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A novel framework for joint detection of sleep spindles and K-complex events,

two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG)

signals are split into oscillatory (spindles) and transient (K-complex) components. This

decomposition is conveniently achieved by applying morphological component analysis

(MCA) to a sparse representation of EEG segments obtained by the recently introduced

discrete tunable Q-factor wavelet transform (TQWT). Tuning the Q-factor provides a

convenient and elegant tool to naturally decompose the signal into an oscillatory and

a transient component. The actual detection step relies on thresholding (i) the transient

component to reveal K-complexes and (ii) the time-frequency representation of the

oscillatory component to identify sleep spindles. Optimal thresholds are derived from

ROC-like curves (sensitivity vs. FDR) on training sets and the performance of the

method is assessed on test data sets. We assessed the performance of our method

using full-night sleep EEG data we collected from 14 participants. In comparison to

visual scoring (Expert 1), the proposed method detected spindles with a sensitivity of

83.18% and false discovery rate (FDR) of 39%, while K-complexes were detected with

a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained

when using a second expert as benchmark. In addition, when the TQWT and MCA

steps were excluded from the pipeline the detection sensitivities dropped down to 70%

for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62 and

49.09%, respectively. Finally, we also evaluated the performance of the proposedmethod

on a set of publicly available sleep EEG recordings. Overall, the results we obtained

suggest that the TQWT-MCA method may be a valuable alternative to existing spindle

and K-complex detection methods. Paths for improvements and further validations with

large-scale standard open-access benchmarking data sets are discussed.
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wavelet transform (TQWT), morphological component analysis (MCA), neural oscillations
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Introduction

We spend about one third of our lives sleeping. Luckily, and
as might be expected of an efficient organism, the time we
spend sleeping is not wasted idling. Sleep plays a functional role
mediating a range of cognitive processes including learning and
memory consolidation (Maquet, 2001; Walker and Stickgold,
2004; Diekelmann and Born, 2010; Fogel et al., 2012; Albouy
et al., 2013; Rasch and Born, 2013; Stickgold and Walker, 2013;
Alger et al., 2014; Vorster and Born, 2015), problem solving
(Cai et al., 2009), sensory processing (Bastuji et al., 2002;
Perrin et al., 2002; Ruby et al., 2013a; Kouider et al., 2014)
and dreaming (Nielsen and Levin, 2007; Hobson, 2009; Nir
and Tononi, 2010; Blagrove et al., 2013; Ruby et al., 2013b;
Eichenlaub et al., 2014a,b). Sleep disorders, as well as the mere
lack of sleep, can have serious effects on our health, both by
deteriorating the proper function of sleep-related brain processes
and indirectly by being a risk factor for conditions such as weight
gain, hypertension and diabetes (Anderson, 2015). The utmost
importance of a good night’s sleep is therefore unquestionable.
However, many questions related to the mechanisms and role
of the numerous electrophysiological signatures of sleep are
still outstanding. The standard approach to monitor sleep is
the use of Polysomnography (PSG) which combines multiple
physiological recordings including electroencephalogram
(EEG), electromyogram (EMG), electrocardiogram (ECG), and
electrooculogram (EOG). In addition to be being a central
diagnosis tool for a range of sleep disorders (such as narcolepsy,
idiopathic hypersomnia and sleep apnea), PSG is a valuable
tool for sleep research performed in healthy individuals. In
particular, the analysis of sleep EEG signals helps us understand
its neurophysiological basis and functional role. Macro and
micro-structures are present in sleep signals at various temporal
scales. Macro structure analysis often refers to sleep staging,
i.e., the segmentation of brain signals into 20 s or 30 s-long
periods that represent different sleep stages, each with distinct
cerebral signatures. On the other hand, micro structure analyses
of brain signals during sleep consists of detecting short-lived
microscopic events often considered to be hallmarks of specific
sleep stages and of sleep-related cognitive processes, as well
as potential signs of sleep anomalies. K-complexes and sleep
spindles are among the most prominent micro-events studied in
sleep studies, not only for their importance in sleep stage scoring
(as they predominantly occur during S2 sleep stage), but also
for their importance in the diagnosis of sleep disorders and the
exploration of the functional role of sleep.

According to the American Academy of Sleep Medicine

(AASM) (Iber et al., 2007), Sleep spindles are defined as: “A train
of distinct waves having a frequency of 11–16Hz with a duration

≥0.5 s, usually maximal in amplitude over central brain regions.”

These waveforms, which are controlled by thalamo-cortical loops
(e.g., Steriade, 2003, 2005; Barthó et al., 2014), are the subject

of an active area of investigation that seeks to understand the
mechanisms and functions of the sleeping brain. Numerous
studies have shown that sleep spindles have an important role
in memory consolidation during sleep (Schabus et al., 2004;
Morin et al., 2008; Diekelmann et al., 2009; Diekelmann and

Born, 2010; Barakat et al., 2011; Fogel et al., 2014; Lafortune
et al., 2014). Moreover, sleep spindle characteristics undergo age-
related changes (e.g., Seeck-Hirschner et al., 2012; Martin et al.,
2013). Other studies suggest that sleep spindles are clinically
important given that alterations in their density (number per
minute) may be a symptom of neurological disorders such as
dementia (e.g., Ktonas et al., 2009, 2014; Latreille et al., 2015),
schizophrenia (e.g., Ferrarelli et al., 2010; Ferrarelli and Tononi,
2011), depression (Riemann et al., 2001), stroke recovery, mental
retardation, and sleep disorders (De Gennaro and Ferrara, 2003).

K-complexes are defined by the AASM as “A well delineated
negative sharp wave immediately followed by a positive
component with a total duration ≥0.5 s, typically maximal at
frontal electrodes” (Iber et al., 2007). The precise role of K-
complexes in sleep is still a matter of debate. Some studies
consider them as an arousal response, since they are often
followed by micro-awakenings (Halász, 2005). Others give K-
complexes a sleep “protection” function (Jahnke et al., 2012).
Single-unit recordings during human sleep suggest that K-
complexes may represent isolated down-states (Cash et al., 2009).

The ability to reliably detect the occurrence of sleep spindles
and K-complexes in EEG recordings is therefore of major
importance in a wide range of sleep investigations, ranging
from basic research to clinical applications. Visual annotation
of sleep spindles and K-complexes is tedious, time consuming,
subjective and prone to human errors. The inter-agreement
between multiple scorers (for spindles and K-complex visual
marking) reported in the literature is relatively low (Zygierewicz
et al., 1999; Devuyst et al., 2010; Warby et al., 2014). Therefore,
as in sleep staging (e.g., O’Reilly et al., 2014; Lajnef et al., 2015),
automatic or semi-automatic identification procedures are of
great utility for the detection of sleep spindles and K-complexes.
Approaches based on band-pass filtering and thresholding have
been proposed for both spindles and K-complex detection
(e.g., Huupponen et al., 2000; Devuyst et al., 2010). Template-
based filtering using matching pursuit methods has also been
used proposed (e.g., Schönwald et al., 2006). Other filtering
approaches based on continuous wavelet transforms (CWTs)
have also been explored (Erdamar et al., 2012). Moreover, signal
classification methods have been used to detect K-complexes or
spindles, for instance, using artificial neural networks (ANN)
(e.g., Günes et al., 2011), Support Vector Machines (SVMs)
(e.g., Acir and Güzelis, 2004) and decision-trees (Duman et al.,
2009). Interestingly, only a handful of studies have investigated
the detection of K-complex and spindles simultaneously using a
common methodological framework (Jobert et al., 1992; Koley
and Dey, 2012; Jaleel et al., 2013; Camilleri et al., 2014; Parekh
et al., 2015).

In this study we propose a framework for joint spindle
and K-complex detection. The proposed method combines a
recently introduced discrete wavelet transform (DWT) known
as the Tunable Q-factor Wavelet Transform (TQWT) (Selesnick,
2011a) with Morphological Component Analysis (MCA). This
combination provides a natural and efficient way to decompose
the EEG signal into transient (K-complex) and oscillatory
(spindle) components. The results we obtain with full-night
sleep EEG recordings from 14 participants demonstrate the
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utility and added-valued of the proposed method. Our method
also performed well when compared with a standard spindle
detection method and when applied to a publicly available
spindle and K-complex data set.

Materials and Methods

K-Complex and Sleep Spindle Detection Method
Overview
The main steps of the K-complex and spindle detection pipeline
are presented in Figure 1. First, EEG segments are filtered so
as to reduce the effect of potential artifacts. The filtered signals
are then decomposed into oscillatory and transient components
by combining a TQWT with MCA. Next, applying FIR filtering
to the transient component unveils K-complex events, while
applying a CWT to the oscillatory component unravels spindle
events. The appropriate detection thresholds that need to be used
in the final step are determined by plotting sensitivity against
false discovery rate (FDR) for a range of potential thresholds
[an approach akin to Receiver Operating Characteristic (ROC)
curves] calculated from a subset of the data (training set). The
ROC-like curves are obtained by repeatedly measuring sensitivity
and FDRwhile varying the threshold parameters and using expert
visual marking of K-complexes and spindles as ground truth. The
steps that make up the proposed pipeline (Figure 1) are described
in detail the next sections.

EEG Sleep Recordings
Data Acquisition
The EEG data used in this study was collected from 14 healthy
subjects aged 29.2± 8 years, all recorded at the DyCog Lab of the
Lyon Neuroscience Research Center (CRNL, Lyon, France) with
a sampling frequency of 1000Hz. The data acquisition was part of
a research program exploring cognition during sleep (Eichenlaub
et al., 2012, 2014b; Ruby et al., 2013a,b). The EEG component
of the polysomnography recordings across the 14 subjects were
visually scored by an expert in successive windows of 30-s using
the R and K guidelines (Rechtschaffen and Kales, 1968). The
sleep staging step here gave us the possibility to choose to run
our detection pipeline (a) exclusively on S2 sleep segments, or
(b) on all sleep stages (as would be the case in the absence of
sleep scoring). In other words, sleep staging is not a required pre-
processing step for the detection method proposed here. Unless
otherwise stated, all the analyses described were based on the
standard EEG C3 channel.

Splitting the Data into Training and Test Sets
To evaluate the performance of the detection procedure, we
divided the data base into a training set (used to derive optimal
thresholds via ROC-like curves) and a test set used to compute
the performance of the method. Thirty S2 segments and 15 non-
S2 segments were randomly selected from the data of each of the
14 individuals (i.e., 630 sleep EEG data segments in total: 420 S2
segments and 210 non-S2 segments). This ensured a balanced
representation of data from across all subjects. Note, that our
emphasis on S2 stems from the fact that it is the sleep stage of
primary interest for the detection of spindles and K-complexes.

FIGURE 1 | Overview of the proposed EEG data analysis pipeline for

K-complex and sleep spindle detection (Abbreviations: TQWT, Tunable

Q-Factor Wavelet Transform; MCA, Morphological component

analysis; CWT, Continuous Wavelet Transform; FIR, Finite Impulse

Response).

As a general rule, we used equally sized training and test sets
(210 segments for testing and 210 segments for training). The
training and associated test sets consisted either of S2 segments
only (scenario 1), or of a mixture of S2 and non-S2 segments
(scenario 2). Note that in this second case, the test and training
sets contained 105 S2 and 105 non-S2 segments. As we spend
approximately half our sleep in stage 2 (Carskadon and Dement,
2011), this proportion was representative of using random
sampling of sleep segments. In addition, for practical purposes,
we also explored the effect of reducing the size of the training set
to evaluate minimal training requirements (scenario 3).

Signal Preprocessing and Visual Annotation of

Microstructures
The presence of various artifacts in sleep EEG adversely
affects both visual and automatic detection of spindles and
K-complexes. The EEG signals were therefore band-pass
filtered with low and high cutoff frequencies at 0.2 and at
40Hz, respectively. This was followed by visual inspection
in search of potential remaining artifacts. In addition, visual
annotation of K-complex and spindles on the EEG traces was
independently performed by two experts and used as two
alternative benchmarks. To facilitate this procedure, we designed
a graphical user interface (GUI), which was used by our experts to
visually explore the EEG data segments and identify K-complex
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and spindles events. The results of the visual detection were
saved to two separate text files containing segment number, start
and end times/sample for each event. For example, the visual
annotation by Expert 1 of the 420 segments of S2 sleep across
all subjects led to the identification of 437 Spindles and 293
K-complexes (see details in Table 1).

EEG Signal Decomposition Using TQWT and
MCA
K-complexes and spindles are microstructures that are
morphologically different. One major difference is that K-
complexes are transient while spindles are oscillatory. To exploit
this distinction, we set out to combine the recently introduced
TQWT discrete wavelet with MCA in order to conveniently
decompose any given EEG segment into two signals; a K-
complex channel and a spindle channel. The decomposition via
TQWT and MCA is described below.

Tunable Q-factor Wavelet Transform (TQWT)
TQWT is a flexible fully DWT that was recently introduced by
Selesnick (2011a,c), for which the Q-factor of the wavelet is easily
tuned and adapted to the signal being investigated. In principle, a
highQ-factor transform is suitable for oscillatory signals, whereas
transient signals are modeled using low Q-factor wavelets. Like
the dyadic DWT, TQWT consists of iteratively applying two-
channel filter bank, where the low-pass output of each filter bank
is the input to the next filter bank. A sub-band is then defined
as the output signal of each high pass filter. Considering J the
number of filter banks, there will be J + 1 sub-bands, i.e., J sub-
bands coming from the high-pass filter output signal of each filter
bank and the low-pass filter output signal of the final filter bank.
At each level, the generation of low-pass sub-band Cj[n] uses a

low-pass filter H
j
0 (w) followed by low-pass (LP) scaling α, and

similarly the generation of high-pass sub-band dj[n] uses a high-

pass H
j
1(w) and high-pass (HP) scaling β. H

j
0 (w) and H

j
1(w) are

defined as follows (Selesnick, 2011a):

H
(j)
0 (w) =







j− 1
∏

m= 0
H0

(

w
αm

)

, |w| ≤ αjπ

0, αjπ< |w|<π

(1)

and

H
(j)
1 (w) =















H1

(

w
αj− 1

) j− 2
∏

m= 0
H0

(

w
αm

)

,

(1−β) αj− 1 ≤ |w| ≤ αj− 1π

0, for others w ǫ[−π, π].

(2)

TABLE 1 | Example of visual annotation results by Expert 1 based on 420

S2 segments.

Spindles K-complexes

Number of segments with 244 199

Number of segments without 176 221

Number of detected events 437 293

All main parameters were computed as described in the original
study by Selesnick (2011a) and the user-manual of the TQWT
toolbox (Selesnick, 2011b). Three key parameters that need to be
set are the following:

(i) Q-factor: In the context of the present TQWT
implementation, the Q-factor is theoretically defined
as Q =(2− β)/β. As it reflects the oscillatory behavior of the
wavelet, the Q-factor can be set to fit the nature of the signal
to which it is applied. In other words the parameter Q can
be used to tune the wavelet function to the signal it seeks
to model. The signals of interest here are sleep spindles
and K-complex events. So to tune the TQWT wavelet
toward spindles, we selected a Q-value that corresponds
to the minimum number of cycles in a spindle burst. As
the latter occur predominantly within 11–16Hz frequency
range with a minimum duration of 0.5 s, we chose Q = 5.5.
In contrast, to tune the wavelet toward the K-complex
component (one cycle) we chose Q = 1, as this provided
a wavelet that closely models the shape of a transient
wave.

(ii) Maximum number of levels (Jmax): The selection of Jmax

depends on the length of the input signal (N) and the chosen
filter scaling parameters (α and β) and is defined by the
following equation: Jmax= log(βN/8) / log(1/α) (Selesnick,
2011a).

(iii) Redundancy parameter (r): The redundancy parameter
r controls the excessive ringing in order to localize the
wavelet in time without affecting its shape. Here, it’s
defined as: r = β/(1−α). The specific value r = 3 has
been previously recommended when processing biomedical
signals (Selesnick, 2011a,b).

Morphological Component Analyze (MCA)
The goal of the MCA is to decompose a given signal x
into two or more components on the basis of their sparse
representation. In our case, MCA is used to decompose a given
EEG signal x into an oscillatory component x1, and a transient
signal x2, such that:x = x1 + x2, where x, x1, x2 ∈

RN . Most importantly, this decomposition is carried out
using the TQWT transform (described above) as the sparse
representation of x (Selesnick, 2011c). According to the MCA
implementation using basis pursuit de-noising with dual Q-
factors described in Selesnick (2011b), the sparse wavelets
coefficients w1 and w2 associated respectively with x1 and
x2 can be estimated via the minimization of the following
function:

argminw1,w2

∥

∥x− 8∗
1 (w1) − 8∗

2 (w2)
∥

∥

2

2
+

∑J1+ 1
j= 1 λ1, j||w1, j||1

+
∑J2+1

j=1 λ2,j||w2 j||1 (3)

Where 81 and 82 are two matrices of TQWT parameters:
(Q1, r1, J1) and (Q2, r2, J2) respectively, w1 and w2 are vectors
which contain the concatenation of the wavelet transform sub-
bands, and λ1,j and λ2,j are the regularization parameters
associated respectively with the two types of wavelets (They
are two vectors of lengths J1 + 1 and J2 + 1, respectively).
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The sparse set of wavelet coefficients w1 and w2 are hence
obtained, via the convergence of the objective function given
by Equation (3). In the current study, the sparsity (few non-
zero coefficients in w1 and w2 vectors) was achieved by setting
the number of iterations for the convergence to 500. Next,
the components x1 and x2 are estimated by: x1 = 8∗

1 w1

and x2 = 8∗
2 w2 (where 8∗

1 and 8∗
2 are the inverse TQWT

matrices). Note that all parameters and variables described
here were computed strictly as described in the original study
by Selesnick (2011a) and user-manual of the TQWT toolbox
(Selesnick, 2011b). Figure 2 shows the results of the TQWT-
MCA decomposition applied to an illustrative 30-s EEG segment
that contains three spindles and one K-complex. Panels B and
C show the decomposition into selected oscillatory and transient
components. The next step is to apply a detection procedure to
identify the individual spindles and K-complex events from both
components. The detection step for each is described in the next
sections.

Spindle Detection
The oscillatory component obtained from the EEG
decomposition procedure described above is used to detect
the occurrence of sleep spindles. Applying a simple threshold
directly to this signal would not be appropriate since spindles do
not have an established range of amplitudes. Instead, we decided
to detect the spindles by filtering the oscillatory component
using a CWT.

Continuous Wavelet Transform (CWT)
To optimize the selection of the wavelet function to use
in the CWT analysis, we computed the cross-correlation
between several wavelet functions (Teolis, 1996) and the spindle
waveforms present in the training data set. Based on visual
inspection of similarity with the spindle waveform, we chose to
test the following wavelet functions: complex frequency B-spline
wavelets (Fbsp), complex Morlet wavelets (Cmor), complex
Shannon wavelets (Shan), and Gaussian wavelets (Gauss).
Figure 3 shows these individual wavelet functions as well as
boxplots for the cross-correlation mean values obtained when
using each one of them. Although the results were very close,
Fbsp showed the highest maximal value (upper line of each
box) and the highest median (red line) cross-correlation with
the spindle waveforms. Therefore, we chose to use complex
frequency B-spline wavelets which are defined as bsp (t) =
√

fb
[

sincm
(

t.
fb
m

)

.ej2πfct
]

, where m is an integer parameter

(m ≥ 1) that can be selected so as to ensure the best time-
frequency resolution, fb is the bandwidth parameter and fc is the
wavelet center frequency. The CWT-based time-frequency maps
computed throughout this study are based on this Fbsp wavelet
function in the pre-defined frequency band of sleep spindles (i.e.,
11–16Hz).

Detection of Local Maxima and Thresholding
To detect the occurrence of sleep spindles from the time-
frequency (T-F) map of the oscillatory component, we first search

FIGURE 2 | Signal decomposition of a 30-s sleep EEG segment (A) into an oscillatory component (B) and a transient component (C) using TQWT-MCA

method, with no residuals (D). See Section EEG Signal Decomposition using TQWT and MCA for method details.
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FIGURE 3 | Cross-correlation between various wavelet functions

and spindles waveforms. Results show mean cross-correlation

between 210 spindle waveforms and five distinct wavelet

functions: Frequency B-spline (Fbsp with m = 25), Complex Morlet

wavelet (Cmor), Shannon wavelet (Shan), and Gaussian wavelet

(Gauss).

for all local maxima by identifying T-F values that exceed those
of all eight surrounding neighbors of any given value in the 2D
time-frequency space (using a sliding window across the T-F two-
dimensional space). Next, we apply a detection threshold to the
obtained maxima in the T-F map. Selecting an optimal threshold
is a critical step. We chose a procedure that determines the
best threshold as the one that maximizes the difference between
sensitivity (Sen) and FDR of spindle detection (Note that other
options are of course possible and can easily be included in our
framework). A practical way to achieve this goal is by using
an ROC-like approach on a training data set. The concept is
straight-forward: we compute the values of sensitivity and FDR
of the detection method repeatedly as we gradually increase the
threshold used in the last step. This procedure yields a curve
that depicts how sensitivity and FDR co-vary as the detection
threshold is changed. The optimal threshold is the one that
maximizes the difference between sensitivity (ideally as high as
possible) and FDR (ideally as low as possible). Note that the
computation of FDR and sensitivity (see Section Performances
Metrics) requires the use of some form of ground truth. Here
we used expert visual marking as the benchmark. As our data
was visually annotated (for K-complexes and spindles) by two
experts, unless otherwise stated, we report all our results using,
as ground truth, the annotation of each separately.

In summary, the optimal threshold derived from the
“sensitivity vs. FDR” analysis is used when running the detection
pipeline on the test data set. In order to evaluate the performance

of the method, we compute once again sensitivity and FDR, but
now only on the results obtained with the test set. The interested
reader can find more details on such training procedures for
instance in the appendix of Chander (2007).

K-complex Detection
Unlike sleep spindles, K-complex waveform is distinguishable
from EEG background activity by “a well delineated negative
sharp wave.” Therefore, our rationale was that applying a negative
amplitude threshold on the transient components (derived from
the TQWT and MCA procedure) could be a promising way to
detect such events. However, in order to reduce the effect of
some high frequency waveforms which generate local minima
with amplitudes close to those of the K-complex (Devuyst et al.,
2010), we first apply a band-pass FIR filter [0.5–5Hz] to the
transient component produced by TQWT and MCA step. Next,
K-complexes are detected from the list of all local minima in
each segment using an optimal threshold value. Note that we
constrained the interval between two successive detected minima
to be at least 2 s long to reduce risks of false detections. An EEG
structure composed of multiple successive local amplitude peaks
(such as delta waves) could in theory lead to the detection of
a succession of transients and thus lead to the identification of
successive K-complexes. This is only acceptable if the successive
events are separated by at least 2 s, as that is approximately the
minimal interval expected between two real K-complexes. The
method used to derive the best threshold value to use here for
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K-complex identification is identical to the method described
for threshold selection in the case of spindle detection: We use
an ROC-like training procedure just as described in Section
Detection of Local Maxima and Thresholding.

Performances Metrics
To compute the ROC-like curves used to derive detection
thresholds (from the training set), and to evaluate the
performance of our method (on the test set) we compute two
basic metrics: the sensitivity (Sen) and FDR defined by Equations
(4) and (5) respectively:

Sen =
TP

TP + FN
(4)

FDR =
FP

FP + TP
(5)

Where TP (true positive detections) are the events marked by the
expert and correctly detected by our method, FN (false negative
detections) are the events marked by the expert but not detected
by the method and FP (false positive detections) represents the
number of events detected by the method but which were not
marked by the expert. Note that in detection contexts with
strongly unbalanced occurrences of positive and negative cases,
the ROC curve can provide an inadequate representation of the
performance of a classifier (O’Reilly and Nielsen, 2013). This is
the case here for the sleep EEG events we set out to detect because
the continuous EEG segments consist predominantly of true
negatives. This is why, instead of using standard ROC analysis,
i.e., plotting sensitivity vs. false positive rate (or 1-specificity), we
chose to depict sensitivity vs. FDR.

Expert Identification and Inter-annotator
Agreement Metrics
Two annotators visually identified all K-complexes and spindle
events in our database. Unless otherwise stated all automatic
detection results are evaluated against the annotation of Expert
1 and 2, independently. When evaluating the minimal number
of training segments needed for our method (Section Impact
of the Amount of Available Training Data on the Performance)
and when exploring the results on a subject by subject basis
(Section Performance of the Method in Individual Subjects)
we restricted the analysis to the segments where Expert 1 and
Expert 2 fully agreed (consensus). Inter-annotator agreement
was assessed using two metrics: (i) percent agreement (portion
of events on which raters compared to total number of events)
and (ii) Cohen’s kappa coefficient κ, a statistical measure of
inter-annotator agreement that takes into account the agreement
occurring by chance (Cohen, 1960).

Results

The results of the proposed methodology are presented in the
next sections as follows: First, we provide the results of the
training step (ROC-based identification of optimal thresholds),
followed by the performance of the method on test sleep data (S2
and non-S2). Next, we report also on the improvements achieved

by using the optional adjustment step where the expert reviews
(accepts/rejects) the false positive outputs of the method. We
then explore the practical utility of the method by monitoring its
performance as a function of training set size. Unless otherwise
stated, we report all our results using, as ground truth, the
annotation of each one of the two experts separately. This
provides further insights into the robustness of the method.

Detection of Optimal Threshold Values (Training
Phase)
In the training phase, we used a subset of the data (training set)
to derive “sensitivity vs. FDR” curves by evaluating sensitivity
and false detection rates as we vary the detection threshold.
Sensitivity and FDR were computed using 210 30-s EEG S2 data
segments for threshold values that varied in steps of 10µV2 for
spindles and 2µV for K-complexes (the unit reflects the fact that
the thresholds are applied to time-frequency maps and voltages,
respectively). The optimal threshold value, defined as the one
that maximizes the difference between sensitivity and FDR,
was determined from these curves and then used subsequently
in the validation phase (i.e., using the test set). For spindle
detection, this compromise in the training data was achieved
by a threshold set to 290µV2, yielding a sensitivity of 87.09%
and an FDR of 45.68%. In the case of K-complex detection,
a threshold value of −70µV provided the best compromise,
with a sensitivity of 78.72% and an FDR of 23.44%. The above
results were obtained when using Expert 1 as benchmark. The
results were very similar when relying on the annotation by
Expert 2 as benchmark: For spindle detection, this compromise
in the training data was achieved by a threshold set to 300µV2,
yielding a sensitivity of 83.45% and an FDR of 27.68%. In
the case of K-complex detection, a threshold value of −70µV
provided the best compromise, with a sensitivity of 85.76% and
an FDR of 32.22%. Figure 4 shows an example that illustrates
the results of the training step and how the optimal threshold
levels are determined. The identified thresholds are then used
when applying the detection pipeline to the test segments (see
next section). Throughout the paper, the training strategy was
applied using visual scoring either by Expert 1, Expert 2 or by
only using the data segments for which both experts fully agreed
(consensus). Unless otherwise stated, we report the results of each
analysis by providing the results obtained against Expert 1 and
Expert 2 independently.

Spindle and K-complex Detection Performance
(Test Set)
To evaluate the performance of the pipeline and, in particular,
assess the success of the threshold identification procedure,
the spindle and K-complex specific thresholds identified in the
training phase were then used to run the detection algorithm on
previously unseen test segments. Figure 5 illustrates the detection
procedure on the same sample sleep segment shown presented
in Figure 2. The global results obtained for all 210 test EEG S2-
sleep segments are shown in Table 2. The full analysis (training
and testing) was repeated twice, each time using a different scorer
as ground truth to explore the robustness of the procedure.
The results indicate that the method proposed here yields a
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FIGURE 4 | Sensitivity-FDR plots used for the determination of

optimal spindle and K-complex detection thresholds (on training

data). (A,C) show ROC-like-curves of sensitivity vs. FDR for spindles and

K-complex respectively. (B,D) depict the difference between sensitivity and

FDR as the threshold is varied. The optimal thresholds were defined as

those corresponding to maximum difference (vertical red line). The

corresponding cut-off point is also depicted on (A,C) with black circles.

Note that the sensitivity and FDR in the illustrative examples presented here

are computed against consensus scoring (i.e., agreement between both

scorers).

reasonably high sensitivity both for spindles (scorer 1: 83.18%,
scorer 2: 81.57%) and K-complex (scorer 1: 81.57%, scorer 2:
85.25%). The FDR values for spindles reached 39% (scorer 1)
and 19.66% (scorer 2), while the FDR for K-complex detection
was 29.54% and 32.82% for scorers 1 and 2, respectively. Note
that the inter-rater overall agreement was 77.85% (Cohen’s
kappa 0.64) and 63.33% (Cohen’s kappa 0.51) for spindle and
K-complex identification respectively. Table 2 also shows the
method performance when applied exclusively to data segments
for which both scorers agreed (100% inter-rater agreement, i.e.,
consensus scoring). In the case of spindle identification, this led
to a sensitivity of 86.40% and an FDR of 29.22%.

Performance Comparison with and without
TQWT and MCA
How critical is the inclusion of the TQWT-MCA decomposition
framework proposed here for the performance of the detection?
To address this question we set out to evaluate the added-value
of TQWT and MCA decomposition in the detection process. To
this end, the entire pipeline was performed again on the same
data set as above but this time with one notable difference: the
TQWT andMCA steps were excluded from the method. In other
words, instead of using oscillatory and transient components

(i.e., the output of TQWT-MCA), the detection process started
directly from raw EEG signals for K-complex identification, and
directly from its CWT transform for spindle detection. Figure 6
compares the results obtained with and without the TQWT-
MCA step. When using Expert 1 as ground truth, excluding the
proposed decomposition led to a drop in sensitivity for spindle
detection (from 83.18 down to 70%) and for K-complex detection
(from 81.57 down to 76.97%). Deterioration was also observed
in terms of increased false detections. The FDR values increased
from 39 to 43.62% in spindles detection and rose from 29.54
to 49.09% for K-complex detection. The corresponding results
obtained with Expert 2 as ground truth are comparable and are
given in panels C and D of Figure 6. These findings quantify
the specific added-value of the TQWT-MCA decomposition as
a pre-processing step, as compared to direct detection on the
raw EEG signal. In the discussion section, we further confirm
these observations by comparing our method to another peak
detection method previously published in the literature.

Scoring Adjustment Based on Expert Review of
False Positives
We evaluated the potential performance enhancement that
would be achieved by an additional (optional) step in which
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FIGURE 5 | Illustration of sleep spindle and K-complex detection in the

same EEG segment shown in Figure 2. (A) Spindle detection procedure:

from the raw EEG signal (upper panel) to the time-frequency representation of

the oscillatory component resulting from the TQWT-MCA decomposition

(middle panel), to spindle identification (lower panel). (B) The associated

K-complex detection in the same segment by thresholding the transient

component resulting from the TQWT-MCA decomposition (see Figure 2).

the false positive detections of our algorithm were presented
to the expert scorer for review. This allowed the scorer to
decide to accept or reject events detected by the algorithm
but that he had initially not marked. A dedicated GUI was
developed for this score adjustment (SA) procedure. After this
process was carried out a new file with the adjusted score
was created and the whole detection pipeline was repeated
(i.e., including the training and validation processes). The
performance enhancement obtained with the SA procedure is
shown in Figure 6. As expected, sensitivity increased and FDR
decreased, for K-complexes and spindles. The most prominent
improvements were a drop in spindle FDR from 39 to 21.33%
and an increase in K-complex sensitivity from 81.57 to 87.27%,
when using the annotations of Expert 1 (Figures 6A,B). Similar
results were obtained when comparing against annotations by
Expert 2 (Figures 6C,D). Note that this semi-automatic step

TABLE 2 | Method performance (Sensitivity and FDR) obtained by applying

the pipeline to the validation data set (test segments) for spindles and

K-complexes detection.

Sensitivity (%) FDR (%)

SCORER 1

Spindle 83.18 39.00

K-complex 81.57 29.54

SCORER 2

Spindle 83.10 19.66

K-complex 85.25 32.82

SCORER 1 and 2 (AGREEMENT)

Spindle 86.40 29.22

K-complex 80.86 21.39

Results are shown for scorer 1, scorer 2 and also for the case where only data with full

agreement between the two scorers were used.

is not considered part of the proposed methodology, as it
requires visual marking of the whole data set. Nevertheless,
this analysis quantifies the impact of the subjective scoring,
and provides an estimate of the performance that the method
could provide if the scorer provides a more consistent visual
marking.

Stability of the Proposed Method with Regards to
Sleep Stages
The results presented above were obtained with EEG segments
that were recorded during S2, the sleep stage where K-complex
and spindles are most frequent. However, as indicated above,
our method does not require sleep staging as a preliminary
pre-processing step. The method is in theory equally valid for
EEG segments from all sleep stages. We therefore also examined
the performance of the detection algorithm by using 420 EEG
segments including data from all sleep stages. Half of the
segments were S2 (i.e., 210 segments) and the other half were
non-S2 sleep (i.e., 210 segments). The 210 non-S2 segments
were composed of: 126 REM segments, 42 SWS segments and
42 S1 segments. Note that these proportions were chosen to be
close to the natural distribution (frequency of occurrence) of
the various sleep stages across a typical night’s sleep (Carskadon
and Dement, 2011). The motivation behind this selection was
to create training and test sets with compositions as close as
possible to what one would get from a random sampling of
sleep EEG epochs, i.e., without access to sleep stage information.
Using equal number of events across sleep stages (or running our
analysis separately for each sleep stage) was not feasible with the
data at hand given that some of the sleep stages, in particular
S1 and REM, contain a very low number of spindles and
K-complexes.

Globally speaking, the results of this analysis (see Table 3)
show a slight increase in sensitivity but comes at the expense
of an increase in FDR. This is most likely due to the fact that
the thresholds are better tuned to the more numerous S2 events.
Note that also in this analysis we see a reasonable agreement
between the results obtained when using each of the two scorers
as ground-truth.
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FIGURE 6 | Detection performances with and without the

TQWT-MCA decomposition step and additional performance

enhancement via scorer adjustment (SA). (A) Sensitivity and FDR

metrics for spindle detection (with scoring by Expert 1 used as ground

truth), (B) Sensitivity and FDR metrics for K-complex detection (with

scoring by Expert 1 used as ground truth). (C,D) Same as (A,B)

respectively, but now using the scoring by Expert 2 as ground truth. The

detection of spindles and K-complexes is enhanced by the use of

TQWT-MCA and further improvements are obtained using the scorer

adjustment approach.

TABLE 3 | Method performance (Sensitivity and FDR) obtained by applying

the pipeline to a validation data set (test segments) for spindle and

K-complex detection that includes data from all sleep stages (S2 and

non-S2 segments).

Sensitivity (%) FDR (%)

EXPERT 1

Spindle 86.82 45.36

K-complex 80.23 37.27

EXPERT 2

Spindle 85.05 32.19

K-complex 82.5 38.00

Results are shown for both scorers. The performances obtained if we restrict the detection

to S2 segments are presented in Table 2.

Impact of the Amount of Available Training Data
on the Performance
The method proposed here is by definition a semi-automatic
procedure since it has a built-in training step that uses visual
marking of a subset of data to determine an optimal threshold
that is to be used on the rest of the data. An important question is
therefore: what is the minimal amount of visual scoring required
by our method in order to achieve acceptable detection results?
Obviously the method would be of little use, if half (or more)

of the K-complexes and spindles in the data need to be marked
by an expert to ensure that it works. To address this question
we launched the entire pipeline (training and testing) repeatedly,
each time using an increasing number of training segments
(starting from five segments up to 200 segments, the procedure
was repeated five times at each size with random selection of
segments). The aim was to see how quickly the sensitivity and
FDR metrics stabilize. Here, we restricted the analysis to all
segments where the annotations of both experts were in complete
agreement (consensus). This was done to ensure robustness of
the annotation and because of the lengthy computational cost
associated with recalculating the whole analysis for annotations
from each expert. The aim here was not to assess the effect of
inter-expert variability, but rather to assess the dependency of
our technique on the number of training samples. The results
in Figure 7 show that, luckily, the performance metrics reach
a plateau already with a small number of training segments
(below 20 segments for spindles and below 50 segments for K-
complexes). This result indicates that the proposed method can
be used with minimal visual marking.

Performance of the Method in Individual Subjects
The results presented so far were obtained by combining EEG
sleep segments extracted from multiple subjects (n = 14).
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FIGURE 7 | Detection performance as a function of training set size. (A)

Effect of training set size on sensitivity and FDR of spindle detection. (B) Effect

of training set size on sensitivity and FDR of K-complex detection.

But how robust is the proposed method for the detection of
K-complexes and spindles in each individual subject? And, in
particular, how good are the performances in single subjects
when only a handful of events have been visually marked and
thus available for training? To address this question we launched
the entire detection pipeline in each subject individually using
only 15 segments for training (On average these 15 30-s segments
contained 18 ± 4.3 spindles and 11.9 ± 2.3 K-complex events).
In addition, as in the previous analysis (Section Impact of the
Amount of Available Training Data on the Performance) we
restricted the analysis to all segments where the annotations
of both experts were in agreement (consensus). The results
listed in Table 4 indicate a reasonably good performance in each
individual. The means of the individual performances (achieved
from only 18 spindles and 11.9 K-complexes on average) are in
fact comparable to those achieved (see Table 2) when combining
the data from all subjects and using half the data for training (210
segments, consisting of 141 K-complex and 217 spindle events).
As a matter of fact, the mean sensitivity for spindle detection (i.e.,
84.39%) which was obtained with very low number of training

TABLE 4 | Performance of the TQWT-MCA spindle and K-complex

detection method in each subject with minimal training.

Spindle K-complex

Sens % FDR % Th (µV2) Sens (%) FDR (%) Th (µV)

S1 61.54 20.00 300 78.57 21.42 −68

S2 85.00 50.00 210 88.89 27.27 −72

S3 100.00 27.27 240 81.81 10.00 −80

S4 62.50 16.67 300 75.00 10.00 −82

S5 73.91 19.05 270 57.14 11.11 −94

S6 81.43 23.25 280 83.33 23.08 −74

S7 96.30 35.00 240 60.00 14.28 −78

S8 90.62 9.37 270 80.76 20.00 −94

S9 90.00 47.06 230 88.89 11.11 −66

S10 95.65 21.43 260 93.33 12.50 −62

S11 100.00 50.00 210 100.00 26.67 −70

S12 100.00 23.68 270 33.33 88.88 −78

S13 76.19 11.11 300 83.33 45.22 −98

S14 68.42 31.58 340 80.00 42.86 −54

Mean 84.39 27.53 265.7 77.45 26.04 −76.4

Sensitivity Sen (%), FDR (%), and the optimal threshold (Th) are reported for each individual

but also as mean values across the whole population (bottom row). Only 15 annotated

30-s EEG segments were used for training in each subject (corresponding on average to

18 ± 4.3 spindles and 11.9 ± 2.3 K-complex training events).

samples is slightly higher than the value achieved with half of
the whole data set when combining data across individuals.
The results in Table 4 confirm that individually determined
thresholds provide good results and, because they were achieved
with only 15 training segments, it also suggests that the proposed
method does not require a lot of visual marking. Note however,
that for practical reasons and for the sake of generalizability we
recommend the use of a global detection threshold, just as we did
in all previous sections.

Comparison with a Standard Detection Method
To gain insights into how our method compares to existing
methods, we implemented a standard spindle detection method
(Gais et al., 2002; Mölle et al., 2002) which has already been
implemented or used as a standard method for comparison, in
numerous publications (e.g., Gais et al., 2002; Mölle et al., 2002;
Bergmann et al., 2012; Feld et al., 2013; Parekh et al., 2014,
2015; Warby et al., 2014). In brief, the procedure consists of the
following steps: (1) filtering the EEG with a 12–15Hz bandpass
filter, (2) calculating the root mean square (RMS) of each 100ms
interval of the filtered signal, (3) counting the number of times
the RMS power crossed a constant detection thresholdT value for
0.5–3 s. In the original study, Mölle et al. (2002) set the threshold
T to 10µV. To choose the best value for this parameter with
regards to our data, we computed the performances we achieved
using all T values between 5 and 12µV (in 1Hz steps) on the
training test. The threshold that provided the best compromise
between sensitivity and FDR was the one used when applying our
method to the test data. Table 5 compares the results obtained
with this standard method (Mölle et al., 2002) to those obtained
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TABLE 5 | Comparison between the results (Sensitivity and FDR) achieved with our method to those obtained by applying a standard spindle detection

technique (Mölle et al., 2002), and to those achieved by a hybrid approach where we use the proposed TQWT + MCA analysis as a pre-processing step

before running the standard RMS-based detection procedure.

Filtering + RMS (Mölle et al., 2002) Current study

Standard With TQWT Expert 1 Expert2

Expert 1 Expert 2 Expert 1 Expert 2

Sensitivity 70.30 70.56 74.06 75.88 83.18 83.10

FDR 49.45 46.21 42.22 37.24 39 19.66

The performances of these three approaches are reported against Expert 1 and Expert 2 independently. The best results were achieved with the method proposed in this study.

with our method, but also to a hybrid approach where we use
our TQWT + MCA analysis as a pre-processing before running
the standard RMS-procedure proposed inMölle et al. (2002). The
results in Table 5 suggest that our method outperforms the RMS-
based method on the same data set. In addition, we found that
the performance of the RMS-based method (Mölle et al., 2002)
can be substantially improved if we first apply our TQWT-MCA
processing to the data. Note that the thresholds T that yielded the
best results with our data were 6 and 8µV for the detection with
and without TQWT-MCA, respectively.

Performance Evaluation on a Publicly Available
Database
To investigate the performance of our method on sleep EEG
data other than our own recordings, we detected spindles
and K-complexes by applying our method to the DREAMS
data set, a publicly available database of annotated sleep
EEG. EEG recordings from two specific databases were used:
The Sleep Spindle database and the K-complexes database,
which have both been made available by University of MONS
- TCTS Laboratory and Université Libre de Bruxelles—
CHU de Charleroi Sleep Laboratory. The spindles data can
be accessed online at: http://www.tcts.fpms.ac.be/~devuyst/
Databases/DatabaseSpindles/ while the K-complex data can
be found at: http://www.tcts.fpms.ac.be/~devuyst/Databases/
DatabaseKcomplexes/. The spindles and K-complexes databases
consist respectively of 8 and 10 excerpts of 30min of annotated
central EEG channel extracted fromwhole-night PSG recordings.
Here, we used recordings from the subjects that were recorded
with identical sampling rate (200Hz) and for which the visual
annotation was complete. This meant that for spindle detection
we used 6 participants out of 8 and for the K-complex detection
we used the data from all 10 participants. We used the annotation
by Expert 1 as benchmark since the annotations of Expert 2 are
not available for all subjects. The straight-forward application
of our method to these data, without any specific parameter
adaptations, yielded a sensitivity of 71.77% and FDR of 30.54%
for spindle detection, and a sensitivity of 83.31% and FDR of
36.31% for K-complex detection.

Discussion

The current study proposes a new method for joint detection
of sleep spindles and K-complex events, two hallmarks of

NREM sleep stage 2, by conveniently splitting the EEG
signal into oscillatory (spindles) and transient (K-complex)
components. The decomposition is achieved by applying MCA
on a sparse representation of EEG segments obtained by
the recently introduced discrete TQWT (Selesnick, 2011a,b,c)
with parameters specifically tuned to spindle and K-complex
characteristics. The actual detection step relies on thresholding
(a) the transient component in the search for K-complexes
and (b) the time-frequency representation of the oscillatory
component in search for sleep spindles. Optimal thresholds are
extracted fromROC-like curves (sensitivity vs. FDR) in a training
set, and the performance of the method is assessed on the test set.

Overall the method presented here provides a reasonable
compromise between sensitivity and FDR with performances
that were robust on several levels: First, the performances
did not change much when the benchmarking ground-truth
was switched from one scorer to another [Section Spindle
and K-complex Detection Performance (Test Set)]. Second, the
performance hardly changed whether only stage2 sleep EEG
segments were used or if data from all sleep stages were examined
(Section Stability of the Proposed Method with Regards to
Sleep Stages). Third, and most importantly, our results show
that the method does not require a large training set to derive
optimal cut-off thresholds. By varying the number of segments
used for training, we found that the performance in terms
of sensitivity and FDR reaches a plateau within less than 20
training segments (Section Impact of the Amount of Available
Training Data on the Performance, Figure 7). Finally, the latter
observation was further confirmed by running the detection
pipeline on individual subjects where the training (search for
optimal threshold) was restricted to 15 segments (i.e., using on
average 18 spindles and 12 K-complexes). This analysis revealed
good sensitivity and relatively low FDR in each subject and also
in terms of means over all individuals (Section Performance of
the Method in Individual Subjects, Table 4).

The TQWT-MCA approach has been recently used to
dissociate transient events with or without high frequency
oscillations (HFOs) in intracranial EEG (Chaibi et al., 2014). The
current study, is to our knowledge, the first to demonstrate the
utility of the TQWT-MCA framework for the detection of sleep
spindles and K-complexes.

Furthermore, the results we obtained by excluding the
TQWT-MCA decomposition from the proposed framework,
confirmed and quantified its contribution to the high
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performances obtained (Section Performance Comparison
with and without TQWT and MCA). Compared to the results
obtained without the TQWT-MCA step, our method achieved
an additional 13 point increase in percent sensitivity for spindles
and a five point increase for K-complexes (Figure 6). Since the
proposed decomposition is based on sparse representation of
spindles and K-complexes, it reduces the effect of noise and
artifacts in EEG signals, which may explain, at least in part, the
improved performance of the subsequent CWT and FIR filtering.

In addition, we have shown that a simple visual marking
adjustment step can lead to significant improvements, in
particular by reducing FDR. In the scorer adjustment procedure
the expert is presented with the false positive detections and is
given the possibility to accept or reject detections that he had
initially not indicated but that the algorithm identified as being
positives. This SA procedure is not part of the recommended
algorithm, rather a way to identify and quantify cases where
the objective machine might actually outperform the subjective
human scorer.

Parekh et al. (2014) propose a strategy to improve spindle
detection by pre-processing the raw EEG signal using non-
linear dual Basis Pursuit Denoising (BPD) which is also a way
to separate the non-oscillatory transient components of the
signal from the sustained rhythmic oscillations. The subsequent
filtering of the oscillatory component enhances the spindles with
regards to baseline, and thereby improves their detectability
with standard spindle detectors. Using this technique with a
readily available EEG spindle database provided a mean increase
of 13.3% in the by-sample F1 score and 13.9% in the by-
sample Matthews Correlation Coefficient score. A recent study
by the same group also provides compelling evidence for the
added value of using sparse optimization to detect spindles
and K-complexes (Parekh et al., 2015). A direct comparison
between these approaches and the methodology proposed here
is not straightforward given the use of by-sample metrics in
the Parekh et al. (2014, 2015) studies. Most importantly, the
current method and those proposed by Parekh et al. (2014, 2015)
provide converging evidence of improved spindle detection via
time-frequency sparsity, and they collectively suggest that this
framework is a promising path for enhanced performance of
event detection in sleep EEG.

Overall, the results reported here (either by combining data
across participants or by performing the detection algorithm
separately for each individual) are comparable with the results
of existing methods. However, we performed further analyses in
order to gain additional insights into (a) how the performance
of the pipeline proposed here compares to existing methodology
(Section Comparison with a Standard Detection Method) and
(b) how well it performs on other available data sets (Section
Performance Evaluation on a Publicly Available Database). The
results suggest that our method provides better detection than
the RMS-based method and that the performance of the latter
can be improved if we first apply the TQWT-MCA processing
to the data before computing the RMS (Table 5). Furthermore,
application of our method to the Devuyst et al. (2010, 2011)
online database, yielded a sensitivity of 71.77% and FDR of
30.54% for spindle detection, and a sensitivity of 83.31% and

FDR of 36.31% for K-complex detection. The original papers
associated with these databases do not directly report sensitivity
and FDR, but these metrics can be inferred from the confusion
matrices they provided for each expert. Using Expert 1 as ground
truth (as we did here), they detected spindles with sensitivity of
68.40% and FDR of 62.04% (computed from confusion matrix
in Devuyst et al., 2011). As for K-complexes, they were detected
with sensitivity of 61% and FDR of 26.70% (computed from
confusion matrix in Devuyst et al., 2010). Note, however, that the
comparison between their findings and ours is limited by the fact
that the recordings provided online does not allow us to explore
the exact data sets used in Devuyst et al. (2010, 2011).

More generally, the comparison between existing methods
for spindle and/or K-complex identification is not an easy
endeavor. First of all, the different methods proposed are
generally evaluated on different EEG data sets and with different
scorers, often with substantial inter-rater variability (Wendt
et al., 2015). Moreover, performance metrics also tend to differ
across studies. Recent efforts seek to overcome such limitations
by providing free access to high quality annotated sleep EEG
data sets (O’Reilly et al., 2014). Such benchmark data carry
the potential to significantly advance the field of automatic
spindle and K-complex detection, as well as sleep staging. This
was performed in a recent report by O’Reilly and Nielsen
(2015) where the authors compared four automatic spindle
detection algorithms: Teager detector (Ahmed et al., 2009), Sigma
index (Huupponen et al., 2007), RSP (Devuyst et al., 2011),
RMS (Mölle et al., 2002). To this end, four data bases were
used, two of which are open access: the DREAMS database
(Devuyst et al., 2010, 2011) and the Montreal Archive of Sleep
Studies (MASS) (O’Reilly et al., 2014). The results obtained and
conclusions drawn from this important comparison highlight
limitations and shortcomings of classical detection performance
evaluations frameworks. In particular, the reported findings
question the reliability of using expert scoring as gold standard.
In addition, they highlight the necessity of using an exhaustive
set of performance metrics: The authors recommend the use
of sensitivity, precision and a more comprehensive statistic
such as Matthew’s correlation coefficient, F1-score, or Cohen’s
κ for adequate sleep spindle assessment. Comparison of our
results with those presented in this comparative study is not
straightforward because we use window-based performance
metrics whereas the study by O’Reilly and Nielsen (2015) use
a signal-sample metric, equivalent to the “by-sample” metric
(Warby et al., 2014). This discrepancy is in itself problematic.
Future studies should seek to evaluate detection performance
using a unified set of evaluation metrics computed on large
open-access benchmarking data bases. Such an assessment of the
method proposed here would certainly help evaluate its strengths
and limitations.

The current study is one of a few reports that have proposed
a common methodological framework for the joint detection
of K-complex and spindles (Jobert et al., 1992; Koley and Dey,
2012; Jaleel et al., 2013; Camilleri et al., 2014; Parekh et al.,
2015).While Jobert et al. (1992) used matched filtering to detect
sleep spindles and K-complex waveforms, Camilleri et al. (2014)
used switching multiple models. The authors of the latter study
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evaluated their method by computing sensitivity and specificity
based on two expert manual scores and reported a sensitivity
of 83.49 and 52.02% and a specificity of 78.89 and 90.55%
for respectively spindles and K-complex detection. In addition,
Koley and Dey (2012) used CWTs to detect a set of sleep
EEG characteristic waveform, including spindles and K-complex.
They reported a good accuracy of 92.6 and 93.9% but didn’t
mention any performance metrics that take false positive or false
negative detection into account. Jaleel et al. (2013) proposed
a pilot detection method based on a mimicking algorithm
which imitates human visual scoring. However, no systematic
evaluation of performance metrics was provided. The method
proposed by Parekh et al. (2015) provides an elegant approach
based on the decomposition of the EEG signals into three signal
components (low-frequency, transient and non-oscillatory) and
their results highlight the utility of sparse optimization in the
improved detection of spindles and K-complexes.

Because of the naturally low number of K-complexes or
spindles across some of the stages (S1 and REM in particular)
it was impossible for us here to conduct our detection pipeline
on each sleep stage individually. Instead, we evaluated the
performance of our method by using either only S2 segments, or
by pooling segments from all stages (S2 and non-S2 segments).
Future studies with larger annotated sleep EEG databases will be
needed to assess and compare the robustness of our method in
each single sleep stage.

One way to increase the performance of our method could
be to fine-tune parameters of the TQWT and of the MCA
procedures on a subject by subject basis, so as to account for inter-
individual differences in spindle and K-complex properties. To
what extent the performance can be improved by modifying the
tuning Q-factor (globally or for each individual) is not clear and
could be the focus of further investigation. Future explorations
may also benefit from exploring the use of alternative wavelets,
such as the Morse wavelet (Lilly and Olhede, 2012) which has
successfully been used in recent studies (Zerouali et al., 2013,
2014; O’Reilly et al., 2015).

Moreover, it is possible that the false positive detections in
our pipeline include vertex waves mistakenly identified as K-
complexes since the two events bare strong resemblances. Careful
selection of the FIR filter parameters may help reduce this risk
since vertex waves are shorter-lived events (<0.5 s).

A further path for performance improvement is to seek to
identify spindles and K-complexes in multi-electrode data. The
co-occurrence (and even delays) of the presence of these micro-
structure across parietal, temporal and frontal brain areas would
be very informative, and could even be used to increase detection
performance. In addition, exploring the results obtained with the
proposed method across all scalp-EEG channels could be helpful
in assessing the distribution and propagation of K-complexes
and spindles (O’Reilly and Nielsen, 2014a,b) and unraveling their
underlying network dynamics (Zerouali et al., 2014). Note also

that the Q-factor of the TQWT can easily be tuned to incorporate
differences in frequencies between, for instance, faster central
spindles and slightly slower frontal spindles (e.g., Andrillon et al.,
2011).

Another venue for future research would also be to attempt
to incorporate into our framework recent findings of cross-
frequency relationships among various electrophysiological
signatures of sleep. In particular, high-frequency activity in the
gamma-range, which has been shown to be involved in a variety
of cognitive processes (e.g., Jerbi et al., 2009a,b; Jung et al., 2010;
Dalal et al., 2011; Lachaux et al., 2012; Perrone-Bertolotti et al.,
2012; Vidal et al., 2014), has also been shown to co-fluctuate
with slower brain rhythms (Jensen and Colgin, 2007; Canolty
and Knight, 2010; Soto and Jerbi, 2012). During sleep, gamma
oscillations have been linked to spindles (e.g., Ayoub et al.,
2012) and to slow wave sleep in intracranial EEG recordings
(Dalal et al., 2010; Le Van Quyen et al., 2010; Valderrama et al.,
2012) and in non-invasive EEG recordings (Piantoni et al.,
2013). Whether including these cross-frequency relationships
will enhance current detection tools remains to be seen.

Conclusion

The current study demonstrates the feasibility of identifying
spindles and K-complex events in sleep EEG using a single
methodological framework by literally tuning into the oscillatory
characteristics of the target events via the TQWT. Because of
the now well acknowledged challenges that face performance
evaluation of automatic and semi-automatic procedures
(O’Reilly et al., 2014), the next step would be to validate
our method on a larger open-access benchmarking sleep
database. This would allow us to perform fair and informative
comparisons with other existing methods, and possibly to
fine-tune the parameter selection for our method. From a
broader perspective, the flexibility with which the TQWT and
MCA decomposition (Selesnick and Bayram, 2009; Selesnick,
2011a,b,c) can be tuned to specific oscillatory or transient
phenomena in the signal suggests that it could be a promising
tool for the detection of other structures in sleep EEG signals
beyond those included in this study, such as vertex wave, slow
waves and apnea.
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