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Abstract

Hypothesis: Previous studies provide evidence that glycated haemoglobin (HbA1c) and fasting 

plasma glucose (FPG) should not be considered as interchangeable alternatives in the diagnosis 

of the same type 2 diabetes, but as indicators of its different pathogenetic subtypes. This study 

was conducted to determine whether a particularly high amount of glucose in either HbA1c 

form or in fasting plasma would be found in diabetic patients genetically predisposed for 

either intensive cognitive or intensive muscle metabolic activity, respectively.

Methods: HbA1c and FPG levels, polymorphisms of genes indicating the predisposition 

to different cognitive activity (the dopamine D2 receptor (DRD2/ANKK1)), muscle 

activity (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1A 

(PPARGC1A))), and vascular regulation of general metabolic activity (the angiotensin 1 

converting enzyme (ACE)) were assessed in diabetic patients and nondiabetic controls.

Results: DRD2/ANKK1 polymorphism that affects baseline central arousal determined 

HbA1c variations uncorrelated with FPG in total and clinical groups. The mutation of 

PGC1A mainly affecting peripheral glucose metabolism had an effect on FPG correlated 

or uncorrelated with HbA1c depending on the effect assessment in the total sample or in 

the nondiabetic group, respectively. ACE insertion/deletion (I/D) gene polymorphism was 

associated with both HbA1c and FPG fluctuations, but only in diabetic patients.

Conclusion: The findings provide evidence that the HbA1c and FPG may predict the 

risks for different subtypes of type 2 diabetes associated with either brain or muscle 

metabolic activity in genetically vulnerable people.
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Introduction

Despite the known limitations of diagnostic criteria and 
early risk for type 2 diabetes derived from fasting (FPG) 
and/or 2-h plasma glucose levels, they are still widely 
accepted. Glycated hemoglobin A1 or the percentage 
of total hemoglobin that is bound by glucose (HbA1c) 
reflects an average level of plasma glucose over the 
previous 2–4 months and is also widely used as a marker 
of chronic glycemia. It was concluded that HbA1c and 

FPG display a different sensitivity versus specificity 
in identifying people at risk for later development of 
diabetes, and Expert Committees in diabetes consider 
that a better biochemical marker should be selected 
as a more reliable diagnostic tool (1, 2). However, this 
discordance may occur because HbA1c and FPG each 
measure different physiological processes associated with 
the risk for type 2 diabetes. In this case, these glycemic 
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parameters should be considered as partly overlapped, 
but not as interchangeable alternatives.

Previous studies showed that HbA1c is not affected 
by plasma glucose instability and has a close relationship 
with mean or average plasma glucose (MPG) (3). However, 
correlations between HbA1c and FPG are low. Twin, family, 
and genome-wide association studies show that HbA1c and 
FPG levels are heritable with substantial genetic effects on 
their inter-individual variations, and that genetic factors 
influencing them do not overlap (4). Although some 
heritable HbA1c variations are unrelated to glycemic status 
in individuals with and without type 2 diabetes (e.g., 
altered erythrocyte physiology), individual variance in 
both glycemic parameters can reflect different aspects of 
energy metabolism that are modulated by different gene 
polymorphisms. However, hypothesis-free, genome-wide 
association studies with multiple testing do not seem very 
helpful in exploring this challenge because they may miss 
some important physiological relationships (5). The main 
analytical approach of genome-wide association studies 
is focused on minimizing the false positive rate at the 
expense of controlling the false negative rate, and this 
bias determines the ‘missing heritability’ of type 2 diabetes 
susceptibility (6, 7, 8). This gives an additional warning 
that results of data-driven studies should not exclusively 
dictate or restrict scientific development from using the 
conventional approach based on prior hypotheses (9, 10).

The hypothesis-driven candidate gene approach based 
on an inferred physiological role of previously discovered 
genes may investigate the subject more effectively. For 
example, physiological mechanisms between feeding and 
fasting are differently regulated for keeping glucose levels 
sufficient: (i) for permanent functioning of the brain and 
other glucose-dependent tissues (switching between idled 
and non-idled brain conditions; neutral, positive, and 
negative moods; and various cognitive activities) and 
(ii) for an intermittent energy supply to all other organs 
(e.g.,  switching between glucose and fatty acid oxidation 
in active and relaxed muscles) (11). Previous findings allow 
us to consider that HbA1c level may be associated with 
genetic factors influencing more stable central mechanisms 
(habitual cognitive and dietary patterns), but FPG level may 
be determined by genetic factors influencing more flexible 
peripheral mechanisms which regulate energy metabolism  
(cardiovascular and metabolic activity patterns). For 
example, a study of children with and without attention-
deficit/hyperactivity disorder (ADHD) found that FPG did 
not differ between the groups, but HbA1c was higher in the 
ADHD-group (12). This HbA1c-related glucose regulation 
may be modulated by a central dopaminergic system 

in general and by polymorphism of the dopamine D2 
receptor (DRD2) gene in particular (e.g., rs1800497 (TaqIA) 
single-nucleotide polymorphism (SNP), later identified 
within the exon 8 of ankyrin repeat and kinase domain 
containing 1 (ANKK1)). Mutations in this gene were found 
to be associated with ADHD and appear to be relevant to 
cognitive skills, as well as type 2 diabetes, dietary, and other 
motivated and compulsive/impulsive behaviors (13, 14, 
15, 16). Other studies support that MPG- or HbA1c-, but not 
FPG, -related glucose regulation is associated with cognitive 
performance and dietary preferences.

For example, only higher HbA1c or MPG was associated 
with cognitive decline and cognitive impairments (e.g., 
lower scores of visual motor speed, attention, learning, and 
verbal memory) in people with and without type 2 diabetes 
(17, 18). These cross-sectional and prospective relationships 
were not mediated by cardiovascular (CV) or other metabolic 
complications and may be determined by more fat, 
carbohydrate, or generally higher caloric food preference as 
habitual dietary behavior in people with higher HbA1c (19, 
20, 21). It seems evolutionary justified, that meal restriction 
claims better performance skills for obtaining food, but an 
easy access to plenty of meal results in a ‘lazy’ or ‘idled’ 
brain (i.e., in the brain with low cognitive performance). In 
these cases, the levels of HbA1c may display an amount of 
glucose unclaimed by the brain and irrevocably removed 
from energy metabolism. A particularly high amount of 
this unclaimed glucose in HbA1c form may be predicted 
in people with the phenotypically ‘idled’ or ‘lazy’ brains 
that are genetically predisposed for hard cognitive working 
(e.g., individuals with A1-T allele of TaqIA). Fewer studies 
found that higher FPG values were also associated with 
lower cognitive skills, but only in patients with CV diseases 
or metabolic syndrome (22,  23). Compared with HbA1c, 
the FPG relationship with cognitive functions may be 
driven indirectly by peripheral hyperglycemia-related 
processes resulting in severe cardiovascular and metabolic 
impairments (24).

In some studies, the presence of D allele in case of  
the angiotensin 1 converting enzyme (ACE) insertion/
deletion (I/D) gene polymorphism (determining higher 
ACE levels and thus higher vascular resistance) conferred 
an increased risk of glucose intolerance (detected by 
higher 2-h glycemia) in a nondiabetic population (25). 
However, this association may be moderated by other 
genetic or nongenetic factors, as another study found that 
overweight women who are homozygous for the D allele of 
this gene had more intensive glucose utilization (detected 
by hyperinsulinemic–euglycemic clamps) compared with 
those who are homozygous for the I allele (26). ACE gene 
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polymorphism, as well as gene polymorphisms affecting 
other metabolic factors like peroxisome proliferator-
activated receptor gamma (PPARG2) and its coactivator 
(PGC1A (PPARGC1A)), may have opposite effects on glucose 
metabolism in different (e.g., clinical and nonclinical) 
populations (27, 28, 29, 30, 31). Hemodynamic (ACE) 
and metabolic (PPARG2 and PGC1A) gene polymorphisms 
were found to have a weak impact on HbA1c level 
and cognitive functions, but have a strong impact on 
body composition and physical activity in the general 
population and diabetic patients (32, 33, 34, 35, 36). FPG, 
but not HbA1c, is mainly related to body composition (e.g., 
body weight, visceral fat area, body mass index, body fat 
percentage, body muscle percentage, waist circumference) 
and exercise (walking, steps/day and physical activity, 
min/day) indicators (20). It seems physiologically justified, 
when ‘lazy’ or ‘idled’ muscles with low metabolism do not 
claim the glucose intended for them, its unutilized and 
undeposited excess is detected in fasting and 2-h plasma.  
A particularly high amount of unclaimed glucose in fasting 
plasma may be predicted in persons with the ‘lazy’ muscles 
that are genetically predisposed for intensive or hard 
physical work (e.g., individuals with D allele of ACE I/D 
gene polymorphism or G allele of rs8192678 (Gly482Ser) 
polymorphism of PGC1A gene).

This research addresses two above-mentioned 
predictions of central and peripheral physiological 
mechanisms associated with HbA1c and FPG and thus 
different central and peripheral pathophysiological forms 
of type 2 diabetes by studying the relationships between 
polymorphisms of central (DRD2), hemodynamic (ACE), 
and metabolic (PGC1A) genes and these two glycemic 
indicators in diabetic patients and nondiabetic control 
group.

Subjects and methods

Ethical statement

Institutional and governmental regulations concerning 
the ethical use of human volunteers were followed. The 
study was approved by the Ethics Committee of the 
Sholokhov Moscow State University for the Humanities 
and performed in compliance with the recommendations 
of Helsinki Declaration II.

Study populations

This study was based on a larger cohort of outpatients 
diagnosed with type 2 diabetes, living in Moscow (Russia), 

and listed in a local medical register. For the study, 103 
participants (73 females) aged 23 – 83  years (mean ± s.d., 
65.7 ± 11.2 years) with undefined ethnicity (due to ethical 
regulations of the local medical register) were randomly 
selected from a sub-group of patients with uncomplicated 
type 2 diabetes for no less than 2 years. Classification of 
type 2 diabetes was done according to the WHO diagnostic 
criteria (37). For inclusion in the study, the patients needed 
to be a noncompliant with the treatment regimen in order 
to decrease the confounding effect of the treatment on 
expected relationships. Of the total sample of diabetic 
patients listed in the local medical register, 50% were 
identified as missing medication in the previous week. The 
recommended treatment modalities in the selected sample 
were metformin alone (20%); metformin in combination 
with dipeptidyl peptidase IV inhibitor (5%); glucagon-
like peptide 1 alone (5%); and insulin alone (10%) or in 
combination with oral antidiabetic agents (metformin and 
sulfonylurea; 60%). Sixty subjects (42 females) without 
diabetes and undefined ethnicity (due to the same ethical 
regulations) aged 19–92  years (53.8 ± 16.2  years) were 
enrolled in the control group. They visited primary care 
centers for a regular annual medical examination and did 
not either have hypertension, coronary heart disease, or 
any other neuropsychiatric, cardiovascular, or metabolic 
diseases. All selected patients and healthy subjects signed 
a written consent for participation in the study.

An effective sample size for genetic model with 
continuous outcomes was calculated using Quanto 
(38). Sample size = 60 was found effective for α = 0.05 
and power = 0.80 with β = 0.60, dominant allele 
frequency = 0.54 and mean (s.d.) of FPG = 5.3 (0.7) mmol/L 
obtained from a previous study and accepted for a group 
of subjects without diabetes (39). Additional 43 subjects 
were included in the patient group to cover for possible 
allele frequency deviation associated with the disease (40).

Laboratory assays

Blood samples of the people with and without diabetes 
were collected during 2012–2015 on a regular weekday 
morning after an overnight fast during an outpatient 
visit to local hospital laboratories or primary care centers 
in Moscow (Russia) and immediately delivered to the 
Moscow Diagnostic and Clinical Center #1. The samples 
were analyzed for fasting plasma glucose (FPG), glycated 
hemoglobin A1 (HbA1c), total cholesterol, low- and high-
density lipoprotein-cholesterol (direct measurements), 
triglycerides, plasma creatinine, total bilirubin, total 
protein, aspartate transaminase, and alanine transaminase  
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by standard laboratory methods using commercially 
available kits (Olympus and Siemens, Germany; BioSystems 
S.A., Barcelona, Spain) and automatic analyzers (ADVIA 
2400 Clinical Chemistry System, Siemens Healthcare 
GmbH, Erlangen, Germany and Olympus AU5800/2700, 
Olympus Diagnostica GmbH, Hamburg, Germany).

Genetic analysis

Total genomic DNA was extracted from peripheral blood 
leukocytes and assessed as described in detail elsewhere 
(41). In particular, SNP genotyping of PGC1A (Gly482Ser, 
rs8192678, G > A nucleotide change) and DRD2/ANKK1 
(TaqIA, rs18000497, A1-T, and A2-C nucleotide change) was 
performed by the real-time PCR method using a TaqMan 
(hydrolysis) probe-based assay (Thermocycler DT-322; 
DNA-Technology, Russia) or using 2% agarose gels with 
a 100-bp DNA Ladder (SibEnzyme Ltd, Russia) and a gel 
imaging system for genotyping ACE (insertion/deletion, I/D) 
polymorphisms in intron 16 (42). The end-point readings 
were analyzed according to the manufacturer’s instructions. 
One-third of the samples of patients and healthy subjects 
was randomly processed in duplicate for each genotype 
analysis to protect the study against genotyping errors. 
Genotype data were obtained in 98.7–100% of the DNA 
samples with a genotype error rate of 0.0%.

Data analyses

Descriptive and inferential analyses were performed 
by SPSS (SPSS Science, Chicago, IL) using Pearson 

product–moment correlation and General Linear Models 
by Type III method (GLM) to evaluate significance of 
multivariate and univariate effects and bootstrapped 
confidential intervals (CIs) of regression estimates. Bias-
corrected and accelerated bootstrap procedure with 1000 
bootstrap replications of regression coefficients was used 
to derive their nonparametric 95% CIs from empirical 
sampling distribution. The bootstrap procedure was 
considered as a robust alternative to inference based on 
parametric assumptions (such as normally distributed 
errors) to confirm or validate findings obtained by 
parametric analyses, and is recommended for reporting 
inferences in scientific reports (43). Differences at P < 0.05 
were regarded as significant for parametric analyses. 
Parameter estimates are expressed as nonstandardized 
(B) regression coefficients and their standard errors (s.e.) 
or as means (M) and their standard deviations (s.d.). 
Where necessary, a partial η2 was reported as a measure of 
strength of association (effect size), which is comparable 
to R2 expressing the percentage of explained variance. Sex 
and age were included in all models to adjust effects for 
these factors. As the distribution of age was skewed, its 
common logarithm (log10) was used.

The GLM procedure was conducted with two 
measures of glycemia, FPG and HbA1c, treated as 
continuous dependent variables representing multiple 
measurements of the same process to test the hypothesis 
that both together are affected by gene polymorphisms. 
All multivariate F values were obtained by Pillai’s 
trace statistic, which is equivalent to partial η2 and R2 

Table 1  Demographic and laboratory characteristics of the samplesa

Groups Diabetes Control

Characteristics Mean (s.d.) Mean (s.d.)

N 103 60
Sex, male/female 30/73 18/42
Age (years) 65.7 (11.2)b 53.8 (16.2)
Fasting plasma glucose (FPG, mmol/L) 8.99 (3.08)b 4.76 (0.59)
Glycated hemoglobin (HbA1c,%) 8.4 (3.9)b 5.3 (2.6)
Glycated hemoglobin (HbA1c, mmol/mol) 68.1 (19.1)b 34.4 (4.5)
Creatinine (μmol/l) 101.3 (39.4) 97.9 (11.5)
Total protein (g/L) 71.4 (4.2) 73.1 (2.7)
Total cholesterol (Chol, mmol/L) 5.24 (1.05)b 5.94 (1.40)
Triglyceride (TG, mmol/L) 2.15 (1.48)d 1.74 (0.85)
High-density lipoprotein (HDL, mmol/L) 1.26 (0.30)d 1.36 (0.37)
Low-density lipoprotein (LDL, mmol/L) 2.84 (0.81) 2.78 (0.96)
Alanine transaminase (ALT, IU/L) 29.7 (20.8)c 20.7 (9.0)
Aspartate transaminase (AST, IU/L) 24.8 (11.1) 23.8 (5.5)
Total bilirubin (μmol/l) 11.2 (4.8) 11.8 (5.2)

aMeans and comparisons; comparisons for metabolic data are presented after adjustment for age and sex (analysis 
of covariance).
bP < 0.001; cP < 0.005; dP < 0.05.
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measures of effect size, and tolerant of the violation of 
homogeneity of variance–covariance matrices. If the 
overall multivariate test achieved (< 0.05) or approached 
significance (< 0.10) for a particular gene polymorphism 
effect, the regression estimates of each of the two 
glycemic measures were inspected to identify the specific 
dependent variable (FPG or/and HbA1c) that contributed 
to the overall effect. Final inferences of significance of 
the effects and relationships were based on results of 
the bootstrap nonparametric procedure. Differences in 
proportions and Hardy–Weinberg equilibrium (HWE) 
were assessed by Fisher’s exact test.

Results

Table 1 lists the values of demographic and metabolic 
parameters separately for patients with diabetes and 
control participants. Patients in diabetes group were 
significantly older and had significantly higher values 
of FPG, HbA1c, triglycerides, and alanine transaminase, 
but lower values of total and high-density lipoprotein 
cholesterols than controls. FPG weakly correlated with 
HbA1c in diabetes and control groups (r = 0.35 and 0.22, 
P < 0.001 and 0.10, respectively). There were no significant 
differences among the groups in sex, creatinine, total 
protein, low-density lipoprotein cholesterol, aspartate 
transaminase, and total bilirubin.

Hardy–Weinberg equilibrium test

Distribution of DRD2/ANKK1 genotype in diabetes 
group, ACE and PGC1A genotypes in control group 
(P < 0.01, 0.005, and 0.05, respectively), and all three 
genetic loci in the total sample (P < 0.05) was significantly 
different from the expectations of HWE. Although, in 
principle, genotyping errors may be responsible for 
the observed statistically significant deviations from 
HWE, this was unlikely for these samples because 
double scoring and duplicate genotyping in randomly 
selected subsets of 30% individuals confirmed the 
results for each locus. Therefore, the probable reason 
for the departure of observed genotype frequencies 
for the three loci is not genotyping error but the 

Table 2  Genotype frequencies of studied loci in patients with 

diabetes and controls without diabetes

Groups Diabetes Control

Genetic loci % (N)a % (N)a

DRD2/ANKK1 TaqIA (C32806T, rs1800497) polymorphism
CC(A2A2) 64 (66) 61 (36)
CT(A2A1) 26 (27) 34 (20)
TT(A1A1) 10 (10) 5 (3)
ACE (I/D) polymorphism
DD 32 (33) 47 (28)
ID 41 (42) 28 (17)
II 27 (28) 25 (15)
PGC1A (Gly482Ser, rs8192678) polymorphismb

GG 56 (58) 41 (24)
GA 36 (37) 35 (21)
AA 8 (8) 24 (14)

aNumbers of individuals vary between different loci due to missing 
genotypes in some subjects.
bFisher’s exact P < 0.05 between the groups.

Table 3  Main effects of polymorphisms of the dopamine D2 receptor (DRD2/ANKK1), angiotensin 1 converting enzyme (ACE), and 

peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1A) genes on glycemic parameters: fasting plasma 

glucose (FPG) and glycated hemoglobin A1 (HbA1c) in the total group (univariate analyses)

    Dependent variablesb Parameter estimatesc

Independent variables FPG (mmol/L) HbA1c (%) HbA1c (mmol/mol) Total group (N = 163)

Genes Allelesa M (s.d.) M (s.d.) M (s.d.) B (s.e.) t (P) η2 Bootstrap 95% CI

Model 1
DRD2/ANKK1 A2 carriers 7.52 (3.25) 7.2 (4.2) 54.7 (22.1) ‒13.9 (6.38) ‒2.17 (0.031) 0.03 ‒27.1 ‒1.63

non-A2 carriers 7.98 (2.99) 8.4 (4.6) 68.5 (27.2) ‒0.45 (0.93) ‒0.49 (0.626) 0.00 ‒2.09 1.07
Model 2
ACE D carriers 7.77 (3.45) 7.4 (4.3) 56.9 (23.6) 5.13 (3.92) 1.31 (0.193) 0.01 ‒2.81 12.52

non-D carriers 6.94 (2.42) 6.9 (3.9) 51.8 (18.8) 0.83 (0.57) 1.46 (0.147) 0.01 ‒0.25 1.93
Model 3
PGC1A G carriers 7.79 (3.22) 7.4 (4.3) 57.9 (23.3) 21.4 (9.75) 2.19 (0.030) 0.03 10.9 31.8

non-G carriers 6.20 (3.13) 6.1 (3.6) 42.7 (15.5) 2.72 (1.41) 1.93 (0.055) 0.02 1.29 4.00

aA2 allele carriers of DRD2/ANKK1: A2A2 & A2A1 genotypes, non-A2 allele carriers: A1A1 genotype; D allele carriers of ACE: DD & ID genotypes, non-D 
allele carriers of ACE: II genotype; G allele carriers of PGC1A: GG & GA genotypes, non-G allele carriers of PGC1A: AA genotype.
bFonts of dependent variables correspond to fonts of means (s.d.s) and respective effects.
cAll data are adjusted for age and sex.
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association of loci with disease and/or population 
stratification (e.g., intensive multiethnic migration, 
generations overlapping, and unequal sex ratio (M < F) 
in this region). More importantly, in contrast to case–
control (i.e., gene–disease association) studies, the 
expected inferences on quantitative association of the 
polymorphisms with FPG and HbA1c phenotypes or its 
lack should remain valid and be independent of the 
fact that these polymorphisms in the type 2 diabetes or 
control individuals are not in HWE (44).

Significant simple and interaction effects of ACE 
and PGC1A polymorphisms and interaction effect of 
Sex*DRD2/ANKK1 genotype on age in the total sample 
confirmed the assumption of generations overlapping 
as a probable cause violating HWE in this study. The 
presence of the PGC1A gene GG genotype and the ACE 
I allele each separately increased the odds of surviving 
to older age (Fs(1,159) = 4.96 and 4.16, P = 0.027 and 
0.043; η2 = 0.03 and 0.03, respectively, after adjustment 
for Sex; confirmed by bootstrap 95% CIs: 0.01–0.08 and 
0.004 – 0.08, respectively). However, association of the 
presence of the PGC1A A allele with the ACE gene DD 
genotype significantly increased the risk of not surviving 
to older age (F(1,158) = 4.46, P = 0.036; η2 = 0.03, after 
adjustment for Sex; confirmed by bootstrap 95% 
CI: 0.01 – 0.15). Women with DRD2/ANKK1 gene A2A2 
genotype and men with DRD2/ANKK1 A1 allele had 
higher odds to survive to older age (F(1,157) = 4.37, 
P = 0.038; η2 = 0.03; confirmed by bootstrap 95%  
CI: 0.02 – 0.18).

Genotype distribution

Compared with the control group, the frequency of the 
G allele polymorphism of PGC1A gene was significantly 
higher, but the frequency of the PGC1A AA genotype 
was lower in the diabetes group (Table 2). No evidence of 
differences between the groups was found in genotype or 
allele frequency of the other two genetic polymorphisms.

Levels of FPG and HbA1c in different genotypes

Multivariate test found that DRD2/ANKK1 and PGC1A, but 
not ACE allele polymorphism, significantly determined 
the fluctuation of glycemic status in the total group 
(Pillai’s traces = 0.04 (0.03), 0.05 (0.04), and 0.01 (0.01); 
Fs(2) = 3.57 (2.75), 3.64 (3.03), and 0.61 (1.15); p = 0.030 
(0.067), 0.028 (0.051), and 0.546 (0.321), respectively; 
data in square brackets here and further are unadjusted). 
HbA1c, but not FPG, levels were significantly higher in 
non-A2 allele carriers of DRD2/ANKK1 (A1A1 genotype) 
compared with subjects with A2A2 & A2A1 genotypes, 
but both HbA1c and FPG levels were higher in G allele  
carriers of PGC1A (GG & GA genotypes) compared with 
subjects with AA genotype (Table 3).

Multivariate test found that DRD2/ANKK1 and 
ACE, but not PGC1A, allele polymorphism significantly 
determined the fluctuation of glycemic status in patients 
with diabetes (Pillai’s traces = 0.06 (0.04), 0.11 (0.07), 
and 0.01 (0.01); Fs(2) = 3.15 (2.04), 5.82 (3.64), and 0.67 
(0.49); P = 0.047 (0.135), 0.004 (0.030), and 0.514 (0.617), 

Table 4  Main effects of polymorphisms of the dopamine D2 receptor (DRD2/ANKK1), angiotensin 1 converting enzyme (ACE), 

and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1A) genes on glycemic parameters: fasting 

plasma glucose (FPG) and glycated hemoglobin A1 (HbA1c) in the diabetes group (univariate analyses)

    Dependent variablesb Parameter estimatesc

Independent variables FPG (mmol/L) HbA1c (%) HbA1c (mmol/mol) Diabetes group (N = 103)

Genes Allelesa M (s.d.) M (s.d.) M (s.d.) B (s.e.) t (p) η2 Bootstrap 95% CI

Model 1
DRD2/ANKK1 A2 carriers 9.01 (3.13) 8.2 (3.9) 65.8 (19.0) ‒13.6 (6.1) ‒2.22 (0.029) 0.05 ‒25.0 ‒1.50

non-A2 carriers 9.10 (2.53) 9.4 (4.0) 79.4 (20.5) ‒0.10 (0.99) ‒0.10 (0.921) 0.00 ‒1.84 1.51
Model 2
ACE D carriers 9.49 (3.27) 8.6 (3.9) 70.3 (19.4) 11.7 (4.0) 2.89 (0.005) 0.08 4.22 18.61

non-D carriers 7.61 (2.25) 7.5 (3.7) 58.7 (16.8) 1.88 (0.65) 2.89 (0.005) 0.08 0.63 3.20
Model 3
PGC1A G carriers 8.95 (3.00) 8.3 (3.8) 67.6 (18.4) 6.99 (6.97) 1.00 (0.318) 0.01 ‒3.42 17.23

non-G carriers 9.25 (2.28) 7.7 (4.2) 60.6 (22.1) ‒0.31 (1.11) -0.28 (0.781) 0.00 ‒3.29 2.65

aA2 allele carriers of DRD2/ANKK1: A2A2 & A2A1 genotypes, non-A2 allele carriers: A1A1 genotype; D allele carriers of ACE: DD & ID genotypes,  
non-D allele carriers of ACE: II genotype; G allele carriers of PGC1A: GG & GA genotypes, non-G allele carriers of PGC1A: AA genotype
bFonts of dependent variables correspond to the fonts of means (s.d.s) and respective effects.
cAll data are adjusted for age and sex.
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respectively). HbA1c, but not FPG, levels were significantly 
higher in non-A2 allele carriers of DRD2/ANKK1 (A1A1 
genotype) compared with subjects with A2A2 & A2A1 
genotypes, but both HbA1c and FPG levels were higher in 
D allele carriers of ACE (DD & ID genotypes) compared 
with subjects with II genotype (Table 4).

The multivariate test found that only the PGC1A allele 
polymorphism determined the fluctuation of glycemic 
status in the control group (Pillai’s trace = 0.09 (0.10); 
F(2) = 2.53 (2.89); P = 0.089 (0.064)). FPG, but not HbA1c, 
levels were significantly higher in non-G allele carriers of 
PGC1A (AA genotype) compared with subjects with GG 
& GA genotypes (Ms(s.d.s) = 5.03(0.65) and 4.64(0.49); 
B(s.e.) = –0.34(0.15), t(p) = –2.21(0.031), η2 = 0.08, bootstrap 
95% CI: –0.63 to –0.03). No evidence for significant 
interaction effects on glycemic status was obtained for sex 
in the main analyses.

Discussion

Although the distributions of all three genetic loci in 
the total sample were significantly different from the 
expectations of HWE, our additional findings attribute 
this departure to the association of polymorphisms 
with generations overlapping and the rate of surviving 
to old age. This is consistent with the genetic models 
of morbidity and mortality protection effects of PGC1A 
gene GG genotype (due to chronic stress resilience effect 
of high PGC1A expression), ACE I allele (due to acute 
stress resilience effect of lower serum ACE activity), and 
DRD2/ANKK1 gene polymorphism depending on sex 
(due to stress resilience effects of dopamine binding in 
the striatum in females with lower and males with higher 
sensitivity to motivational/reward factors) (45, 46, 47, 48, 
49, 50). The main findings of quantitative associations of 
the polymorphisms with FPG and HbA1c phenotypes or 
their lack are independent of these deviations (44).

This study confirmed that fasting plasma glucose 
and glycated hemoglobin are weakly correlated in 
diabetes and nondiabetes groups. DRD2/ANKK1 allele 
polymorphism determined an uncorrelated part of 
variations of glycated hemoglobin in the total and 
clinical groups. This corresponds to the hypothesis that 
people with high baseline levels of cortical arousal that 
claim extensive energy delivery for mental processes (e.g., 
ruminations) are at higher risk for the transition of glucose 
regulation mechanism from normal to abnormal and for 
the development of more severe type 2 diabetes (A1A1 
genotype) compared with people with low baseline levels 
of cortical arousal prone to novelty- or sensation-seeking 

behaviors (A2 allele carriers). Indeed A1A1 genotype 
determines reduced D2 receptor density and binding, but 
increased baseline dopamine neuron activity associated 
behaviorally with high harm avoidance and low novelty 
seeking behaviors (51). It suggests that if cognitive activity 
decreases in these people for a long time, the oversupply 
of glucose is left unclaimed and this increases the risk for 
diabetes and its higher severity.

In this study, the frequencies of PGC1A GG and GA 
genotypes were significantly higher in the diabetes group 
compared with the control group and this difference 
was confirmed by the higher glycemic status in general 
(higher levels of both fasting plasma glucose and glycated 
hemoglobin) in PGC1A G-allele carriers compared 
with AA genotype in total group. Thus, PGC1A allele 
polymorphism determined a correlated part of variations 
of fasting plasma glucose and glycated hemoglobin in the 
total group. However, this PGC1A effect on total glycemic 
status was only related to the risk for the transition of 
glucose regulation mechanism from normal to abnormal, 
because PGC1A GG and GA genotypes determine a lower 
fasting plasma glucose level uncorrelated with glycated 
hemoglobin level in a nondiabetic control group. These 
opposite relationships between PGC1A polymorphism 
and fasting plasma glucose may potentially cancel each 
other out if assessed in mixed populations (52). This 
finding corresponds with a potential role of PGC1A as 
a protective factor or a mediator of disease progression 
depending on affected tissues. AA genotype was found 
to determine reduced activity of PGC1A compared with 
GG and GA genotypes (53). Thus, higher levels of PGC1A 
determined by PGC1A GG and GA genotypes were found 
to be associated with higher fasting plasma glucose and 
glycated hemoglobin levels in diabetic patients included 
in this study. Indeed, it is known that PGC1A activity is 
strongly activated in the liver and pancreatic β-cells of 
the subjects with obesity and type 2 diabetes (29). This 
could potentially contribute to increased hepatic glucose 
production which in turn would contribute to the higher 
hyperglycemia in patients with type 2 diabetes included in 
this study. However, overexpression of PGC1A in skeletal 
muscle results in increased glucose uptake by this tissue 
(29). This can contribute to reducing plasma glucose levels 
found in nondiabetic subjects with PGC1A GG and GA 
genotypes. Thus regularly active muscles due to exercises 
recommended in the STOP-NIDDM trial become a main 
protective or resilience factor against the development of 
insulin resistance and type 2 diabetes only in people with 
PGC1A GG genotype in contrast to those with PGC1A 
AA genotype shown sensitive in the same trial only to  
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glucose-reducing treatment by acarbose (52). It suggests 
that if muscle activity decreases in the former group of 
people, the overexpression of PGC1A in the liver and 
the pancreatic β-cells becomes dominant in the effect on 
plasma glucose level and this increases the risk for diabetes.

Other findings indicated that ACE gene deletion 
polymorphism was associated with the glycemic status 
indicated by correlated glycated hemoglobin and plasma 
glucose levels with higher values in ACE DD and ID 
genotypes compared with subjects with II genotype only 
in diabetic patients. It corresponds with some reports that 
found no evidence of ACE polymorphism as a risk factor 
for the development of type 2 diabetes (42), but as a risk 
factor for more complicated or severe type 2 diabetes (54). 
The presence of ACE D allele determines higher ACE levels 
and thus higher vascular resistance with decreasing tissue 
delivery of glucose. The high vascular resistance together 
with poor glycemic control (i.e., both high plasma glucose 
and glycated hemoglobin levels) may increases the risk for 
atherosclerosis (55).

Therefore, the findings suggest that adopting a healthy 
lifestyle with more intensive cognitive or more intensive 
physical activity may have a protective (resilience) effect 
against the development of two different subtypes of type 
2 diabetes in susceptible individuals, who are genetically 
predisposed to more intensive energy supply for respective 
brain or muscle activity. The interventions for increasing 
cognitive activity or decreasing vascular resistance may 
further protect against complications in patients with 
these two cortical or metabolic/vascular subtypes of type 2 
diabetes. This further suggests that the metabolic/vascular 
pathway in the development of diabetes and its severity 
may be associated with ‘lazy’ muscles determining a 
concordant increase in glycated hemoglobin and fasting 
plasma glucose levels. ‘Cortical arousal’ mechanism of the 
development of type 2 diabetes may be associated with 
‘idled’ brain determining an isolated increase in glycated 
hemoglobin level without a significant effect on fasting 
plasma glucose. Thus, both glycated hemoglobin and 
fasting plasma glucose should be evaluated to indicate 
principal pathogenetic differences in the development of 
type 2 diabetes for its correct treatment and prevention.

The main limitation of this study is the relatively small 
sample size. However, according to the power analysis, 
larger sample sizes would be relevant in the case of gene 
polymorphisms for which effects were not expected to show 
evidence of practical importance or statistical significance 
to avoid type II (‘false-negative’) errors. The study’s results 
confirm that the present sample size had enough power 
to demonstrate the predicted effects in order to support 

the main hypothesis. However, further validation of these 
findings in a larger population involving other factors 
modifying these and other related gene expressions is 
required. Modification of detected significant effects 
by variations in glycemic control and DNA, mRNA and 
protein expressions as well as polymorphisms of other 
genes with the same effects on glycated hemoglobin and 
fasting plasma glucose levels can explain weak effect 
sizes obtained in the study. This study was conducted to 
obtain proof-of-concept where genome-wide association 
research is methodologically ineffective. Future research 
should support the concept with respect to other genetic, 
epigenetic, and proteomic factors. These factors should 
increase explained variance or effect size of both pathogenic 
mechanisms and thus demonstrate clinical importance of 
the two subtypes of type 2 diabetes and that both glycemic 
parameters are not interchangeable as indicators since they 
contribute unique information in its pathogenesis. This 
consideration should hold expert committees in diabetes 
from precipitate revisions of the diagnostic criteria for 
diabetes in favor of either indicator as more reliable (2). 
Clinical trials would demonstrate a beneficial effect of 
different cognitively or physically oriented lifestyles in 
individuals with different susceptibility to hyperglycemic 
effects of the decrease in brain or muscle activity.
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