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Abstract: Complex transportation systems often produce combined exposure to aircraft and road
noise. Depending on the noise source, the annoyance response is different, and a masking effect
occurs between the noise sources within the combined noise. Considering these characteristics, partial
loudness was adopted to evaluate noise annoyance. First, a partial loudness model incorporating
binaural inhibition was proposed and validated. Second, short- and long-term annoyance models
were developed using partial loudness. Finally, the annoyance of combined noise was visualized as
a map. These models can evaluate the annoyance by considering both the intensity and frequency
characteristics of the noise. In addition, it is possible to quantify the masking effect that occurs
between noise sources. Combined noise annoyance maps depict the degree of annoyance of residents
and show the background noise effect, which is not seen on general noise maps.

Keywords: annoyance model; annoyance map; aircraft noise; road traffic noise; short-term
annoyance; long-term annoyance; background noise effect

1. Introduction

Awareness of the importance of environmental pollution, an inevitable issue, is gradu-
ally spreading. Noise, an environmental pollutant, is an unwanted sound that can affect
human health [1]. In addition, unlike other environmental pollutants, noise pollution
continues increasing due to industrialization and traffic growth [2]. Increasing noise expo-
sure from multiple sources causes widespread annoyance. Consequently, noise sources
and levels are regulated in several countries [3,4]. Many researchers have studied the
effects of noise exposure [5–7], which causes auditory (e.g., hearing loss) and non-auditory
(e.g., sleep disturbance, hypertension, and cardiovascular diseases) health effects. Further-
more, the most significant impact of noise exposure in many countries is the perception of
annoyance [8,9].

Past noise exposure largely stemmed from a single event. The previous studies
mentioned above considered single noises or treated combined noises as the sum of single
noise sources. However, the development of transportation systems has increased noise
exposure from combined sources. For example, residents living near airports are exposed
to aircraft and road traffic noises. Therefore, multiple studies have been conducted to
quantify the annoyance of multisource noise [10–15]. Brink et al. explored the masking
effects of road traffic noise on aircraft noise annoyance [10]. Hong et al. compared the
annoyance of single and combined noise through annoyance evaluation according to the
conditions of noise exposure [11]. Wothge et al. studied the annoyance of the combined
noise of aircraft and road traffic noise or the combined noise of aircraft and railway noise
and showed that noise annoyance is determined by the sound source judged to be more
annoying [12]. Lechner et al. showed the cumulative effect of each source of combined
noise in the annoyance response through the survey data [13]. The dose-response model
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for combined noise annoyance, suggested by Miedema [14], is derived using the method
from Vos, called the annoyance equivalent model [15]. The Miedema model applies the
annoyance-equivalent factor from a reference source [14].

Meanwhile, along with research on annoyance modeling, studies on visualizing an-
noyance as noise maps (first suggested by Knauss) have also been conducted [16]. The
annoyance potentials were calculated using the annoyance map depending on the source
type [17]. The annoyance map of road traffic noise was drawn with survey data on the
percentage of highly annoyed individuals [18]. Another study found a moderate correla-
tion between noise annoyance and exposure levels to road traffic noise [19]. In addition,
research on 3D noise maps has been actively conducted due to advances in technology [20].
Along with advances in computer graphics and virtual reality technologies, several studies
have been conducted to explore the noise of virtual reality. Law et al. implemented realistic
3D noise models using real building photos and noise models and used them interactively,
allowing users to experience them in a virtual reality environment [21]. Berger et al. com-
bined data visualization and sonification technology to enable users to explore and hear
road traffic noise in an immersive real-time urban environment [22].

This study focused on two points in evaluating the annoyance of combined noise. The
first is that aircraft noise is perceived to be more annoying than road noise at the same
noise level [11–13]. It makes modeling difficult for quantifying annoyance with physical
noise indices such as the day-night noise level. Loudness, a psychoacoustic factor, was
adopted to improve in this study. Loudness is a sensation regarding a category of noise
intensity [23]. Since loudness can consider both the intensity and frequency characteristics
of the noise, it can better reflect the noise magnitude than the physical indicators. The
second point is a masking effect or background noise effect between each noise source
within the combined noise [10]. The masking effect is defined as the interference with the
perception of one sound (the target) by another sound (the masker) [24]. Often the masker
sound does not entirely mask the target sound, but merely reduces its loudness, thereby
partially masking.

In this work, the concept of partial loudness was adopted to quantify the masking
effects present in combined noise. Partial loudness means the loudness of each noise
source considering the masking effect in the presence of multiple noise sources [25]. The
masking effect can be quantified because it calculates the partial loudness according to the
target and masker sound. The same concept was used in our previous study as well [26].
However, research on the annoyance of residents has not been conducted. In addition,
binaural inhibition was not considered in the calculation of loudness. Binaural inhibition
is the concept that the sound heard from one ear reduces the internal response of the
signal at the other ear. Kim et al. executed the laboratory test to compare monaural and
binaural listening to show that annoyance from the single and dummy head results in
different tendencies with increasing noise level yet not as twice [27]. For this reason, in our
previous study, a dummy head was used for binaural recording [26]. However, loudness
was calculated with a model based on the assumption that loudness is summed across
the ear [28]. Moore et al. developed an improved loudness model by adding binaural
inhibition functions [29]. It was applied in this study.

Therefore, this study proposes combined noise annoyance models from aircraft and
road traffic noises. Since these models were calculated using loudness, they include in-
tensity factors and frequency characteristics. By adopting the partial loudness concept, it
was possible to quantify the effect of background noise between combined noise sources.
In addition, we improved the accuracy in calculating the loudness by considering the
binaural effect, which was not considered in our previous study. The partial loudness
model considering binaural inhibition was developed and validated using a listening test
to evaluate loudness of the combined noise of aircraft and road traffic noise. Based on the
improved partial loudness model, the two types of models presented herein depend on
noise exposure. The first is a short-term annoyance model derived by logistic regression
analysis of the results obtained from the annoyance response experiment for each noise.
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The second model is a long-term annoyance model for residents exposed to noise for more
than a year. The long-term model was derived using a noise map consisting of resident
survey data and aircraft and road traffic noises in the research area. Additionally, this
study implements an annoyance map based on a long-term model to visualize the effect of
annoyance on noise exposure. Because it was based on partial loudness, it was possible
to display aircraft and road noise separately from main and background noise. Therefore,
the masking effect or the background noise effect was considered, and we demonstrate the
relationship between the combined noise sources.

2. Materials and Methods
2.1. Partial Loudness Calculation

Currently, loudness models are designated as ISO standards, and there are two models.
Zwicker’s model specifies two methods for estimating the loudness and loudness level of
sounds as perceived [30]. The first method is intended for stationary sounds, and the second
method for time-varying sounds. Moore’s model specifies a method for estimating the
loudness and loudness level of stationary sounds as perceived [31]. Since preference cannot
be specified for either of these two models, it is up to the user to choose the method that
appears most appropriate for the given situation. In this research, a partial loudness model
based on Moore’s model was adopted to calculate the magnitude of the combined noise.

The partial loudness model is an advanced model that calculates the partial loudness
of combined noises with each noise source [25,28,29,32]. This model calculates loudness by
classifying each noise source into target and background noises in case of multiple noises.
It is assumed that the total loudness of combined noise is composed of the sum of the
partial loudness of each noise source.

N
′
TOT = N

′
Target + N

′
Background (1)

where, N
′
TOT is total loudness of combined noise. N

′
Target is partial loudness of the target

noise and N
′
Background is partial loudness of the background noise. The model used to obtain

the specific loudness N
′
Target for the target sound is the following:

N
′
Target =

{[(
ETarget + EBackground

)
G + A

]α
− Aα

}
− C

{[(
EBackground(1 + K) + ETHRQ

)
G + A

]α
− (ETHRQG + A)α

}(ETHRB
ESIG

)0.3 (2)

where, ETarget and EBackground are the excitation levels evoked by the target and background
sound, respectively. ETHRB is the peak excitation value for a masked threshold value due
to background noise. ETHRQ is the peak excitation value of the absolute threshold. G is
the gain value amplified for a specific frequency band in the cochlea that is constant up to
500 Hz and increases thereafter. C, A, α and are constants. Moreover, the specific loudness
N
′
Background for the background sound is the following:

N
′
Background = C[(EBackgroundG + A)α − Aα] (3)

To calculate the loudness of time-varying sounds, the temporal integration of in-
stantaneous loudness was conducted using the previously introduced method [29]. The
averaging method for instantaneous loudness is like that of an automatic gain control cir-
cuit, which calculates long-term loudness. The maximum long-term loudness was selected
as the representative value for the loudness of a nonstationary signal varying with time
and was suggested as a reasonable representation by Moore and Glasberg [29].
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Binaural inhibition is a concept in which the sound heard in one ear reduces the
internal response of the signal in the other ear. To consider binaural inhibition, the value to
be reduced was defined as the effective factor and calculated using Equation (4).

INHIPSI(E) = 2/
[
1 + {sech(SCONTRA(E)smoothed/SIPSI(E)smoothed)}

P
]

(4)

where INHIPSI is the effective factor for one ear. SCONTRA and SIPSI are the smoothed
short-term specific loudness of the contralateral and ipsilateral ears, respectively; and
P = 1.598. The loudness considering binaural inhibition is the value divided by the
effective factor from the loudness.

2.2. Research Field

A research area should be selected in advance to model the combined noise annoyance.
The conditions for selecting the research area are as follows:

• Residents in the research area should be simultaneously exposed to aircraft and
road noises.

• No other noise sources (industrial or railway) should exist in the field for evaluating
aircraft and road traffic noise sources.

Considering these conditions, Yangcheon-Gu, Seoul, South Korea was selected as the
research field. Yangcheon-Gu is near Gimpo airport and aircraft flyover routes and has
a complex road traffic system; thus, residents in the area are exposed to high road traffic
noise levels. The research field is shown in Figure 1. The research field is shown in Figure 1.
The red border is Yangcheon-gu, the study area, and Gimpo airport is the yellow area in
the upper left corner of the figure. The airport route is marked with a blue line.

Figure 1. The research area for noise exposure, Yangcheon-Gu (red borderline); Gimpo airport
(yellow area); The airway of the airport (blue line)

2.3. Stimuli

Aircraft and road traffic noises were recorded as stimuli for the experiment. Air-
craft noise was measured around Gimpo Airport, and the flyover noise was recorded
below the flight route. Five aircraft noises were recorded, one of which was chosen as
the test stimulus. Road noise recordings were conducted on an eight-lane road in Seoul.
The recording time was between 15:00 and 15:30 to avoid traffic congestion. The total
recording time was 30 min. A normal recording period of 20 s was selected and used as the
experimental stimulus.
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Head & torso simulator (HATS type 4100, B & K, Nærum, Denmark) was used to
record binaural sounds. The HATS has two channels with a microphone in the ear position
for binaural recording; pinna-shaped rubber forms and a body-shaped torso duplicate the
diffraction of sound by the pinna and the body.

The spectral characteristics of the recorded sound used as the experimental stimuli
are shown in Figure 2 and displayed in the form of a 1/3 octave band; both sounds are
adjusted to 60 dB. Aircraft noise has high-frequency components, and road traffic noise has
a broadband property. The recorded sounds were employed in the validation and in the
modeling of short-term annoyance.

(a) (b)

Figure 2. 1/3 Octave band of test stimuli (60 dB): (a) Aircraft Noise; (b) Road Traffic Noise.

2.4. Validation Test of a Partial Loudness Model with Binaural Inhibition

Before applying a partial loudness model with binaural inhibition, it was necessary to
validate whether the appropriate environmental noise assessment was performed.

2.4.1. Stimuli

Aircraft and road noises were selected for the validation test. The levels of aircraft
noise were selected considering the practical exposure range of residents near airports.
The range of the maximum noise level of the aircraft for one flyover is 70–80 dBA, and
when converted to A-weighted equivalent continuous noise levels (LAeq), the range is
68–78 dBA. Therefore, the aircraft sound stimuli were adjusted to 68, 73, and 78 dBA. Road
traffic noise in this area was measured to be 55–75 dBA according to the traffic density. As
such, levels of 55, 65 and 75 dBA were selected to represent low, medium and high traffic
densities. The road traffic sounds were adjusted to 55, 65, and 75 dBA.

2.4.2. Experimental Equipment

The experiment was conducted in an anechoic chamber (3.2 × 3.2 × 2 m3) with an
ambient sound level of approximately 20 dBA and a cut-off frequency of 200 Hz. The test
was conducted with a laptop connected to a digital-to-analog converter and signal data
acquisition hardware (LAN-XI, bp2215, B&K, Nærum, Denmark). The DAC executed the
sounds from the laptop to the headphone with a flat frequency response (SRH1840, Shure,
Chicago, IL, USA), and the LAN-XI calibrated the output signals to adjust the target noise
levels. The subjects wore headphones and followed instructions on the laptop screen.
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2.4.3. Participants

A total of 14 subjects (3 females and 11 males) were selected for the validation test.
Before the primary test, a screening test was conducted to check if the subjects had hearing
issues; all subjects had normal hearing. The age range was 22 to 30 years, with an average
of 28.7.

2.4.4. Procedure

The experiment was designed to compare the loudness of aircraft noise in quiet
conditions and with background noise. The up-down method was adapted for the ex-
periment [33]. In this test, road traffic noise was chosen as the background noise. The
validation procedure was as follows:

• The subjects first heard aircraft noise without background noise. Next, the subjects
listened to aircraft noise with road traffic noise in the background.

• The pre-programmed computer then asked a comparison of whether the aircraft noise
with the background noise was quieter, louder, or equal to the aircraft noise in the
quiet environment.

• The program was adjusted the level of the stimuli according to the responses of the
subjects. For example, if the subject answered that the aircraft noise was louder with
background noise than in quiet conditions, the aircraft noise level with background
noise was reduced in the next session.

• The level change steps decreased from 5 dB to 1 dB.
• The experiment proceeded until the subjects select “same”.
• Nine scenarios (three aircraft noises × three road traffic noises) were conducted in

combination with each dB of aircraft noise and road noise.

All the experimental procedures were pre-programmed using MATLAB 2019b. Sub-
jects read the instructions, listened to the stimuli, and entered the test results without the
assistance from the experimenter. The test lasted approximately 90 min, with three 5-min
breaks when the background noise level changed.

2.5. Jury Test for Modeling of Short-Term Annoyance

The laboratory experiment was conducted to evaluate the perceived annoyance of the
combined noise.

2.5.1. Stimuli

The laboratory test stimuli for annoyance evaluation were the same as in the validation
test, except that two stimulus sound levels were added. The aircraft sound stimuli were
adjusted to 63, 68, 73, 78, and 83 dBA; and the road traffic noise sounds were adjusted to
55, 60, 65, 70, and 75 dBA.

2.5.2. Experimental Equipment

The experimental equipment used in this test was the same as that used in the previ-
ous test.

2.5.3. Participants

Fifty subjects participated in the experiment, including 11 women and 39 men. The
age range was 22–32 years, with an average of 25.3 and SD = 3.15. Participants of the
experiment participated in the university community and received credit as a reward for
participation in the experiment. Before the test (as in the previous test), a screening test
was conducted to check for hearing issues; all subjects had normal hearing.

2.5.4. Procedure

The experiment was conducted by responding to the degree of annoyance felt by
the experimenter upon hearing the stimulating sound. The answers are given as a score
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from 0 to 10 on an 11-point numeric scale following ICBEN recommendations [34]. The
experimental process was as follows:

• The subjects heard the aircraft noise in quiet conditions and scored the annoyance
from the aircraft noise on the 11-length scale.

• Next, they heard the road traffic noise in quiet conditions and scored the annoyance
from the road traffic noise on the 11-length scale.

• The aircraft noise was played with the road traffic noise; the subjects were asked to
score the level of annoyance of the aircraft noises in the presence of road traffic noise.

• The road traffic noise was played with the aircraft noise, and the experimenter asked
the subjects to rate the level of annoyance of the road traffic noise in the presence of
aircraft noise on an 11-point numeric scale.

• The combined aircraft and road traffic noises were played, and the subjects were
asked to rate the level of annoyance of the total combined noises on the 11-point
numeric scale.

Total 85 noises, with five aircraft noises, five road traffic noises, twenty-five combina-
tion of aircraft noise with road traffic sounds, twenty-five combined noises of road traffic
noise with aircraft sounds, and twenty-five aircraft and road traffic noise combination,
were played and the test lasts about 70 min. The level of stimuli was played randomly to
minimize the impact on the previous sound source.

2.6. Long-Term Annoyance Model

A long-term annoyance model from the combined noise was evoked by residents
exposed to combined noise for more than a year. The long-term model was derived using
the loudness calculated from the noise map of the research field and the survey data.

2.6.1. Noise Mapping

The noise map was depicted using the commercial software CadnaA Version 2017
(Datakustik, Munich, Germany) [35]. The research area was modeled using 3D geographic
data, including contours, buildings, and roads. The data are shown in Figure 3.

Figure 3. 3D geographical data of research field. Buildings of the research area by CadnaA.
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Aircraft noise modeling programs currently in use include ANCON [36], INM [37],
IsoBella [38] and STAPES [39]. In this study, aircraft noise from the research area was
calculated using the commercial software Integrated Noise Model version 7.0 (INM, Federal
Aviation Administration, Washington, DC, USA) [37]. INM is a computer model that
evaluate aircraft noise impacts in the vicinity of airports. It uses noise-power-distance
(NPD) data to estimate noise accounting for specific operation mode, thrust setting, and
source-receiver geometry, acoustic directivity, and other environmental factors.Aircraft
noise was predicted using NPD data, runway information at the airport, average daily
traffic, and aircraft type. Runway information at the airport, average daily traffic, and type
of aircraft were used as inputs. The noise map grid was 10 m × 10 m. The unit of aircraft
noise is LAeq, which is the average annual noise level of the research field.

A map of road traffic noise was depicted with measured traffic density and noise
levels. To predict the road traffic noise of the research area, road traffic density, the
ratio of heavy vehicles, the speed limit of each road, and road materials were evaluated.
Measurements of road traffic density were conducted from 11:00–11:30 and 15:00–15:30
(daytime), 20:00–20:30 (evening), and 00:00–00:30 and 03:00–03:30 (nighttime) at 45 points
to cover all the roads in the research area to avoid rush hour to measure average traffic
density. The data measured in 30 min was doubled to convert to 1 h data. Road traffic
density of daytime and nighttime were determined by the average of each of the two
measurement results. Measurements were made at 45 points to cover all of the study
areas. Noise barriers of road were not included in 3D geographical data, so that they were
manually added to each road from CadnaA. The noise prediction model for road traffic is
RLS-90, Which is the following equation [35].

Lm,E = 37.3 + 10log[Q(1 + 0.082P)] (5)

Lm = Lm,E + RSL + RRS + RRG + RE + RDA + RGA + RTB (6)

Lr = Lm + K (7)

The coefficients of road traffic noise model are as follows:

1. Lm,E: Sound emission level at 25m distance from the source under idealized condition
(speed 100 (80) km/h for a light (heavy) vehicle, road gradient < 5%, smooth asphalt)

2. Lm: Mean emission level for each lane at a receiver position
3. Lr: Sound level at a receiver position
4. Q: Traffic volume per hour
5. P: Percentage of heavy trucks P (Weight > 2.8 tons)
6. RSL: Correction for the speed limit

(a) RSL = Lcar − 37.3 + 10log
[

100+(100.1D−1)P
100+8.23P

]
(b) Lcar = 27.7 + 10log

[
1 + (0.02vcar)3]

(c) D = Ltruck − Lcar
(d) Ltruck = 23.1 + 12.5log(vtruck)
(e) vcar: the speed limit ranged from 30 to 130 km/h for light vehicles
(f) vtruck: the speed limit ranged from 30 to 130 km/h for light vehicles

7. RRS: Correction for road surface
8. RRG: Correction for road gradient

(a) RRG = 0.6|g| − 3 for |g| > 5%
(b) RRG = 0 for |g| ≤ 5%
(c) g : Road gradient

9. RE: Correction for the absorption characteristics of building surfaces
10. RDA: Attenuation coefficient for the distance and air absorption
11. RGA: Attenuation coefficient due to ground and atmospheric conditions
12. RTB: Attenuation coefficient due to topography and buildings dimensions
13. K: Increased effect of light controlled intersections
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The validation process using the measurement data is essential during the noise map
preparation process. To validate the noise maps, we compared the results of noise mea-
surements and predictions in the research field. The aircraft noise levels of 15 points were
measured automatically by an airport noise monitoring system. Fifteen points of aircraft
noise measurement are shown in a red circle in Figure 4. Road traffic noise measurements
to validate the noise map were measured on 20 points, where the points are shown in the
yellow circle of Figure 4. The measurement procedure was carried out according to the ISO
standard [40]. Noise measurement data were collected by Class 1 sound level meter (type
2250, B & K, Nærum, Denmark) at the height of 1.5 m from the side surface of the road.
Measurements were made at the same time as traffic density measurements. Daytime and
nighttime noise levels were measured twice and determined as the mean. Based on this,
measured day-night average sound levels were compared with predicted levels.

Figure 4. Noise measurement points. Aircraft (red circles); road traffic (yellow circles) noise.

According to the Ordinance of the Ministry of Environment of the Republic of Korea,
the validation standard for noise maps is less than 3 dB. Aircraft noise map data have good
predictability, with an error of less than 3 dB; and the road traffic noise map had an error
of less than 2 dB. In general, it is very difficult to have an error of less than 3 dB due to
uncertainty in the prediction of the noise model and measurement. Uncertainty can be
reduced by using accurate measurement results. In this research, various types of data
were used in the aircraft noise prediction process, and road noise was measured at as many
points as possible, so the noise map could be predicted with high accuracy. Validated
aircraft and road traffic noise maps are shown in Figures 5 and 6, respectively. In addition,
the combined noise map is shown in Figure 7.

2.6.2. Field Survey

To assess the community response to combined noise, we employed a field survey.
The survey data conducted in the previous study was used for this study [41]. The depicted
noise maps were used to select the survey subjects using the range of noise levels in the
research area. For the convenience of selection, the change in noise levels according to
height was not considered. The survey subjects were selected based on the noise level of
the noise map regardless of the height. 1000 subjects were selected by grouping (Table 1).
Table 2 shows the social demographic data of the participants.
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Figure 5. Road traffic noise map of the research area.

Figure 6. Aircraft noise map of the research area.
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Figure 7. Combined noise map of the research area.

Table 1. Scope of noise levels and the number of subjects.

Group Noise Range Subjects

Group 1 less than 50 dBA 454
Group 2 50–60 dBA 274
Group 3 60–70 dBA 210
Group 4 Over 70 dBA 62

Total 1000

The survey was conducted by visiting the residence of the subjects and asking if
they could participate in the investigation of aircraft and road traffic noise annoyance.
Researchers asked about the annoyance from aircraft noise with road traffic noise (and
vice versa) at home. Experimenters answered their annoyance ratings on the 11-length
scale with 0 as not annoyed at all and 10 as extremely annoyed, according to ICBEN
recommendations [34].

2.6.3. Calculation of Partial Loudness Regarding Points of the Survey Area

The loudness of aircraft and road noises in the residence of each subject was calculated
using a partial loudness model. The sound level, which is the input value of the loudness
model, was corrected by assuming the indoor noise level of each noise source to which
the experimenter is exposed in the residence. The difference between the outdoor noise
and the indoor noise depends on whether the window is open or closed. In this study, it is
assumed that all subjects’ home windows are slightly open to set to the mean value. In this
condition, the corrected values were 15 and 15.8 dBA for aircraft and road traffic noises,
respectively [42–47].
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Table 2. Social Demographical data of survey subjects.

Contents <55 dB 55–65 dB 65 dB < p-Value(n = 580) (n = 275) (n = 145)

Age (years) 45.4 ± 16.8 44.6 ± 16.1 46.9 ± 15.6 0.398
Residential period (years) 8.5 ± 8.4 7.9 ± 7.3 7.0 ± 5.9 0.112

BMI (kg/m2) 23.8 ± 3.7 23.9 ± 3.7 22.7 ± 3.2 0.405

Sex Male 266 123 59 0.534Female 314 152 86

Educational level Secondary Level 239 94 52 0.092University Level 331 181 91

Marriage No 205 100 44 0.462Yes 372 175 100
Monthly income <3000 309 126 53 <0.001(1000 KRW) ≥3000 211 133 81

Smoking No 469 250 126 0.001Yes 111 25 19

Drinking No 314 173 90 0.027Yes 266 102 55

Exercise No 417 183 101 0.277Yes 163 92 44
p-Value was calculated by ANOVA for continuous variable and chi-square test for categorical variable.

2.7. The Statistical Analysis

In many regression methods, logistic regression is a statistical model with the form of
a logistic function, as expressed in Equation (8):

f (x) =
L

1 + e−k(x−x0)
(8)

where x0 is the value of Sigmoid’s midpoint; L is the maximum value of the curve; and k is
the logistic growth rate. The logistic function has a maximum limit that is derived by an
infinite value of the independent variable. Statistical analysis was performed using SPSS
25.0 software (SPSS Inc., Chicago, IL, USA).

2.8. Annoyance Map

The annoyance map of combined noise is depicted using the annoyance model but
only shows the total annoyance from each noise source; therefore, partial annoyance—
which includes the contribution to the annoyance for each source—is not considered [16,17].
In this study, the background noise effect was considered using a partial loudness model.
The relationship between each noise source can be visually observed when applied to the
annoyance map.

The annoyance map was constructed using CadnaA in the same manner as the noise
map. CadnaA and other noise mapping programs cannot calculate loudness or annoyance.
Thus, annoyance data are calculated from the long-term annoyance model, and only the
calculated annoyance data are inserted to show the annoyance distribution. First, grids were
drawn in units of 10 m × 10 m in the research field. The partial loudness was calculated
using the aircraft and road noises corresponding to each grid, and the corresponding %HA
(the highly annoyed percentage) was calculated using the long-term annoyance model
and expressed as CadnaA. %HA represented the percentage of residents who gave the
annoyance a rating of more than eight on the 11-length scale [48]. The whole procedures
are depicted as block diagrams in Figure 8.
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Figure 8. Annoyance mapping procedures.

3. Results
3.1. Validation of the Partial Loudness Model with Binaural Inhibition

The results of the validation tests are presented in Table 3. According to the experi-
mental results, when comparing the loudness level between noise in quiet and noise with
background noise, the subjects hear the same when the noise with background noise is
louder. For example, subjects reported that 78 dB of aircraft noise with no background
noise and 80.1 dB of aircraft noise with 75 dB of road noise as background noise were heard
at the same level.

Table 3. Results of validation test for the partial loudness model with binaural inhibition.

Aircraft Road Traffic Experimental Predicted Gap (dB)Noise (dB) Noise (dB) Results (dB) Results (dB)

68 68.8 69.1 0.5
73 55 73.1 73.6 0.5
78 78.3 78.3 0

68 70.2 70.9 0.7
73 65 74.1 74.9 0.8
78 78.7 79.1 0.4

68 73.4 74.3 0.9
73 75 77.4 77.4 0.0
78 80.1 80.9 0.8

The results predicted using the partial loudness model were like the experimental
results. Further, to compare the tendency of the experimental results and the predicted
results, an equal loudness noise curve in the adjacent noise range was created. These
curves and the test results are depicted in the same graph to compare the predicted and
experimental results. The graph with the standard deviation is depicted in Figure 9.

The horizontal axis of the graph is the level of aircraft noise with road traffic noise,
and the vertical axis is the level of aircraft noise in quiet. Each point on the graph refers
the level at which both sounds are perceived as the same loudness. BGN on the graph
means the background noise level. Each line in the graph is the result of prediction using
the partial loudness model. Error bars are the results of Table 3 shown with the standard
deviation. Experimental and predict results show that they are consistent in their tendency.
The model validation revealed that the calculations of partial loudness by combined noises
are executed with the partial loudness model of binaural inhibition.
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Figure 9. Comparison between experimental results and predicted results.

3.2. Perceived Annoyance in Laboratory Tests

The calculation results for short-term annoyance are shown in Figure 10. Single,
partial, and total loudness values were calculated according to the experimental situation;
and the corresponding annoyance values of the sound source were arranged. The results
for each stimulus were classified by a marker. Single is the single noise, indicated by
a blue circle. A with R means the aircraft noise with road traffic noise as background
noise, indicated by a red hexagonal star. R with A means road traffic noise with aircraft
noise as background noise and is marked with a yellow square. Finally, Combined means
the combined noise of aircraft and road traffic, indicated by the green triangular marker.
Because the loudness units of the experimental sound source were the same, the loudness
and the annoyance scores were placed on the horizontal and vertical axes, respectively.

Figure 10. Short-term annoyance model.
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As in previous work, we conducted logistic regression analysis for a 10-point annoy-
ance rating. The annoyance model (Equation (9)) was derived as follows:

Annoyance =
1

0.1 + 0.463× 0.936Loudness (9)

The determinant of the short-term annoyance model (0.939) shows that the regression
curve follows the test results significantly. Because loudness is the only independent
variable, annoyance can be calculated. Additionally, the partial annoyance can also be
calculated by calculating the partial loudness of the combined noise.

3.3. Perceived Annoyance in Field Survey

The loudness values of aircraft and road noises corresponding to the residence of each
subject were calculated using a partial loudness model. Three thousand loudness values
were derived up to the partial loudness according to the target noise and the total loudness
value of the combined noise. For long-term annoyance, a value of %HA was adopted. To
calculate the percentage, the loudness values were grouped into certain ranges. In this
study, nine groups were generated with a range of loudness in five sones. Figure 10 shows
the relationship among the values of partial loudness and %HA.

According to the survey data in the Figure 11, when the loudness is less than 20 sone,
the slope of %HA is also gentle, but when it is greater than 20 sone, the slope in %HA also
increases rapidly. Moreover, the result in the group with a loudness of 0 is very interesting.
We performed logistic regression analysis using the results of %HA and loudness. Logistic
regression analysis was used to model the correlation between loudness values and %HA.
The deduced equation is as follows, with an R2 value of 0.882:

%HA =
1

0.01 + 0.043× 0.97Loudness (10)

Figure 11. Long-term annoyance model.

According to the survey data in Figure 10, when the loudness is less than 20 sone, the
slope of %HA is also gentle, but when it is greater than 20 sone, the slope in %HA also
increases rapidly. Interestingly, it is shown that even in the group with a loudness of 0, there
are some highly annoyed populations. We performed logistic regression analysis using the
results of %HA and loudness. The regression curve closely follows the investigation result.
Equation (8) is the final form of the long-term annoyance model that combines aircraft
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noise and road traffic noise. If the aircraft and road traffic noise levels are known within
the research field, the percentage of highly annoyed residents due to noise can be deduced
from the model.

3.4. Annoyance Map

Figure 12a is an annoyance map generated by aircraft noise with road traffic noise
(background noise); Figure 12b is an annoyance map generated by road traffic noise with
aircraft noise (background noise). Figure 12a shows the highly annoyed distribution at the
airport, in the flight path of the aircraft, and in the vicinity.

(a) (b)

Figure 12. Annoyance maps: (a) Aircraft Noise with road traffic noise as background sound; (b) Road Traffic Noise with
aircraft noise as background sound.

4. Discussion

In this study, we presented a new perspective for the evaluation of annoyance of
combined noise. Both intensity and frequency components of noise could be considered
using the loudness, and the masking effect between each noise source within the combined
noise was quantified using the partial loudness.

4.1. Perceived Annoyance in Laboratory Tests

The laboratory tests allowed only acoustic effects of noise to be considered. Figure 13
shows the results of analyzing the experimental results in terms of the noise level. The
figure shows that annoyance of aircraft noise is higher than road noise, which was also
reported in previous studies [11–13]. When only single annoyance values are compared,
even when the aircraft noise level is smaller than the road noise level, the response to
the annoyance evaluation is the same or higher. Furthermore, comparing the results of
single and partial annoyance within the same noise source shows that single annoyance
is mostly more immense, demonstrating that the masking effect between noise sources
occurs [10]. In this study, the characteristics of each noise source and the masking effect
could be integrated into one variable by adopting partial loudness.

4.2. Perceived Annoyance in Field Survey

The long-term model derived in this study was compared with Miedema’s model [8].
Because Miedema’s model adopted the equivalent noise level of aircraft and road traffic
noises, the noise level was converted to the loudness to compare the two models. The
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tendencies of the models are similar; but the annoyance value of the model proposed in
this study is higher than that of Miedema’s model (Figure 14). The new model includes the
total annoyance of combined noise and the partial annoyance of aircraft and road traffic
noises. Further, because annoyance is a subjective psychoacoustic value, differences may
occur depending on the country, region, or subject. Therefore, we suggest that the model
developed in this study is more suitable for subjects residing in Korea.

Figure 13. Annoyance evaluation results according to the noise level.

Figure 14. Comparison between the suggested model in this study and Miedema’s annoyance model.

4.3. Relationship between Laboratory and Field Studies

Results from laboratory field studies are of limited comparability due to inherent
differences. Laboratory and field studies can be distinguished because the experimental
environment and conditions are different. In laboratory studies, subjects experimented in
the anechoic chamber, focusing on acoustic characteristics. The types of sound heard by
subjects were limited to aircraft noise and road traffic noise. It was an environment where
subjects could concentrate on only these two noises. Therefore, it was an ideal condition in
terms of acoustic characteristics.
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On the other hand, field studies were conducted for residents who have been exposed
to noise for more than a year. Participants answer the questionnaire relied on their memory.
In addition to noises covered by this study, there are many other noises in society, such as
construction and neighborhood noise. Moreover, non-acoustic effect modifiers are always
present in the field. For these reasons, it can be seen that the realistic environmental
condition is reflected.

In the laboratory study, acoustic effects were enhanced, and non-acoustic effects were
excluded. The acoustic effect is relatively weak in the field study, but the non-acoustic
effect was also considered. Thus, both two studies are complementary.

4.4. Annoyance Map

A peculiar feature on the annoyance map is the relatively small proportion of an-
noyance near roads. This is because annoyance is applied based on different levels of
background noise, even at the same noise level [49]. The noise maps of the previous studies
did not show this effect. Figure 12b shows the distribution of annoyance near the road;
unlike in Figure 12a, the effect of background (aircraft) noise is almost unnoticeable.

The difference in the background noise effect of aircraft and road traffic noise can
be explained by two main reasons. First, the exposure time and intensity of aircraft and
road traffic noises are different. Aircraft noise is characterized by impact, and road noise is
characterized by continuity. Therefore, the effects on the background noise are different.
Background road noise affects aircraft noise before and after the flight; however, aircraft
background noise only affects road noise during the flight. Therefore, subjects tend to
perceive road noise as the background rather than aircraft noise. The second reason is
the difference in a physical aspect. Figure 15(upper) is partial loudness of aircraft noise
when road traffic noise level is 75 dBA and aircraft noise level is 63 dBA. While road
traffic noise level is higher than the aircraft noise level, aircraft noise can still be perceived.
Figure 15(lower) is partial loudness of road traffic noise when the aircraft noise level is
83 dBA and road traffic noise level is 55 dBA. It is entirely different from Figure 15(upper),
partial loudness is measured only at the beginning and end of the road traffic noise playtime.
The middle part is completely masked by aircraft noise, and subjects do not recognize the
road traffic noise. For these reasons, it causes differences in the annoyance maps of aircraft
and road traffic noise.

Figure 15. Partial loudness in combined noise.
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4.5. Limitations

There are some limitations to our study. First, in a laboratory test, the levels of stimu-
lus sounds were adjusted in the amplitude without spectral characteristics, atmospheric
absorption, and ground effects. Nevertheless, we speculated that the difference with the
actual noise was minimized because noise sources with similar intensity were adjusted.
Second, although this study developed the combined noise assessment model with aircraft
and road traffic noise, the area to which the model can be applied is limited and specific.
Finally, Annoyance models in this study were developed based on the assumption that it
was most appropriate to analyze the masking effect. However, since the only variable in
models is loudness, this is accompanied by the risk of not fully explaining the annoyance.
Other metrics may also be affected by masking effects, but have not yet been clarified.
Therefore, this study was conducted considering only partial loudness.

4.6. Future Work

Future studies investigating annoyance assessment in different research areas with
the same conditions will be helpful to provide information about the scalability of the
model developed in this study. In addition to aircraft and road traffic, there are various
types of noise, including railway, industrial, and drone noise. It would also be of value to
investigate other combinations, which may vary depending on each noise’s intensity and
frequency characteristics.

5. Conclusions

This study developed annoyance models for combined noise using partial loudness
and implemented the annoyance as a visual map. Partial loudness, a psychoacoustic factor,
was adopted to consider that annoyance response varies depending on the noise source
and that a masking effect occurs between each noise source within the combined noise. A
modified model was proposed to calculate the loudness by combining the previous partial
loudness model with the binaural suppression of the loudness model and validated through
experimentation. Laboratory tests and surveys were conducted to evaluate annoyance due
to noise combined with aircraft noise and road traffic noise. These results were developed
into a short-term annoyance model and a long-term annoyance model, combined with
the modified partial loudness model proposed in this study. In addition to the total
annoyance due to the single and the combined noises of aircraft and road traffic noise,
the partial annoyance values of the target noise with background noise are also evaluated.
Implementing the long-term annoyance model to the noise mapping program deduces the
annoyance map of the research area. The annoyance maps show how people are annoyed
by the combined noises and the single noise source with the background noise. In this
research, the annoyance map of aircraft noise with background noise as road traffic noise
and road traffic noise with an ambient sound of road traffic noise are depicted. Annoyance
maps show the background noise effect, which is not seen in general noise maps. Moreover,
it is shown how aircraft and road traffic noises act as background noise. In the aircraft
noise annoyance map, the effect of road traffic noise is noticeable, while in the road traffic
noise, the aircraft noise barely affects the road traffic noise.
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