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Abstract: Resveratrol (3,5,4′-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present
in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and
in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and
neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively
metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its
lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption,
membrane transport, and its poor bioavailability, various methodological approaches and different
synthetic derivatives have been developed. In this review, we will describe the strategies used to
improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological
approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions,
micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the
biological results obtained on several synthetic derivatives containing different substituents, such
as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described.
Results reported in the literature are encouraging but require additional in vivo studies, to support
clinical applications.
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1. Health Beneficial Effects of Resveratrol (RSV)

Natural products have recently aroused interest within the scientific community for their
beneficial effects on several diseases. Preclinical, clinical, and epidemiological studies have shown that
consumption of polyphenols contained in cereals, legumes, vegetables, and fruit at high levels, prevents
various diseases, including cancer. The most promising candidate is resveratrol (RSV), a natural
nonflavonoid polyphenol found in numerous plant species, in particular in grapes, blueberries, and
peanuts [1]. RSV or 3,5,4′-trihydroxystilbene consists of two aromatic rings that are connected through
a methylenic bridge (Figure 1). It exists as two geometrical isomers—the trans-RSV form (Figure 1B)
and the cis-form—the first having the greater stability and biological activity and the second being less
active (Figure 1A). The last form arises from isomerization of the trans-form following the breakdown
of the RSV molecule due to the action of UV light during the fermentation of grape skins or under
high pH conditions [2].
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The increased interest for this compound is based on epidemiological studies showing an inverse
relationship between moderate consumption of wine and cardiovascular diseases (the so-called
“French paradox”) [3] and on in vitro and in vivo studies demonstrating RSV beneficial effects
on human health [4]. Several reports evidenced RSV effectiveness on various diseases such as
diabetes mellitus, metabolic syndrome, obesity, inflammation, cardiovascular, neurodegenerative,
and age-related diseases, as well as cancer [5]. Although the mechanisms by which RSV exerts
its beneficial effects have not yet been fully elucidated, it has been reported that it displays
antioxidant, anti-inflammatory, cardioprotective, neuroprotective, and antitumor actions (see Table 1
for summary data).

It is known that polyphenols exert antioxidant effects related to the presence of hydroxylic groups
which participate in mechanisms aimed to decrease reactive oxygen species (ROS) and free radicals
and to increase endogenous antioxidants biosynthesis [6]. RSV antioxidant properties have been
attributed to its capability to reduce copper-catalyzed oxidation [7] and inhibit lipid peroxidation of
low density lipoproteins (LDL) [8] and cellular membranes [9]. Other studies demonstrated that RSV
decreases intracellular concentration of apolipoprotein B (ApoB), cholesterol esters, and triglyceride
secretion rate, thus protecting against atherosclerosis [10]. RSV anti-inflammatory effects are mainly
due to the inhibition of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and 5-lipoxygenase
catalytic activity, and consequent suppression of prostaglandins, thromboxanes, and leukotriene
formation [11]. It has been observed how this compound attenuated macrophage/mast cell-derived
proinflammatory factors such as platelet-activating factor (PAF), tumor necrosis factor-α (TNF-α),
and histamine [12]. In addition, RSV is able to inhibit chemotactic factors formation and platelet
aggregation [13] supporting cardioprotective effects [14]. It has been reported that it determines an
increase in the expression of endothelium nitric synthase (eNOS) and in the synthesis of nitric oxide
(NO) restoring the endothelial dysfunction [15]. Furthermore, RSV has neuroprotective activity, as
evidenced by its capability to improve cellular stress resistance and longevity, by increasing the
activity of SIRT1 [16]: a member of the sirtuins family, comprising proteins that possess either
mono-ADP-ribosyltransferase or deacetylase activity [17]. Moreover, it has been observed that
RSV-induced SIRT1 activity, through disruption of the Toll-like receptor 4/nuclear factor κ-light-chain
enhancer of activated B cells/signal transducer and activator of transcription (TLR4/NF-κB/STAT)
signaling, reduces cytokines production in activated microglia [18]. In particular, RSV displays
important neuroprotective effects on animal models with Parkinson’s disease and prevents free
radical-mediated damage of neuronal cells through the activation of SIRT1 pathway [19].

On the other hand, it has been demonstrated that RSV possesses cancer chemopreventive and
chemotherapeutic activity [4]. RSV chemopreventive effects are attributed mainly to the inhibition of
cyclooxygenases [20,21], NF-κB [22], kinases such as protein kinase C [23] or reduced cytochrome P450,
family 1, and member A1 and B1 (CYP1A1 and CYP1B1) gene expression [24]. CYP1A1 and CYP1B1
genes encode for enzymes that play a central role in metabolic activation of several procarcinogens
and in the detoxification from different xenobiotic compounds [25]. Antitumor properties of RSV
were demonstrated in vitro in several tumors [26] including lymphoblastic leukemia [27], colon [28],
pancreatic [29], melanoma [30], gastric [31], cervical [32], ovarian [33], endometrial [34], liver [35],
prostate [36], and breast [37]. These properties are mainly due to its proapoptotic and antiproliferative
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actions. Furthermore, RSV increases the efficacy of traditional chemotherapy and radiotherapy
decreasing resistance and sensitizing tumor cells to chemotherapeutic agents [38]. Moreover, preclinical
in vivo studies [39] and clinical trials confirmed its relevant antitumor actions [38,40–42].

Table 1. Principal mechanisms through which resveratrol exerts its biological effects.

Biological Effects Mechanisms References

Antioxidant

Decrease of ROS and free radicals; increase of endogenous antioxidant biosynthesis [6]

Reduction of copper-catalyzed oxidation [7]

Inhibition of LDL peroxidation [8]

Inhibition of membrane lipids peroxidation [9]

Decrease of intracellular concentration of ApoB, cholesterol esters and triglycerides secretion rate [10]

Anti-Inflammatory
Inhibition of COX-1, COX-2, and 5-lipoxygenase catalytic activity [11]

Inhibition of PAF, TNF-α, and histamine [12]

Cardioprotective
Inhibition of chemotactic factors formation and platelet aggregation [13,14]

Increase of eNOS expression and NO synthesis [15]

Neuroprotective

Increase of SIRT1 activity [16]

Reduction of cytokines production in activated microglia [18]

Prevention of free radical-mediated damage through SIRT1 pathway activation [19]

Antitumor

Inhibition of

Cyclooxygenases [20,21]

NF-κB [22]

Kinases such as protein kinase C [23]

CYPA1 and CYPB1 [24]

Apoptosis induction and proliferation inhibition in several tumors: [26]

Lymphoblastic leukemia [27]

Colon [28]

Pancreatic [29]

Melanoma [30]

Gastric [31]

Cervical [32]

Ovarian [33]

Endometrial [34]

Liver [35]

Prostate [36]

Breast [37]

2. Pharmacokinetic Characteristics of RSV

Although several reports confirmed that RSV possesses health beneficial effects, this compound
shows peculiar pharmacokinetic characteristics that limit its use. In mammals, RSV is extensively
metabolized and rapidly eliminated and therefore it shows a poor bioavailability [43,44]. After oral
administration, RSV is absorbed at the intestinal level by passive diffusion or by membrane transporters
and then released in the bloodstream where it can be detected as unmodified or metabolized
molecule [45]. In fact, in the intestine, this compound undergoes a presystemic metabolism through
first-pass glucuronidation and sulfate conjugation of the phenolic groups and hydrogenation of the
aliphatic double bond [45]. In the bloodstream, RSV can bind to albumin and lipoproteins, such as
LDL, thus forming complexes which, in turn, can be dissociated at the cellular membrane where
albumin and LDL interact with the relative receptors allowing RSV entrance into cells [46]. Phase II
metabolism of RSV and its metabolites occurs in the liver. Five different metabolites were detected in
the urine: RSV monosulfate, two isomeric forms of RSV monoglucuronide, monosulfate dihydro-RSV,
and monoglucuronide dihydro-RSV [45,47]. It has been reported that the majority of plasma RSV
metabolites are RSV-3-O-sulfate, RSV-4′-O-glucuronide, and RSV-3-O-glucuronide, all with very little
bioactivity, even if RSV-3-O-sulfate possesses estrogen receptor α-preferential antagonistic activity [48].
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Moreover, extremely rapid sulfate conjugation by the intestine/liver appears to be the rate-limiting
step in RSV bioavailability [44]. It has been demonstrated that both sulfates and glucuronides can be
converted to RSV in target tissues such as liver [49]. In addition, RSV metabolites undergo enterohepatic
recirculation, which allows its deconjugation in the small intestine and reabsorption [50].

Although RSV is quickly metabolized, oral administration is the preferred and only viable route,
except for topical application. It is known that plasma concentration of the unchanged RSV depends
on the dosages ingested. Several preclinical studies aimed to determine the appropriate RSV oral
dosage and bioavailability in humans [51,52]. It has been demonstrated that oral dose of 25 mg of RSV
resulted in plasma concentration for unchanged RSV in the range of 1 to 5 ng/mL [44]. Administration
of higher doses (up to 5 g) led to the increase of unchanged RSV up to 530 ng/mL, indicating how
after a high RSV dose only a low amount of the unchanged RSV is present in the plasma [53]. Even if
RSV seems to be well tolerated and safe, administration of higher oral doses does not allow to improve
therapeutic effects [53], but, instead, may be the cause of the side effects observed at the dose of 1 g/kg
(body weight) including diarrhea, nausea, and abdominal pain [51]. Therefore, based on the findings
from clinical studies, it appears that the main obstacle that must be overcome to consider RSV as a
therapeutic agent is its low bioavailability [54]. For this reason, the researches focused on improving
pharmacokinetic profile of RSV.

3. Methodological Approaches to Improve RSV Oral Bioavailability

The Biopharmaceutics Classification System (BCS), as defined by Amidon et al. [55], inserts RSV
in the second class of drugs characterized by low water solubility (~30 mg/L) and high intestinal
membrane permeability [55,56]. This classification provides a theoretical basis to correlate in vitro
drug dissolution and in vivo bioavailability. Since RSV has a limited dissolution rate in the aqueous
environment, a small increase in solubility may significantly enhance its bioavailability [57]. In this
regard, a delivery system that can facilitate rapid absorption of a large amount of RSV, could effectively
increase its plasma concentration. In the last decade, in order to improve RSV’s poor bioavailability,
various methodological approaches have been developed. These include several delivery systems
such as the RSV encapsulation in lipid nanocarriers or liposomes, emulsions, micelles, insertion into
polymeric nanoparticles, solid dispersions, and nanocrystals (Figure 2).
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Encapsulation offers a potential approach for enhancing the RSV solubility, stabilizing it against
trans-to-cis isomerization and improving its bioavailability. This approach may potentially be used to
protect RSV from degradation and to control its release when orally administered [57]. Solid dispersion
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drug delivery systems are attractive as alternative solubilization methods because manipulating the
carriers and powder properties of the active components can improve the solubility, dissolution,
and even in vivo absorption of the active components [58–60]. Furthermore, nanonization of the
drug particles producing nanocrystals represents a very promising strategy that improves solubility,
dissolution rate of insoluble drugs, physical and chemical stability, compatibility in oral forms of
dosage, and oral bioavailability [61].

3.1. Lipid Nanocarriers and Liposomes

In order to increase the intestinal uptake of hydrophobic RSV, many lipid-based devices were
formulated. Nanoencapsulation of specific compounds in lipid nanocarriers or liposomes represents
a good strategy to significantly increase aqueous solubility and chemical stability. It has been
demonstrated that lipid nanoparticles act as a vehicle to enhance the oral bioavailability and therapeutic
potential of RSV [62,63] (Table 2).

Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been found to
protect the incorporated RSV from rapid metabolism, to increase its physical stability and to allow a
controlled release after uptake [62].

In the lipid-based encapsulation system, the presence of lipid itself could enhance the absorption
of lipophilic compound [64]. In particular, Basavaraj et al. demonstrated how RSV encapsulation
in a liposomal vehicle composed of phosphatidyl choline increases oral absorption of the native
unmetabolized compound [65]. Recently, biocompatible and biodegradable trans-RSV encapsulated
in lipid nanocarriers (RSV-nano) or liposomes (RSV-lipo) were synthesized and their cytotoxicity
and ability to release RSV in the cellular compartment were evaluated in 3T3-L1 fibroblasts [66].
Results confirmed that RSV-lipo have higher physical and chemical stability than RSV-nano, which,
however, displays a more prolonged release than RSV-lipo. Both RSV-nano and RSV-lipo increased
cellular RSV content in 3T3-L1 cells, but RSV-lipo has better biological activity due to its higher physical
and chemical stability at room temperature [66]. Overall, this study indicated how the lipid-based
encapsulation system can represent a good strategy to increase some pharmacokinetic parameters of
RSV with minimal side effects.

3.2. Nanoemulsions

Different oil/water (O/W) nanoemulsion-based delivery systems have been developed in order
to optimize the bioavailability of encapsulated RSV for potential oral administration (Table 2).
Sessa et al. demonstrated the ability of subcellular size nanoemulsions, produced by high pressure
homogenization (HPH), to protect RSV from chemical degradation, preventing oxidation reactions that
would lead to conversion into cis-form [67]. In another work, the same author, using human carcinoma
intestinal Caco-2 cell monolayers as model systems to simulate the intestinal epithelium, revealed that
nanoemulsions encapsulating RSV lack cytotoxicity. Furthermore, these formulations, particularly the
lecithin-based nanoemulsions, allow RSV delivery through cell monolayers avoiding its degradation
and ensuring sustained release [68]. It has been reported how the self-nanoemulsifying drug delivery
systems (SNEDDS) are excellent for delivering lipophilic compounds, based on good stability and
improved rate and extent of absorption. Yen et al. demonstrated how the SNEDDS for RSV not
only enhance its oral bioavailability but may also exert antifatigue effects in rats [69]. In particular,
pharmacokinetic studies revealed that oral bioavailability of the optimized RSV-SNEDDS increased
by 3.2-fold compared with the unformulated RSV-solution. The UDP-glucuronosyltransferase (UGT)
inhibitory excipient-based self-microemulsion (SME) represents a different system to increase RSV
oral bioavailability. In a recent study, a novel RSV-loaded SME using UGT inhibitory excipients
was prepared to inhibit intestinal metabolism [70]. Toxicity studies demonstrated that SME systems,
containing excipients with and without inhibitory activities, named SME1 and SME2, respectively,
displayed safety in Caco-2 cells. Moreover, both SME1 and SME2 conferred significantly higher RSV
uptake and sustained release than the free drug. In vivo data from rats demonstrated that SME1
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system increased oral RSV bioavailability compared to both RSV-free and SME2 through modulating
the glucuronidation by UGT inhibitory excipients [70].

3.3. Micelles

It has been reported that micellar solutions of bile acids can solubilize poorly soluble organic
compounds, improving their resorption [71] (Table 2). Atanacković et al. examined the ability of
different bile acids micellar solutions to make RSV more soluble. In addition, they evaluated cell
membrane toxicity degree by measuring the hemolytic potential [72]. Results from this study showed
that among the tested bile acids micellar solutions, those containing 3,7,12-triketocholic acids displayed
the smallest membranolytical potential and solubilized RSV more effectively [72]. A recent study
investigated the effect of micellar solubilization on the bioavailability of vineatrol30—a standardized
ethanolic extract of grapevine shoots, which contains RSV as well as considerable amounts of RSV
oligomers [73]. The study was carried out on twelve healthy volunteers (six women, six men) randomly
divided into two groups: one administered with a single dose of vineatrol30 in a powder formulation,
the other administered with vineatrol30 as a liquid micellar solution. The results showed that liquid
micellar solubilization significantly increased the oral bioavailability of RSV from vineatrol30 when
compared to the native powder, without producing side effects [73].

Another recent study [74] revealed that highly hydrated colloidal particles, such as β-casein
micelles, represent good oral carriers. Casein micellar-like forms are very effective in the encapsulation
of hydrophobic compounds [75]. In particular, it has been demonstrated that when casein nanoparticles
are administered orally to rats and reach gut epithelium surface they control the RSV release rate
and ameliorate its absorption and oral bioavailability (Table 2) [74]. Moreover, in the presence of
proteins, RSV would be more protected from trans-to-cis isomerization than in the free-form [76].
Results obtained from this study are very interesting because demonstrated a good correlation between
in vitro (release of RSV from nanoparticles) and in vivo (RSV plasmatic concentration) data.

3.4. Polymeric Nanoparticles

Among various nanoparticles (NPs)-based formulations prepared to enhance RSV delivery
some involve encapsulation into biodegradable polymeric NPs [77]. Poly(lactic-co-glycolic acid)
(PLGA) is used as the hydrophobic portion of polymeric NPs for a variety of biomedical delivery
systems and has the advantage of being biodegradable and biocompatible [78]. Recently, it has been
demonstrated that RSV-PLGA-NPs represent a stable drug delivery method because it is characterized
by small particle size, high capsulation efficiency, well-controlled drug release, enhanced chemical
stability, water solubility, and bioactivity (Table 2) [79]. The biological effects of polymeric PLGA
nanoparticles encapsulating RSV have been also evaluated in LNCaP prostate cancer cell line [80].
The study revealed that nanoparticles encapsulating RSV exerted greater cytotoxicity compared to
free RSV, at all tested concentrations. In addition, nanoparticles presented no cytotoxic effects on
murine macrophages suggesting the potential use of these RSV formulations for prostate cancer
chemoprevention and chemotherapy, without adverse effect on normal cells [80]. In another recent
work, oral bioavailability and the in vitro anti-inflammatory activity of RSV-loaded galactosylated
PLGA NPs (RSV-GNPs) have been investigated in rats and in lipopolysaccharide-induced RAW 264.7
macrophage cell line, respectively [81]. After oral administration, RSV-GNPs showed better oral
bioavailability compared to RSV. Similarly, in lipopolysaccharide-induced RAW 264.7 cells, RSV-GNPs
displayed greater anti-inflammatory activity [81]. These results confirmed that RSV-GNPs, increasing
RSV intestinal absorption and improving its bioavailability, might represent a valid therapeutic
approach against inflammatory disease.
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Table 2. Principal characteristics of resveratrol (RSV) delivery systems for improving its oral bioavailability. For some studies in the table the common pharmacokinetic
parameters of RSV are reported. SME-1 and -2: self-microemulsion containing excipients with or without inhibitory activities, respectively; AUC: area-under-curve;
Cmax: mean maximum concentration; (t1/2): elimination half-life; Tmax: time to maximum concentration.

Delivery System Models/Methods Used Results of Studies References

Lipid Nanocarriers or Liposomes

Solid lipid nanoparticles (SLNs) and
nanostructured lipid carriers

(NLCs)

In vitro release simulation studies in liquid dosage forms by cellulose
dialysis bag method and in gastrointestinal transit using gastric and

intestinal fluid; stability studies by measurements of particle size,
polydispersity index, and zeta potential.

Prolonged release over several hours for both nanosystems.
↑ Stability. [62]

Lipid nanocarriers (RSV-nano) or liposomes
(RSV-lipo) encapsulating RSV

In vitro release study by dialysis bag method; stability studies by
measurements of particle size, polydispersity index, and zeta potential;

studies on 3T3-L1 mouse adipocytes cell line

↑ Solubility and stability.
RSV-nano release more prolonged than RSV-lipo.

Biological activity: RSV-lipo > RSV-nano.
↑ Cellular content by both RSV-nano and RSV-lipo.

No cellular toxicity.

[66]

Nanoemulsions

Nanoemulsions encapsulating RSV
In vitro release study by dialysis bag method; stability studies by

measurements of droplet size and polydispersity index; studies on Caco-2
human intestinal cell line

↑ Solubility and stability.
Sustained release.

↑ Membrane passive transport and cellular uptake.
No cellular toxicity.

[68]

Self-nanoemulsifying drug delivery systems
(SNEDDS)

In vitro solubility studies in different solvents; stability studies by
measurements of droplet size, polydispersity index, and dispersibility test. ↑ Solubility and stability.

[69]

In vivo studies on Sprague-Dawley rats.

Improved in rate and extent of absorption.
↑ AUC (3.3-fold) and Cmax (2.2-fold) from SNEDDS.

The t1/2 and Tmax: RSV-SNEDDS = RSV-solution groups.
↑ Oral bioavailability (3.2-fold).

Antifatigue pharmacological effect in rats.

UDP-glucuronosyltransferase (UGT) inhibitory
excipient-based self-microemulsion (SME).

In vitro release study by dialysis bag method; stability studies by
measurements of particle size, polydispersity index and zeta potential;

studies on Caco-2 human intestinal cell line.

↑ Solubility and stability.
Sustained release in SME1 and SME2.

↑ Cellular uptake and transport.
No cellular toxicity.

[70]

In vivo studies on male Wistar rats.

↑ Intestinal permeability and lymphatic transport.
↑ AUC (11.52-fold) and Cmax. (19.14-fold) in rat plasma treated with SME1.

↑ AUC (1.95-fold) and Cmax. (5-fold) in rat plasma treated with SME2.
The t1/2 and Tmax: SME1= SM2= RSV free.

↑ Oral bioavailability in rat plasma treated with SME1 (76.1%) and SME2 (12.9%).

Micelles

Bile acids micellar solutions. In vitro solubility studies in buffer solutions of Na-salts of different bile
acids; studies on red blood cells from rabbit

↑ Solubility
Micellar solution of 3,7,12-triketocholic acids have lowest membranolytical

potential and biggest affinity for RSV solubilization.
[72]
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Table 2. Cont.

Delivery System Models/Methods Used Results of Studies References

Micellar solution of vineatrol30.

In vitro studies on Caco-2 human intestinal cell line. ↑ Permeability through the cell membrane.

[73]
In vivo studies on twelve healthy volunteers (six women and six men).

↓ Biotransformation during transit through the enterocytes.
↑ AUC (5-fold) and Cmax (10.6-fold) vs. vineatrol30, in all subjects.

↓ Tmax in all subjects.
↑ Urinary excretion (4.5-fold) vs. vineatrol30, in all subjects.

↑ Oral bioavailability (5- fold) vs. vineatrol30.

Casein nanoparticles encapsulating RSV

In vitro release study using simulated gastric (SGF) and intestinal (SIF)
fluids; stability studies by measurements of particle size, polydispersity

index and zeta potential.

Controlled release rate.
↑ Stability

[74]

In vivo studies on Male Wistar rats.

↑ Capability to reach the intestinal ephitelium
Promotion of RSV intestinal lymphatic transport.

↑ Absorption.
↑ AUC (9.8-fold) and Cmax (1.45-fold).

↑ t1/2 (9-fold) and Tmax (3- fold).
↑ Oral bioavailability (10- fold).

Polymeric Nanoparticles

RSV-poly(lactic-co-glycolic acid) (PLGA)
nanoparticles (RSV-PLGA-NPs).

In vitro release study by dialysis bag method; stability studies by
measurements of particle size, polydispersity index and zeta potential and

encapsulation efficiency; studies on HepG2 human hepatoma cell line.

↑ Solubility and stability.
↑ Encapsulation efficiency and drug loading for RSV.
Sustained and slow RSV release from RSV-PLGANPs.

↑ Cellular uptake.
↑RSV-PLGA-NPs bioactivity (lipogenesis reduction, lipolysis promotion and

hepatocellular proliferation reduction).

[79]

RSV-loaded galactosylated PLGA
nanoparticles (RSV-GNPs)

In vitro release study by dialysis bag method; stability studies by
measurements of particle size, polydispersity index, zeta potential and
encapsulation efficiency; studies on Caco-2 human intestinal cell line;

RAW 264.7 macrophage cell line.

Slower drug release in water.
↑ Stability and entrapment efficiency.

↑ Cellular uptake of RSV-GNPs.
↑ Bioactivity (anti-inflammatory efficacy). [81]

In vivo studies on Sprague-Dawley rats.
↑Permeability and intestinal absorption after oral administration.

↑ AUC (2-fold) and Cmax (1.8- fold).
↑ Oral bioavailability (2-fold).
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Table 2. Cont.

Delivery System Models/Methods Used Results of Studies References

Solid Dispersions

Solid dispersion of RSV on Magnesium
DiHydroxide (RSV@MDH)

In vitro solubility study by dissolution test in simulated gastric
environment. ↑ Solubility and dissolution rate.

[59]
In vivo studies on New Zealand White hybrid rabbits.

↑ In vivo absorption of RSV from RSV@MDH.
↑ AUC (3.3-fold) and Cmax (1.33-fold).

↑ Tmax (2-fold).
↑Oral bioavailability (3-fold).

GPEDP (grape peel extract-loaded dripping pill)
into a solid dispersion

In vitro solubility profile by HPLC; dissolution study by the paddle
method. ↑ Solubility and dissolution rate.

[58]

In vivo studies on Sprague-Dawley rats.
↑ Absorption (12-fold).

↑ AUC (1.92-fold) and Cmax (7-fold) vs. GPE.
↑ Oral bioavailability (12 fold higher) vs. GPE.

Nanocrystals

RSV nanocrystals (NCs)

In vitro dissolution study by dialysis bag diffusion method; stability
studies by measurements of particle size, polydispersity index, zeta

potential and drug content remained; studies on MDA-MB231 breast
cancer cell line.

↑ Solubility, stability and dissolution rate.
NCs enhanced the RSV delivery in the cells.

↑ RSV bioactivity in NCs form (cell cytotoxicity increase, cell cycle arrest, and
apoptosis induction). [61]

In vivo studies on Sprague-Dawley rats. ↑ Absorption and uptake across the intestinal barrier.
↑ AUC (3.5-fold) and Cmax (2.2-fold).
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3.5. Solid Dispersions

It has been reported how RSV solubility can also be enhanced by preparing a solid dispersion
of RSV on magnesium dihydroxide (RSV@MDH). Particularly, in a recent work, Spogli et al., using
the dissolution test in simulated gastric environment, demonstrated how RSV@MDH had higher
solubility compared to RSV alone. In addition, the oral administration of 50 mg/kg of RSV from
RSV@MDH in rabbits determined a 3-fold increase in RSV bioavailability (Table 2) [59]. Similar results
were obtained by incorporation of grape peel extract (GPE) into a solid dispersion delivery system
or dripping pill (DP) (GPEDP) oral delivery system and testing effects on rats [58]. Pharmacokinetic
profile analyses displayed increased RSV bioavailability more than 10-fold, suggesting how the DP
oral delivery system can represent a valid device for clinical applications [58].

3.6. Nanocrystals

Singh et al., using the probe sonication method, demonstrated how drug nanonization can
represent a valid approach in preparing nanocrystals (NCs) with physical and chemical stability, higher
dissolution profile, and then in vivo-enhanced oral bioavailability compared to RSV (Table 2) [61].
Particularly, the in vitro cellular efficacy against MDA-MB-231 breast cancer cells and in vivo
pharmacokinetic parameters of stable trans-RSV nanocrystals (t-RSV-NCs) have been evaluated [61].
In MDA-MB-231 cells, t-RSV-NCs displayed improved cytotoxicity compared to trans-RSV in a
concentration- and time-dependent manner. Furthermore, t-RSV-NCs were more effective in inhibiting
cell cycle arrest at the S phase and in inducing apoptosis than RSV [61]. In vivo pharmacokinetic
studies performed in Sprague-Dawley rats using trans-RSV and t-RSV-NCs, revealed that the plasma
concentration profile of t-RSV-NCs is enhanced compared to trans-RSV [61].

3.7. Limitations and Similarities of Different Methodological Approaches

As above-discussed, different strategies to increase RSV solubility have been developed. In vitro
studies demonstrated that the increase in RSV solubility determines a partial saturation of its
metabolism with consequent improvement of its bioavailability [82]. Growing evidences revealed that
encapsulation of RSV into solid lipid nanoparticles, liposomes, emulsions, or micelles, or insertion
into polymeric nanoparticles improves RSV absorption and stability [63,83]. However, the lipid-based
formulations showed several disadvantages. For instance, many have low solvent capacity, unless the
active components are highly lipophilic, and low stability of active components loaded in liposomal
and nanoparticle systems [84]. Furthermore, drug encapsulation in a lipid matrix reduces the drug
load capacity and, at the same time, increases its amount to achieve the therapeutic results desired [84].
Concerning to the use of nanoparticles as carriers, they have several drawbacks including the ability to
cross biological membranes, such as the blood–brain barrier, and any modification has to be carefully
evaluated because it could reduce their half-life due to the response of immune system in the liver
and spleen [85]. Solid dispersion drug delivery systems are attractive as alternative solubilization
methods because manipulating the carriers and powder properties of the active components can
improve the solubility, dissolution, and even in vivo absorption [60]. The bioavailability can be also
improved by controlling molecular weight, carrier composition or crystalline status, and powder
porosity of the active components [86]. However, the therapeutic application of the solid dispersions is
limited by the thermodynamic instability of the molecules in the amorphous state which leads to the
drug uncontrolled crystallization during storage. Compared to the above-mentioned methodological
approaches, drug nanonization to produce stable nanocrystals (NCs) represents a very promising
strategy that is able to improve the solubility and dissolution rate of insoluble drugs in water, physical
and chemical stability, compatibility in oral forms of dosage and, finally, in vivo oral bioavailability [61].
In addition, NCs present the advantages of simplest composition, lower manufacturing cost, and
excipient side effects [61,87]. However, due to the extremely high free surface energies, NCs undergo
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agglomeration; for this reason they require the use of stabilizers that can be adsorbed on the particle
surface to generate repulsive forces leading to the steric or electrostatic stabilization of formulation.

4. RSV Derivatives

Clinical trials emphasized potential drawbacks of RSV poor bioavailability [54,88]. Currently,
many studies have been performed to synthesize new and more powerful RSV analogs that display
better pharmacokinetic properties together with better biological activity than RSV. Several synthetic
approaches have been carried out to produce RSV derivatives structurally different for type, number,
and positions of substituents [89–91] (Figure 3). The presence of three free hydroxyl groups in the
backbone of RSV makes it susceptible to extensive phase-II conjugation reactions in vivo, which confers
its poor bioavailability [88].
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In the last years, methoxylated, hydroxylated, and halogenated RSV derivatives received more
attention for their beneficial biological effects and potential increased oral bioavailability [91] (Table 3).
Some of these possess a stronger pharmacological potency and have a better pharmacokinetic profile
than RSV itself.

Methoxylation increased metabolic stability and also the time length required to reach the plasma
concentration peak. Therefore, 3,4,5,4′-tetramethoxystilbene, administrated to mice, showed more
favorable pharmacokinetic properties than RSV, because it yielded higher levels of drug in the small
intestine, colon mucosae, and brain [92]. However, the oral bioavailability of the methoxylated
compounds depends on the positions of the methoxylic group [93]. In general, polyhydroxylated
derivatives containing less than three hydroxylic groups on the stilbene moiety exhibit very poor oral
bioavailability [94]. On the other hand, trans-3,5,2′,4′-tetrahydroxystilbene showed a faster absorption
rate than RSV because of better solubility due to the presence of one additional hydroxyl group [95].
Furthermore, the presence of halogen groups to the stilbene moiety, increases compound lipophilicity
and improves the oral bioavailability and therapeutic application of these compounds [96,97].

Table 3. Chemical structures of resveratrol derivatives tested in in vitro and/or in vivo models.

Resveratrol Derivatives References Resveratrol Derivatives References
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Table 3. Cont.

Resveratrol Derivatives References Resveratrol Derivatives References
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TMS) (3) 
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132]

trans-2,4,3′,4′,5′-pentamethoxystilbene (PMS) 

(4) 

[132–

136] 

trans-4,4′-dihydroxystilbene (DHS) (5) 

[94,137–

143]

Trans-3′,4′,3,5-tetrahydroxy-stilbene

(piceatannol) (6) 

[144–

165] 

3,3′,4,5,5′-pentahydroxy-trans-stilbene (PHS) (7) 

[166,167]

3,3′,4,4′,5,5′-hexahydroxystilbene (8) 

[168–

172] 

2,3-thiazolidin-4-one RSV derivatives (9) 

[173,174]

(E)-3,5-difluoro-4′-acetoxystilbene (10) 

[96] 

3,4,5-trimethoxy-4′-bromo-cis-stilbene (11) 

[175]

2,3-thiazolidin-4-one RSV derivatives (12) 

[173,17

6] 

4-(6-hydroxy-2-naphthalen-2-yl)-1,3-benzenediol 

(HS-1793) (13) 

[177,178]

[5-((E)-2-(3-(3,5-dihydroxy-4-(3-methylbut-2-

en-1-yl)phenyl)-2-(4- hydroxyphenyl)-2,3-

dihydrobenzofuran-5-yl)vinyl)-2-(3-

methylbut-2-en-1-yl)benzene-1,3-diol] (14) 

[179] 

[179]

O

HO

OH

OH

OH
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Table 3. Cont.

Resveratrol Derivatives References Resveratrol Derivatives References
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4.1. Methoxylated RSV Derivatives

Several reports indicate that substitution of hydroxylic with methoxylic groups on RSV
potentiates biological activity [98], improving antiproliferative and proapoptotic effects of RSV
analogs [99]. Pharmacokinetic studies revealed that the presence of two methoxy groups in the stilbene
core, to obtain the trans-3,5-dimethoxy-4′-hydroxystilbene (pterostilbene) (1) (Table 3), increases
its lipophilicity, absorption, cellular uptake, and oral bioavailability compared to RSV [100,101].
Pterostilbene displays antioxidant, cardioprotective, neuroprotective, antidiabetic, and antitumor
properties [98]. The antioxidant effects of pterostilbene are attributed to its unique structure
with one hydroxylic group and two methoxylic groups that may scavenge ROS [102] including
hydrogen peroxide (H2O2) and the superoxide anion, which are implicated in the initiation and
pathogenesis of several diseases [103]. Oral administration of pterostilbene scavenges free radicals
and decreases superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase
activity in the liver and kidney of streptozotocin–nicotinamide-induced diabetic rats [104]. In the
same in vivo model, it exerts beneficial effects on glucose concentration decreasing plasma glucose
and gluconeogenic enzyme activity as well as increasing plasma insulin levels [105]. Pterostilbene
possesses cardioprotective effects [106], attenuating the ischemia/reperfusion-induced inflammatory
reaction in the rat heart and reducing hypoxia-reoxygenation injury in cardiomyocytes by SIRT1
activation [107]. In addition, pterostilbene protects Sprague-Dawley rats against diabetic myocardial
ischemia-reperfusion (IR) injury reducing oxidative stress and apoptosis via increased phosphorylation
of adenosine monophosphate-activated protein kinase (AMPK) [108]. Moreover, it decreases cardiac
oxidative stress in fructose-fed rats through stimulation of AMPK/nuclear factor erythroid 2-related
factor 2 (Nrf2)/Heme-oxygenase (HO-1) pathway [109]. Pterostilbene also possesses neuroprotective
proprieties restoring cognitive function during aging process [110] and in Alzheimer’s disease [111].
In fact, using the BV-2 murine microglia cell line, protection from amyloid-β-induced inflammation
through inhibition of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3)/caspase-1
inflammasome pathway was demonstrated [111]. Moreover, this compound inhibits growth of
different human cancers, including pancreatic [112], lung [113], epatic [114], colon [115], gastric [116],
melanoma [117], prostate [118], and breast [119].

Trimethoxystilbene, also called trans-3,4′,5-trimethoxystilbene (2) (Table 3), is a methoxylated
RSV derivative that displays a better cardioprotective [120], anti-Hepatitis C Virus (HCV) [121], and
antitumor [122] activity than RSV. It has been demonstrated that trimethoxystilbene protects Chinese
hamster ovary (CHO) cells from DNA damage induced by ionizing radiation (IR), and reduces cell
proliferation, delaying mitosis progression by increasing the number of cells in metaphase [123].
Moreover, trimethoxystilbene, unlike RSV and pterostilbene, reduces cell growth, alters microtubule
polymerization, and induces mitotic catastrophe in HeLa cervical cancer cells [124].

Trans-3,4,5,4′-tetramethoxystilbene (DMU 212 or TMS) (3) (Table 3) is another methoxylated
RSV derivative that exhibited more favorable pharmacokinetic properties than RSV. This compound
administrated in mice, is present at higher levels in the small intestine, colon mucosae, and brain
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compared to RSV [92]. In addition, DMU 212 appears to be a slightly more potent growth inhibitor
than RSV in human colon cancer cell lines HT-29 and HCA-7 [92] and DLD-1 and LOVO [125].
Several reports indicated that 3,4,5,4′-tetramethoxystilbene also possesses stronger bioactivity than
RSV in suppressing prostate [126], ovarian [127], non-small cell lung [128], breast [129], and liver [130]
tumors. 3,4,5,4′-Tetramethoxystilbene is found to be a strong inhibitor of human cytochrome P450
1B1 (CYP1B1) [131] that is overexpressed in a variety of hormone-dependent human cancers [132,180].
CYP1B1 activates many environmental mutagens [181] and also catalyzes the 4-hydroxylation of
estrogens [182], considered to be an important step in hormonal tumorigenesis. By suppressing
CYP1B1 expression, 3,4,5,4′-tetramethoxystilbene inhibits human mammary cancer cell growth [132].

CYP1B1 expression can be reduced by trans-2,4,3′,4′,5′-pentamethoxystilbene (PMS) (4) [132]
(Table 3) which additionally decreases CYP1A1 expression [133], another enzyme associated to
carcinogenesis [183]. Similarly to TMS, PMS exerts better inhibitory effects on cancer cell growth
compared to RSV, particularly in breast [134] and colon tumors [135]. However, pharmacokinetics
studies performed in Sprague-Dawley rats indicated that PMS displays lower oral bioavailability than
other methoxylated stilbenes due to the presence of the methoxylic group at the two position [136].

4.2. Hydroxylated RSV Derivatives

It was reported that the introduction of additional hydroxylic groups significantly increased
the biological activity of RSV analogs [168–170,184]. Ovesná et al. demonstrated that trans-stilbene
compounds having 4-hydroxy group, a double bond, and bearing ortho-diphenoxyl or para-diphenoxyl
functionalities display higher chemopreventive activity than trans-RSV [184]. Additionally, Chen et al.,
using liquid chromatography-tandem mass spectrometry, determined the pharmacokinetic profiles
of trans-4,4′-dihydroxystilbene (DHS) (5) (Table 3) in Sprague-Dawley rats. The study revealed that
DHS is absorbed slowly and possesses low oral bioavailability; however, when DHS is solubilized
in hydroxypropyl-β-cyclodextrin it is absorbed rapidly and displays improved bioavailability [94].
Similarly to RSV, DHS exerts cardioprotective activity by inhibiting both secretion and mRNA
expression of endothelin-1, a vascular tension regulator, and by decreasing mRNA levels of
endothelin-converting enzyme-1, a protein involved in the proteolytic processing of endothelin-1 [137].
Although DHS shows antioxidant effects against LDL peroxidation induced by free radicals [138], it
can also act as a prooxidant compound depending on the cell type. DHS protects from H2O2-induced
apoptotic death in the pheochromocytoma PC12 cell line, while increases ROS production and activates
caspase-3–depending apoptosis in the human neuroblastoma SHSY-5Y cell line [139]. DHS possesses
better tumor growth inhibitory potential compared to RSV. Recently, it has been demonstrated that DHS
inhibits DNA replication via its ability to interact with ribonucleotide reductase regulatory subunit M2
(RRM2) and decreases tumor growth of a wide spectrum of cancer cell lines [140]. DHS suppresses
melanoma tumor growth and metastases to the lungs [141] and reduces human neuroblastoma
tumor growth by mitochondrial and lysosomal damages [142]. Moreover, it inhibits normal 3T3
mouse fibroblasts transformation and suppresses more efficiently both anchorage-dependent and
-independent MCF-7 human breast cancer cell growth [143].

Trans-3′,4′,3,5-tetrahydroxy-stilbene, also called piceatannol (6) (Table 3), is another hydroxylated
RSV derivative that displays biological functions similar to RSV [144]. Setoguchi et al. evaluated
metabolism and absorption of piceatannol in rats after intragastric administration [145]. The study
revealed that piceatannol undergoes more complex metabolism than RSV involving glucuronidation,
sulfation, and methylation reactions. In fact, piceatannol metabolites are piceatannol-mono and
diglucuronide, O-methyl piceatannol-monoglucuronide, O-methyl piceatannol-monosulfate Moreover,
while the AUC for the intact piceatannol is higher than intact RSV, in the case of the AUC for total
(intact and metabolites) piceatannol, the value is lower than what seen for total RSV [145]. In order
to improve piceatannol bioavailability, several strategies have been developed. Prenylated forms of
piceatannol showed slower glucuronidation and higher biological activity compared to RSV [146].
Delivery systems can also increase piceatannol bioavailability. The use of polymeric nanoparticles
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could facilitate their transport and undamaged delivery to the gastrointestinal tract following oral
administration [147]. Thus, chitosan/poly(lactic acid)-coated piceatannol nanoparticles [148] and
piceatannol complexed with β- [149] or α- cyclodextrin– [147] improve in vitro drug release, solubility
and stability, and in vivo absorption, respectively.

It has been demonstrated that piceatannol possesses cardioprotective [150], neuroprotective [151],
and chemopreventive/therapeutic activities [152]. A recent work demonstrated that piceatannol
protects H9c2 cardiomyocytes against oxidative stress, cytotoxicity, and H2O2-induced apoptosis [150].
It is known that in ischemia/reperfusion injury, while eNOS expression is downregulated, iNOS is
upregulated [153]. In cardiac injury, eNOS has been implicated into PI3K/Akt/eNOS pathway and
iNOS has been implicated into NF-κB/iNOS/NO pathway in response to cellular stress [154]. In H9c2
cardiomyocytes, piceatannol upregulated PI3K, p-Akt, and eNOS activities and downregulated iNOS
expression [150].

Piceatannol is estimated as promising candidate for the treatment of age-associated diseases.
In vivo studies performed in mice, revealed that, after chronic injection of D-galactose (D-gal), which
accelerates the aging process, piceatannol allowed the maintenance of spontaneous motor activity and
enhanced spatial learning and memory abilities [151]. In addition, a morphometric analysis showed
how piceatannol prevents D-gal-induced neuronal loss, increases the number of Nissl bodies, and
promotes cell proliferation in the hippocampus and cortex [151]. These effects are dependent on
activation of Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates gene
expression of a wide variety of antioxidant cytoprotective and phase II detoxification enzymes [151].
In another work, it has been demonstrate that piceatannol protects PC12 rat pheochromocytoma cells
from oxidative stress, blocking beta-amyloid (Aβ)-induced ROS accumulation [155].

Several reports indicated that piceatannol is an antitumor agent for its ability to inhibit growth,
invasion and metastasis and to induce apoptosis of a wide range of cancer cells [152]. Chemoterapeutic
effects of this compound are evaluated in leukemia [156], breast [157], bladder [158], prostate [159,160],
melanoma [161], hepatic [162], and colon [163,164] cancer. Piceatannol treatment determined cancer
cell cycle arrest at G0/G1 [158] and S phases [164], and additionally apoptotic effects through both
extrinsic and intrinsic apoptotic pathways [144,165]. In fact, piceatannol causes cell cycle arrest, growth
inhibition, and apoptosis in human intestinal Caco-2 cells. These effects are related to its antioxidant
capacity and ability to block the arachidonic acid cascade [164]. In several leukemia cell lines (THP-1,
HL-60, U937, and K562) piceatannol induced apoptosis, downregulating X-linked inhibitor of apoptosis
protein (XIAP) expression, regardless of the inhibition of ROS generation [156]. Kim et al. reported that
in androgen-insensitive DU145 prostate cancer cells, piceatannol determines apoptosis by increased
cleavage of caspase-8, -9, -7, and -3; poly(ADP-ribose) polymerase (PARP); cytochrome c release;
and increased Bid, Bax, Bik, Bok, and Fas protein expression [165]. Piceatannol is also able to
reduce cancer invasion and metastasis. In MDA-MB-231 breast cancer cells inhibition of invasion,
migration, and adhesion was related to decreased matrix metalloproteinase-9 (MMP-9) activity and
expression [157]. These effects are dependent on phosphatase and tensin homologue (PTEN) increase,
PI3K/AKT pathway downregulation and NF-κB inhibition [157]. The same results are obtained in
DU145 prostate cancer cells where piceatannol inhibited tumor necrosis factor-α (TNF-α)-induced
invasion by suppressing MMP-9 activation via the AKT-mediated NF-κB pathway [159].

Among polyhydroxylated stilbenes, the 3,3′,4,5,5′-pentahydroxy-trans-stilbene (PHS) (7) (Table 3)
demonstrated high activity on cancer cell growth. PHS suppresses HT-29 human colorectal
carcinoma cell proliferation through oxidative stress-mediated apoptosis [166] and inhibits
12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation in JB6 P+ mouse
epidermal cells [167].

Another hydroxylated RSV derivative that has been extensively studied is 3,3′,4,4′,5,5′-
hexahydroxystilbene (8) (Table 3). This compound displays a potent antiviral activity against several
human immunodeficiency virus (HIV) variants via blocking viral attachment to host cells [171], and
exerts antioxidant [169] and antitumor actions in promyelocytic leukemia cells [168] more effectively
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than RSV. Additionally, it has been reported that 3,3′,4,4′,5,5′-hexahydroxy-trans-stilbene represents a
new drug for the treatment of metastatic melanoma [172]. Evaluating the effects of this compound
on 1205Lu metastatic melanoma cell line, primary human melanoma cells (MCM1, MCM19, and
MLNM1) and MKN28 gastric cancer cell line, it interferes with several pathways involved in apoptosis,
cell cycle regulation, DNA damage repair, and cell migration and metastasis [172]. In addition, the
authors confirmed in vitro data in an in vivo model, demonstrating how it decreases tumor growth and
prevents metastatic spread of melanoma cells to distant lymph nodes [172]. The antitumoral effects of
3,3′,4,4′,5,5′-hexahydroxystilbene were confirmed in ZR-75-1, MDA-MB-231, and T47D human breast
cancer cells [170]. The authors demonstrated how this derivative caused cell growth inhibition and
apoptosis via caspase-8 activation in MDA-MB-231 cells, and caspase-9 and caspase-3 activation in
all three tested cell lines [170]. In particular, caspase activation is associated with p53 increase and
mitochondrial superoxide dismutase downregulation [170].

4.3. Halogenated Derivatives

Li et al. demonstrated that halogenation of RSV on one of the two aromatic rings,
produces more lipophilic derivatives with better antihemolysis and antimicrobial activity than
RSV [97]. In particular, the authors, using the 2,2′-azobis (2-amidinopropane hydrochloride)
(AAPH)-induced human red blood cells (RBC) hemolysis model, and evaluated the antioxidant
activity of several chlorinated and brominated RSV derivatives. The results indicated that all
the used halogenated derivatives are more lipophilic and effective at inhibiting RBC hemolysis
than RSV [97]. In addition, the introduction of chlorine or bromine atoms on RSV improves
in vitro antimicrobial activity against Gram-positive bacteria (S. aureus), Gram-negative bacteria
(E. coli), and yeast (C. albicans) [97]. Using a synthetic strategy, a series of 2,3-thiazolidin-4-one
RSV derivatives (9) (Table 3) were synthesized with an azetidin-2-one nucleus connected to two
aromatic rings [173,174]. Cell viability in response to 3-chloro-azetidin-2-one RSV derivatives was
investigated on human breast cancer cell lines [174]. 1,4-Bis(4-bromophenyl)-3-chloroazetidin-2-one
and 3-chloro-4-(4-chlorophenyl)-1-(4-iodophenyl)azetidin-2-one displayed inhibitory effects in a
dose-dependent manner in estrogen receptor positive (ER+) MCF-7 and in estrogen receptor negative
(ER-) SKBR3 cell lines [174]. Several fluorinated RSV derivatives were tested on lung cancer and
melanoma cell lines. Among them, the (E)-3,5-difluoro-4′-acetoxystilbene (10) (Table 3), has a
greater antiproliferative action [96]. In addition, evaluating the effects of this compound on other
cancer cell lines, the authors revealed how it has a better anticancer activity against leukemia,
colon, lung, breast, melanoma, prostate, ovarian, central nervous system, and renal cancers [96].
More effective than RSV on the inhibition of human lung carcinoma A549 cell growth was the
3,4,5-trimethoxy-4′-bromo-cis-stilbene (11) (Table 3) [175]. Particularly, this compound determined cell
cycle arrest at the G2/M phase and induced apoptosis as revealed by upregulation of p53 expression
and cytochrome c release [175].

4.4. Other RSV Derivatives

Using a chemical strategy that replaces the alkene linker between the two aromatic rings
with a heterocyclic system [173], rigid derivatives structurally correlated to 2,3-thiazolidin-4-ones
(12) (Table 3) were synthesized that displayed higher cytotoxic activity. They manifested higher
ability to inhibit in vitro cancer cell growth and, in some cases, a greater bioaccessibility than
RSV analog [176]. Some of these compounds showed strong inhibitory effects on MCF-7 and
SKBR3 cell growth. Particularly, 2-(3,4-dimethoxyphenyl)-3-(4-hydroxyphenyl)-thiazolidin-4-one,
2-(4-chlorophenyl)-3-(4-hydroxyphenyl) thiazolidin-4-one, 2,3-diphenylthiazolidin-4-one,
2-(naphthalen-1-yl)-3-p-tolylthiazolidin-4-one, and 2-(3,4,5-trimethoxyphenyl)-3-p-tolylthiazolidin-4-
one displayed potent cytotoxic activity against MCF-7 and SKBR3 cells, suggesting how the biological
action of these molecules could also be influenced by the different estrogenic receptor status [176].
In particular, in MCF-7 cells, 2-(3,4-dimethoxyphenyl)-3-(4-hydroxyphenyl)-thiazolidin-4-one and
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2-(4-chlorophenyl)-3-(4-hydroxyphenyl)-thiazolidin-4-one could interfere with the estrogen
receptor α (ERα)-dependent pathway, while in SKBR3 cells, 2,3-diphenylthiazolidin-4-
one, 2-(naphthalen-1-yl)-3-p-tolylthiazolidin-4-one, and 2-(3,4,5-trimethoxyphenyl)-3-p-tolylthiazolidin
-4-one could antagonize the alternative estrogen receptor G protein-coupled estrogen receptor
(GPER) [176], which is known to be involved in estradiol-dependent SKBR3 cell growth [185,186].

The anticancer activity of 4-(6-hydroxy-2-naphthalen-2-yl)-1,3-benzenediol (HS-1793) (13)
(Table 3) RSV derivative has been evaluated in FM3 murine breast cancer cells [177]. In this cell
type, HS-1793 caused inhibition of cell proliferation, followed by apoptosis, at doses (3–25 µM)
lower than RSV (300 µM) [177]. Antiproliferative and apoptotic effects of HS-1793 have been
confirmed in MCF-7 and MDA-MB-231 cells [178]. Particularly, the authors showed that this
compound induced p53/p21WAF1/CIP1-dependent apoptosis in MCF-7 cells, whereas it determined
p53-independent apoptosis in MDA-MB-231 cells [178]. Recently, a series of isoprenylation RSV
dimer derivatives was prepared and their biological activities were evaluated against Alzheimer’s
disease [179]. Some of these compounds inhibited human monoamine oxidase B (hMAO-B) and
exerted good anti-inflammatory and antioxidant activities. In addition, 5-((E)-2-(3-(3,5-dihydroxy-
4-(3-methylbut-2-en-1-yl)phenyl)-2-(4-hydroxyphenyl)-2,3-dihydrobenzofuran-5-yl)vinyl)-2-(3-
methylbut-2-en-1-yl)benzene-1,3-diol) (14) (Table 3) and 5-((E)-2-(3-(5-hydroxy-2,2-dimethylchroman-
7-yl)-2-(4-hydroxyphenyl)-2,3-dihydrobenzofuran-5-yl)vinyl)-2-(3-methylbut-2-en-1-yl)benzene-1,3-
diol (15) (Table 3) protected neuronal cells from LPS stimulation and H2O2-induced BV2 microglial cell
inflammation, thus making these compounds potential neuroprotective agents against Alzheimer’s
disease [179].

5. Conclusions

RSV has gained interest as a nontoxic agent that displays multiple health beneficial effects,
including antioxidant, anti-inflammatory, cardioprotective, neuroprotective, and antitumor actions.
However, its rapid metabolism limits its biological effects in vivo and, consequently, its clinical
applications. In the last decade, in order to improve the pharmacokinetic properties of RSV, various
methodological approaches and different synthetic derivatives have been prepared. An increase in
biological activity and, particularly, in RSV antitumor actions can be seen either with some of these
approaches or in some new molecules. These results encourage us to perform new in vivo studies to
identify the RSV delivery systems and/or RSV derivatives that can be used for clinical applications.
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