comparison between BC and POST-T (Figure 2D) and, to a lesser
extent, in the comparison between BC and PRE-T (Figure 2C). In
contrast, only 10 variants presented significant variations in allele
frequencies between BC and Nrx (Figure 2B). None of these
variants occurred in regions involved in V(D)J recombination
but they are dispersed throughout the genome. Also, we observed
a significant direct correlation of allele frequencies for SNVs
present in both BC and NRX samples (R2 = 0.91; p < 2 × 10 –

16, Pearson Correlation test, Figure 2B). Although these results
need to be validated using a larger number of matched samples,
they indicate that nCRT per se does not seem to introduce
detectable novel somatic mutations or copy number variations
in the irradiated mucosa.

ITGH Increases After nCRT
To address the effect of nCRT on the clonal structure of
rectal tumors, we generated WES data from 7 matched PRE-
T and POST-T samples (Supplementary Table 2). PRE-T and
POST-T samples presented a median of 133 (min. 42, max.
341) and 83 (min. 50, max. 676) somatic point mutations,
respectively (Supplementary Table 3). No significant difference
in the number of mutations between PRE-T and POST-
T tumors was observed (Wilcoxon test, p = 0.9). We also
did not observe significant alterations in the spectrum of
DNA base changes between PRE-T and POST-T samples
(Supplementary Figure 4) and we were unable to detect
a DNA damage mutational signature in POST-T samples
(Supplementary Figure 5). Overall, the most frequent mutations
observed in our cohort are also consistent with results reported
by TCGA (Supplementary Table 4) (24). On average, only 20%
(min. 10%—max. 32%) of the somatic mutations were shared
between PRE-T and POST-T samples, with MAF correlations
between matched samples ranging from R2 = 0.025–0.393
(Supplementary Table 3).

To quantify the effect of nCRT on the clonal structure
of rectal tumors, we next determined MAF distributions
and calculated MATH scores for the 7 matched PRE-T and
POST-T samples (Figures 3A,B). Median MAF and MATH
scores varied from 0.13 to 0.33 and from 23 to 60.1 among
all 14 samples, respectively (Supplementary Table 3). Overall
MATH scores were significantly higher in POST-T samples
compared to PRE-T samples (median 41.7 vs. 28.8, p =
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FIGURE 2 | nCRT does not introduce novel somatic mutations nor affects normal tissue genetic heterogeneity. (A) Overlap between SNVs present in BC (n = 9,704)

and in Nrx (n = 9,705). Comparisons of allele frequencies from SNVs shared by BC, Nrx, PRE-T, and POST-T samples: (B) BC vs. Nrx, (C) BC vs. PRE-T, and (D) BC

vs. POST-T. Significant variations in allele frequencies are highlighted in black, blue, and red, respectively (p < 0.05; Binomial test, Bonferroni adjusted).

0.04, Wilcoxon paired test, Figure 3C). Noteworthy, five out
of the seven tumors with incomplete response to nCRT
presented an increase in MATH values in POST-T sample
(Figure 3B and Supplementary Table 3). This suggests that
nCRT can significantly alter clonal structure in residual tumors,
increasing ITGH.

nCRT Acts as a Strong Selective Pressure
To examine if nCRT can select pre-existing tumor cell
subpopulations more prone to resist to nCRT, we monitored
tumor cell subpopulation dynamics before and after nCRT. Since
MATH score does not allow direct enumeration of distinct tumor
cell subpopulations, we monitored their dynamics by applying
binomial tests to identify somatic mutations with significant
changes in MAFs between PRE-T and POST-T samples (named
as enriched mutations). For this analysis, we focused on 401
coding and splice site somatic mutations shared between PRE-
T and POST-T samples, since they are more likely to have a
deleterious impact on protein function.

We identified a total of 210 somatic mutations (52.4%)
enriched in PRE-T or POST-T samples (Figure 4). Mutation
enrichment was validated using Sanger Sequencing
(Supplementary Figure 6). Enriched mutations were
significantly more frequent in POST-T compared to PRE-T
samples [195/210 (92.9%) vs. 15/210 (7.1%), p < 0.000017,
Fisher’s exact test, Supplementary Table 5]. Noteworthy, we
observed an excess of deleterious non-synonymous mutations
over neutral synonymous mutations in POST-T [136 non-
synonymous (N) and 46 synonymous (S), N/S= 2.96] compared
to PRE-T-enriched mutations [8 non-synonymous (N) and 5
synonymous (S), N/S = 1.6]. The observed difference, however,
was not statistically significant, probably due to the small number
of enriched mutations in the PRE-T samples (p = 0.23, Fisher’s
exact test).

Finally, we used GSEA to verify if nCRT could select
tumor cell subpopulations more prone to resist to nCRT. In
addition to the 210 enriched mutations, we found a total
of 634 somatic mutations that were exclusively detected in
POST-T samples. More than 59% of these POST-T specific
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FIGURE 3 | ITGH increases after nCRT. (A) MAF distributions for PRE-T (blue), POST-T (red), and total samples (yellow histograms) from 7 patients with rectal cancer

presenting incomplete clinical response to nCRT (PT01-PT07). (B) MATH scores for PRE-T and POST-T samples. (C) Comparison between MATH scores distribution

in PRE-T and POST-T samples from 7 patients with rectal cancer (*p = 0.04; paired Wilcoxon Signed-Rank Test).

mutations were observed in a single patient (PT02 377/634)
with high tumor mutational burden. Although the presence of
some of these POST-T specific mutations could be attributed
to tumor topographic heterogeneity, not contemplated in
the samples used for sequencing, some of these mutations
could indeed result from tumor genetic instability and clonal
selection during neoadjuvant therapy and were, therefore, used
for GSEA. We observed that POST-T specific and POST-T
enriched mutations frequently occurred in genes associated
with cell cycle regulation and proliferation (mitotic spindle

assembly and mitotic checkpoint gene sets) as well as with cell
survival and differentiation (K-Ras, TNF-alpha, and Hedgehog
signaling gene sets) (Supplementary Table 6). Among POST-T
enriched mutations, we found non-synonymous mutations in
genes associated with genetic instability and drug resistance in
colorectal cancer, including mutations in the ATM (25, 26),
DIDO1 (27, 28), and AKAP9 (29) (Supplementary Figure 7).
Among POST-T specific mutations, we also found non-
synonymous mutations in genes involved in DNA repair and
apoptosis, including ERCC6 previously associated with resistance
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FIGURE 4 | Positive selection of tumor cell subpopulations after nCRT. MAF

correlation for 401 somatic point mutations shared between PRE-T and

POST-T samples (R2
= 0.3). Enriched mutations in PRE-T (n = 15) and

POST-T (N = 195) samples are highlighted in blue and red, respectively.

to 5-Fluorouracil and poor prognosis (30). This suggests that
nCRT may act as a strong selective pressure resulting in the
selection of tumor cell subpopulations in the residual tumor that
are more prone to resist to nCRT.

DISCUSSION

nCRT may result in significant primary tumor regression.
Ultimately, tumors that achieve complete or even near-
complete response may allow for organ-preserving strategies
(31, 32). In this setting, even patients with early rectal
cancer (cT2N0), otherwise considered for abdominal perineal
resections or ultra-low anterior resections, have been considered
for nCRT in order to avoid a definitive colostomy or poor
anorectal function (11). However, even though patients with
early stage disease are more likely to achieve a cCR, many
patients will still harbor residual disease requiring surgical
resection (33). In these patients, nCRT may contribute
to significant increases in postoperative complications and
worsening of functional anorectal outcomes (34, 35). Here, we
demonstrated that nCRT may also have significant biological
consequences to the residual cancer in the setting of incomplete
tumor response.

In the present study, we showed that non-treated rectal
tumors exhibited a remarkable variability in ITGH that is directly
associated with disease stage and lymph node metastases. Studies
using large tumor collections have shown that ITGH impacts
clinical outcome (36, 37) and may contribute to drug resistance
in different tumors (38). ITGH has been previously reported in
colon (39–43) and rectal cancers (7, 8), however, for most of these
studies, ITGHwas determined only for a small number of tumors
and the prognostic and predictive significance of ITGH for these
cancers remains to be determined. Recently, theMATH score was
used in two independent studies to quantify ITGH in colorectal
tumors. Zhang et al. analyzed WES data from 284 colorectal

tumors obtained from TCGA and 187 colorectal tumors obtained
from the International Cancer Genome Consortium (ICGC)
(43). The mean MATH value was 41.58 and 46.1 for the TCGA
and ICGC cohorts, respectively. Similarly to our results, higher
MATH scores were associated with disease stage and lymph
node metastasis. Although the authors observed a significant
difference in MATH scores between rectal and colon tumors
(MATH = 45.9 vs. 39.96 p = 0.004), a separate analysis for
rectal cancer was not performed and samples previously treated
with nCRT were not excluded. Hardiman et al. have used the
MATH score to analyze ITGH in 7 stage II/III rectal tumors,
MATH scores in these tumors varied from 9.08 to 25.24 and
were significantly higher in stage III tumors (7). Although
further studies will be necessary to determine the prognostic
significance of ITGH in rectal cancers, the strong association
between ITGH and disease stage and lymph node involvement—
both known predictors of survival after surgical treatment among
these patients—supports a possible role for ITGH as a prognostic
biomarker in rectal cancer.

Another relevant finding was that nCRT, per se, does not
introduce detectable somatic mutations in the irradiated colonic
mucosa. To the best of our knowledge, our study was the first
to directly address the potentially iatrogenic effect of nCRT. The
use of treatment-exposed normal colonic mucosa was critical
to distinguish treatment-induced mutations from those arising
from tumor genetic instability and positive clonal selection after
treatment exposure. Until present, few studies have indirectly
addressed the impact of radiation and chemotherapy by
comparing mutational landscapes of matched PRE-T and POST-
T samples (44–47). Although post-treatment mutation spectrum
shifts have been reported for esophageal adenocarcinoma
following platinum-based neoadjuvant chemotherapy (45), WES
of matched anal squamous cell carcinomas before and after
chemoradiation revealed a similar number of somatic mutations
and a similar pattern of DNA substitutions in pre and post-
treatment tumors (47).

The most relevant finding of the present study is that
MATH scores are significantly higher in POST-T compared
to PRE-T samples. This suggests that nCRT can significantly
affect ITGH in residual tumors. Significant alterations in
ITGH have been reported for esophageal adenocarcinoma
after exposure to neoadjuvant chemotherapy. Murugaesu et al.
found that mutations in post-chemotherapy samples were
rarely clonal (3%), while 50% of the somatic mutations
identified prior to chemotherapy were clonal (45). Findlay
et al. observed a variety of clonal behaviors in esophageal
tumors after chemotherapy, including samples showing little
changes in clonal composition and samples with marked
differences in the clonal architecture after therapy (44). Most
importantly, in both studies, there was a significant association
between ITGH and response to neoadjuvant chemotherapy.
More recently, marked clonal landscape remodeling has also
been described for hormone-positive breast cancer exposed to
neoadjuvant aromatase inhibitor treatment, but no associations
between ITGH and treatment response were established (48).
By comparing PRE-T and POST-T samples, we observed a
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significant overall increase in ITGH. Five out 7 patients presented
a significant increase in ITGH. Interestingly, tumor regression
in these 5 samples was minimal (20–30% tumor regression).
In contrast one of the 2 patients showing minimal changes
in ITGH presented the most significant tumor response (70%
tumor regression). Even though these results could indicate
a possible association between ITGH and tumor response to
nCRT, the limited size of our cohort, and the fact that we have
only analyzed tumors in the setting of incomplete response to
nCRT, did not allow us to fully explore this association in the
present work.

Finally, we monitored tumor cell subpopulation dynamics
during nCRT by identifying enriched somatic mutations with
significant changes in allele frequencies between PRE-T and
POST-T samples. Enriched mutations were more frequently
found in POST-T samples. We also observed higher proportion
of potentially deleterious mutations in these samples. Enriched
mutations in POST-T samples were frequently present among
genes involved in DNA damage repair, genetic instability, cell
cycle regulation, proliferation, survival, and differentiation (25–
29). All these molecular pathways have been shown to contribute
to chemoradiotherapy resistance to colorectal tumor cells,
suggesting that nCRT may result in tumors more aggressive than
their baseline counterparts in the setting of incomplete response.
Clonal evolution in response to neoadjuvant therapy has been
previously studied in breast, esophageal, and anal squamous
cell carcinomas (44, 45, 47, 48). Together with our study, these
studies indicate that neoadjuvant therapy can profoundly affect
tumor clonal architecture by promoting significant changes in
the frequency of somatic mutations owing to the outgrowth of
subclones with selective growth advantages in the residual tumor.

There are some limitations to this study that should be
considered for the interpretation of our results and prevent
the immediate application of our findings in clinical practice.
First, we used a single set of matched samples in the analysis
of the iatrogenic effect of nCRT in the normal colonic
mucosa. Confirmation of our findings in larger cohorts is
definitively necessary. Also, we cannot exclude the possibility
that our sequencing strategy was not sensitive enough to detect
novel somatic alterations, present in individual cells in the
normal adjacent irradiated mucosa, which have not expanded
significantly in the sampled population. Second, although we
observed a significant variation in ITGH between PRE-T and
POS-T samples, these observations were also based on a
limited number of matched samples and in a single tumor
region. We and others have described significant topographical
intratumor heterogeneity in rectal cancer, and therefore, the
impact of nCRT in ITGH and clonal selection in rectal
tumors needs further evaluation. Most importantly, in the
present work, we monitored tumor cell population dynamics
by identifying “enriched mutations” with significant changes
in MAFs between PRE-T and POST-T samples. Apart from
a subclonal distribution and the presence of local somatic
CNVs, the observed MAF at a specific locus is also directly
influenced by tumor sample purity. Therefore, variations in
sample purity, rather than in subclonal composition, could

result in significant MAF differences between PRE-T and POST-
T samples and consequently influence our analysis of tumor
cell subpopulation dynamics before and after nCRT. In the
present work, all tumor samples were microdissected by an
experienced pathologist to enrich for tumor purity and minimize
this possibility. Tumor sections were required to contain at least
80% tumor cell nuclei with <20% necrosis for inclusion in
the study.

In conclusion, nCRT per se does not seem to introduce
novel somatic mutations in the irradiated normal rectal mucosa.
Instead, nCRT may drive a marked clonal selection in residual
rectal tumors. This results in frequent increases in ITGH in
residual cancers when compared to their baseline counterparts,
which are driven by significant alterations in the frequency of
biologically relevant mutations in genes associated with response
to nCRT. The risk of more heterogeneous residual tumors
leading to more biologically aggressive cancers may constitute a
potential disadvantage of nCRT among incomplete responders.
This may be particularly relevant among patients with early stage
disease considering nCRT solely for the purpose of achieving
cCR and organ-preservation. Future studies should address the
oncological impact of significant ITGH increase after nCRT and
incomplete response in rectal cancer.
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