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Simple Summary: This article presents a gradient-boosted model that can predict 10-year prostate
cancer mortality with high accuracy. The model was developed and validated on prospective
multicenter data from the PLCO trial. Using XGBoost and Shapley values, it provides interpretability
to understand its prediction. It can be used online to provide predictions and support informed
decision-making in PCa treatment.

Abstract: Prostate cancer treatment strategies are guided by risk-stratification. This stratification
can be difficult in some patients with known comorbidities. New models are needed to guide
strategies and determine which patients are at risk of prostate cancer mortality. This article presents
a gradient-boosting model to predict the risk of prostate cancer mortality within 10 years after a
cancer diagnosis, and to provide an interpretable prediction. This work uses prospective data from
the PLCO Cancer Screening and selected patients who were diagnosed with prostate cancer. During
follow-up, 8776 patients were diagnosed with prostate cancer. The dataset was randomly split into
a training (n = 7021) and testing (n = 1755) dataset. Accuracy was 0.98 (±0.01), and the area under
the receiver operating characteristic was 0.80 (±0.04). This model can be used to support informed
decision-making in prostate cancer treatment. AI interpretability provides a novel understanding of
the predictions to the users.

Keywords: prostate cancer; artificial intelligence; machine learning; prediction

1. Introduction

Each year in the United States, 180,000 patients are diagnosed with prostate cancer,
and 26,120 men die from the disease. PSA testing has resulted in a significant increase in the
diagnosis and treatment of prostate cancer [1,2]. But the management of low-risk prostate
cancer management remains controversial [3]. Many men do not benefit from treatment
because the disease is either indolent or disseminated at diagnosis. Every year, 35,000 men
are being overdiagnosed with prostate cancer that will never cause symptoms or death and
undergo unnecessary treatments causing complications because of screening [4].

The role of PSA-based screening in reducing mortality from prostate cancer is still
controversial: The PLCO trial did not find any reduction in mortality [5–7]. On the other
hand, the European Randomized Study of Screening for Prostate Cancer (ERSPC) study
did find a substantial reduction in cancer-specific mortality: The overall relative risk of
prostate cancer death was 0.46 (95% CI: 0.19–1.11) and 0.48 (95% CI: 0.17–1.36), in favor
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of screening [8]. For patients diagnosed with PCa, the ProtecT trial was conducted to
compare the effectiveness of active monitoring, radical prostatectomy, and external-beam
radiotherapy. Between 1999 and 2009, 82,429 men 50 to 68 years of age were tested with
PSA, 2664 were diagnosed with localized PCa, and 1664 were randomized in three arms.
At 10 years of follow-up, prostate-cancer-specific mortality was low, irrespective of the
treatment (or absence of treatment) [8]. At 10 years, prostate-cancer-specific survival rates
were 98.8% (97.4–99.5), 99% (97.2–99.6), and 99.6% (98.4–99.9) for active monitoring, surgery,
and radiotherapy, respectively. Patients in the active monitoring group developed more
metastases (p = 0.004) and had a higher rate of disease-progression (p < 0.001). Patients from
the surgery and radiotherapy groups had significant sexual, urinary, and bowel function
impairment from treatment [9].

In order to assess whether a patient with prostate cancer would benefit from cancer
treatment, we created a model to predict the risk of death from prostate cancer 10 years after
diagnosis that would take into account the patient’s comorbidities and cancer’s features. A
gradient-boosting model was trained on the prospective data of the PLCO trial to provide
a prediction and a visualization of the features explaining the outcome. We deployed
the model in a web interface that can be used to obtain a personalized prediction and
explanation in a format that can be readily implemented in a clinical setting.

2. Materials and Methods
2.1. Data

This model was trained on data from the prospective randomized multicenter trial
PLCO where 76,693 men at 10 U.S. study centers were randomly assigned to receive either
annual screening (n = 38,343) or usual care as the control (n = 38,350). A data transfer
agreement was obtained from the National Cancer Institute (NCI), and the data was
downloaded from the internet [10].

The dataset contains nearly all the PLCO study data available for prostate cancer
screening, incidence, and mortality analyses. The dataset contains one record for each of
the participants in the PLCO trial. The main package includes a comprehensive description
of the patients included in the trial, as well as their complete follow-up. Patients that were
diagnosed with prostate cancer during follow-up were selected to train and test the model,
no matter in which arm of the trial they were included. Before any analysis, the dataset
was split into a training and a testing dataset using an 80/20 ratio.

2.2. Feature Selection

Several tools, mainly nomograms, are currently available to predict relapse after
surgery [11], or mortality [12–16]. We used features from the dataset relevant to prostate
cancer diagnosis, medical history, physical activity, and socio-economic status of patients.
The features included in the analysis were:

(1) Prostate cancer: PSA, T, N, M stage, Gleason score, and initial treatment (if performed)
(2) Medical history: Age, height, weight, current smoking status, smoking pack-years,

daily alcohol consumption, history of prostatitis, nocturia, arthritis, bronchitis, di-
abetes, emphysema, heart attack, hypertension, liver disease, osteoporosis, stroke,
elevated cholesterol.

(3) Physical activity: Activity at least once a month during the last year, physical activity
at work

(4) Socio-economic status: Family income, education
(5) Hormonal status: Hair pattern at age 45, weight gain pattern

2.3. Predictions

A gradient-boosting machine model was trained to predict PCa mortality at 10 years
with decision-tree-based learners using the XGBoost python package [17]. Survivals were
calculated from the time of diagnosis. XGBoost is currently considered as the state-of-
the-art for prediction with tabular data. XGBoost inherently handled missing values. [18].
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Hyperparameters were selected on the training dataset, with a nested, cross-validation,
with the Python package BayesianOptimization [19]. This approach provides a fast and
efficient search of the optimal hyperparameters through Bayesian inference and Gaussian
process, attempting to find the maximum value of an unknown function in as few iterations
as possible. The class imbalance was compensated with the scale_pos_weight parameter
of XGBoost.

To assess the performances of the models, we used the non-parametric bootstrap
procedure: From the test dataset, we sampled all patients with replacement and evaluated
the models on this sample. By repeating this process 200 times, we obtained a distribution
of the performance metric and reported the 2.5 and 97.5 percentiles as 95 confidence
intervals (CI).

A TRIPOD checklist is provided in File S1.

2.4. Model Interpretability

Understanding the predictions of the models is very important in our setting, because
we need to know whether the prediction relies on the aggressivity of the PCa or on any
other comorbidities of the patient. Shapley values [20] used the SHAP Python package
to interpret the predictions [21]. We obtained the top 20 contributing features with an
interpretation of how they participate in the prediction. At an individual scale, we can also
visualize for any patient from the dataset, or any new patient, the features that participated
in the prediction and how they influenced the final outcome.

2.5. Online Model Deployment

After training, the model was saved in a file that can be loaded. A web application was
deployed online to perform new predictions with the Dash Python framework. Answers
to thirty questions will provide the risk of dying from prostate cancer within 10 years
from diagnosis.

3. Results
3.1. Cohort Description

In the PLCO trial, 8776 patients were diagnosed with prostate cancer (4579 patients
were in the screening arm, and 4197 in the control arm). The dataset was split into two
(7021 patients to train and 1755 to test the model). In total, 685 patients (6.2%) died from
prostate cancer during follow-up. Patients’ characteristics are presented in Table 1.

Table 1. Characteristics of patients with prostate cancer and patients who died from prostate cancer
within 10 years after diagnosis in the PLCO trial.

Characteristic No. (%) All Patients No. (%) Patients Who Died from PCa

Age

Under 65 years old 1990 (22.7) 109 (15.9)
Between 65 and 75 years old 5181 (59) 283 (41.3)

Over 75 years old 1605 (18.3) 293 (42.8)

Prostate Cancer

Localized PCa 7668 (87.4) 436 (63.6)
Low-risk 2940 (33.5) 199 (29.1)

Intermediate-risk 3476 (39.6) 105 (15.3)
High risk 1252 (14.3) 132 (19.3)

Locally advanced PCa 913 (10.4) 122 (17.8)

Metastatic PCa 195 (2.2) 127 (18.5)
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Table 1. Cont.

Characteristic No. (%) All Patients No. (%) Patients Who Died from PCa

PSA

<10 ng/mL 6516 (74.2) 254 (37.1)
10–20 ng/mL 1137 (13) 94 (13.7)

>20 ng/ml 1123 (12.8) 337 (49.2)

Gleason score

Gleason ≤ 6 4744 (54.1) 353 (51.5)
Gleason 7 2842 (32.4) 158 (23.1)
Gleason 8 607 (6.9) 95 (13.9

Gleason ≤ 9 455 (5.2) 48 (7)
N/A 128 (1.5) 31 (4.5)

Treatment

Surgery 3212 (36.6) 114 (16.6)
Radiotherapy 3607 (41.1) 201 (29.3)

Chemotherapy 1067 (12.2) 54 (7.9)
Hormonotherapy 654 (7.5) 161 (23.5)

N/A 236 (2.7) 155 (22.6)

3.2. Model Performances

Model performance was excellent with an accuracy of 0.98 (±0.01). The complete
metrics are presented in Table 2.

Table 2. Performances of the survival model evaluated with the bootstrap method on the test dataset.

Metric Definition Result

Accuracy Number of correct predictions/total number of
input samples 0.98 (±0.01)

Precision Number of correct positive predictions/number of
positive predictions 0.80 (±0.1)

Recall Number of correct positive predictions/number of
all positive samples 0.60 (±0.08)

f1-score Harmonic mean of the precision and the recall 0.66 (±0.07)

auROC Area under the curve of the true positive rate and
false positive rate at various thresholds 0.80 (±0.04)

prAUC Area under the curve of precision and recall at
various thresholds 0.54 (±0.07)

The model showed good calibration with a Brier score of 0.024. The calibration curve
shows the predicted probabilities to die from prostate cancer within 10 years of diagnosis.
We also provide a confusion matrix (Figure 1).
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Figure 1. Calibration plot (A) and confusion matrix (B).

3.3. Most Important Features Explaining the Prediction

The five features that contributed most to model performance were the Gleason score,
PSA at diagnosis, age, type of initial treatment, and T stage. Features related to general
health status, such as alcohol consumption, hormonal status, and physical activity also,
had a significant impact on the prediction (Figure 2A). Higher Gleason score, PSA levels,
and age at diagnosis have a higher Shapley value, associated with a greater risk of death
from PCa (Figure 2B–D). Each feature’s contribution is displayed on the x-axis. A feature
with a negative Shapley value will decrease the risk of dying. The y-axis shows that a
positive Shapley value increases the risk of dying and a low Shapley value decreases the
risk of dying in Figure 2B–D. Higher Gleason score, PSA levels, and age at diagnosis have
a higher Shapley value, associated with a greater risk of death from PCa.
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Figure 2. (A) The 20 most important features for prostate cancer mortality prediction. Population
(B–D) and individual (E,F) level interpretability.

Predictions for two types of patients: In Figure 2E, a high-risk prostate cancer (Gleason
9 (4 + 5), PSA = 24 ng/mL and T3bstage), without significant comorbidities (56 y.o., no
smoking, no alcohol, with physical activity). In Figure 2F, intermediate-risk prostate cancer
(Gleason 7 (3 + 4), PSA = 11 ng/mL and T2cstage), with several comorbidities (73 y.o.,
smoker, 53 pack-years, alcohol consumption, with physical activity). The first patient has a
19% probability of dying from prostate cancer. The aggressiveness of prostate cancer (in
red) explains this probability. They are in part compensated by good prognosis factors,
such as age (in blue). The second patient has a 1% probability of dying from prostate cancer.

3.4. Model Deployment Online and Interpretation at the Individual Scale

The model is available online: https://prostatecancersurvival.stanford.edu (accessed
on 18 June 2021). For reproducibility, we also made the model available as a pickle object
in a GitHub repository: http://github.com/jebibault/ProstateCancerSurvival (accessed on
18 June 2021). The object can be loaded to perform new predictions.

4. Discussion

The treatment of prostate cancer is based on clinical states that range from low
grade/volume localized, locally advanced, metastatic castrate-sensitive, to metastatic
castrate-resistant disease. In oncology, clinical management decisions are based on risk
stratification, but defining high risk is a complex task in prostate cancer. Localized tumors
include indolent diseases that are unlikely to result in morbidity or reduce life expectancy
if left untreated, diseases curable with a single definitive modality, or cancer destined to
relapse locally or systemically and result in death. This last category is currently consid-
ered as “high-risk”, but no classification scheme exists to provide a faithful prediction
of the patients’ outcomes and consistently optimize therapeutic management. Even if it
did exist, some high-risk patients would still die from competing comorbidities, before
cancer could actually become fatal. A comprehensive algorithm that takes into account
prostate cancer features, but also a more thorough description of the health status of a
patient was needed to guide decision-making. This work has several clinical implications.
It provides an accurate prediction of the mortality risk from prostate cancer 10 years after
diagnosis. Being able to predict which patient is at risk of dying within 10 years will allow
for informed discussion on the risk-benefit analysis of prostate cancer treatment can have
a potential benefit for the patient. In this cohort from the PLCO trial, with 13 years of

https://prostatecancersurvival.stanford.edu
http://github.com/jebibault/ProstateCancerSurvival
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follow-up, only 499 patients (5.7%) died from PCa, while 2629 patients (30%) died from
other causes. ProTecT confirmed in a prospective trial that all treatments had significant
side-effects that negatively impacted the quality of life (QoL). If a patient will not benefit
from PCa treatment because of other life-threatening conditions, the role of a physician
should be to dissuade him from even getting treated for PCa, to prevent a deterioration of
his QoL. In order to do so, being able to accurately predict the risk of dying at a reasonable
time horizon is not sufficient. The algorithm needs to be interpretable to understand the
features on which the prediction is made. A “black-box” model would only create more
anxiety and would likely not provide actionable information. If the model didn’t explain
why it’s making a prediction, we will not understand if a patient is at risk of dying because
of the aggressive features of PCa, even if it is treated, or because of his comorbidities.
Our model addresses this issue and provides detailed information by ranking features by
importance, on an individual scale. In the literature, several nomograms and algorithms are
currently available: Preoperative nomograms typically include factors, such as PSA level
at diagnosis, clinical stage, and Gleason score [12,13]. Postoperative nomograms include
these factors with surgical margins, capsular and seminal vesicle invasion, and regional
lymph node status [11]. Some are available online [22], and most have been created with
the data from a single center, which could potentially introduce significant biases and limit
their generalizability.

Artificial intelligence (AI) techniques can be used in that setting [23]. The applications
of AI are vast [24], and include diagnostic imaging [25], pathology [26], segmentation [27],
prognostics [28], and automatic treatment planning [29,30]. Our model is the first to
be trained on a large, prospective, and multicenter cohort of patients. Comparing the
results from our model to results from other models is unfortunately currently not possible,
because the models are currently not available for external validation. In that regard, we
chose to release our model as a pickle object in a GitHub repository for replication or
comparison studies. Because other datasets are not readily available, or because they do
not include all the variables available in the PLCO dataset that we used to train our model,
we cannot validate our results on an external cohort.

This study has several limitations: First, the PCLO trial was about prostate cancer
screening and early detection and its relevance for prostate cancer overall survival. Some
of the patients did have, and others were not supposed to have had early detection. Early
detection and subsequent treatment might have had an impact on PCa death. The PCLO
trial is also criticized because of its “PSA contamination” in patients without PSA screening.
A significant portion of patients in the no screening arm had a PAS screening. Since
we selected patients from both arms of the trial, this bias should be limited. But the
prospective nature of the data and the fact that we selected patients from both arms of
the trial, should limit biases. Another limitation is that the data mostly included patients
that were diagnosed with localized prostate cancer, because only 195 patients (2.2%) were
metastatic at diagnosis. This is because PLCO was a screening effectiveness trial and means
that our model should probably be used with caution for these specific patients. As a self-
assessed tool, the performance of the model could also be different, due to questionnaire
response biases. But the fact that most of the data are from questionnaires that were given
to patients during the trial could also limit this issue. Another issue we needed to address
for modeling, was the inherent class imbalance of the dataset: This was considered during
the training of the models by correcting the positive class. Finally, we need to consider how
this model might be used in practice: The dilemma in this setting is obvious that patients
in the PCLO trial died of PCA even though they were treated and hopefully received the
best treatment possible. However, those in the trial who were successfully treated and
consequently wer e saved from death, are not in the focus of our tool. Our tool mainly
allows us to detect the patients who will die from causes that are different from PCa, and
the patients who will die from PCa, even though they were treated. While the performance
of the model is good for the whole cohort, there are significant challenges when calibrating
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the model to a single individual. The model should not be used as the only tool guiding a
treatment strategy, but it could help guide decision making.

5. Conclusions

Using prospective data from the PLCO trial, we created a gradient-boosted model
to predict the risk to die from prostate cancer 10 years after diagnosis with high accuracy,
with only 30 clinical features, available at no cost. Because our model also provides
interpretability, the prediction could be used to personalize treatments better.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13123064/s1, File S1: Tripod statement.
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