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Knowledge of the MHC class I ligands of rhesus macaque killer-cell Ig-like receptors (KIRs)
is fundamental to understanding the role of natural killer (NK) cells in this species as a
nonhuman primate model for infectious diseases, transplantation and reproductive
biology. We previously identified Mamu-AG as a ligand for KIR3DL05. Mamu-AG is a
nonclassical MHC class I molecule that is expressed at the maternal-fetal interface of the
placenta in rhesus macaques similar to HLA-G in humans. Although Mamu-AG and HLA-
G share similar molecular features, including limited polymorphism and a short
cytoplasmic tail, Mamu-AG is considerably more polymorphic. To determine which
allotypes of Mamu-AG serve as ligands for KIR3DL05, we tested reporter cell lines
expressing five different alleles of KIR3DL05 (KIR3DL05*001, KIR3DL05*004,
KIR3DL05*005, KIR3DL05*008 and KIR3DL05*X) for responses to target cells
expressing eight different alleles of Mamu-AG. All five allotypes of KIR3DL05 responded
to Mamu-AG2*01:01, two exhibited dominant responses to Mamu-AG1*05:01, and three
had low but detectable responses to Mamu-AG3*03:01, -AG3*03:02, -AG3*03:03 and
-AG3*03:04. Since KIR3DL05*X is the product of recombination between KIR3DL05 and
KIR3DS02, we also tested an allotype of KIR3DS02 (KIR3DS02*004) and found that this
activating KIR also recognizes Mamu-AG2*01:01. Additional analysis of Mamu-AG
variants with single amino acid substitutions identified residues in the a1-domain
essential for recognition by KIR3DL05. These results reveal variation in KIR3DL05 and
KIR3DS02 responses to Mamu-AG and define Mamu-AG polymorphisms that
differentially affect KIR recognition.

Keywords: KIR, MHC, Mamu-AG, macaque, HLA-G, placenta, pregnancy
org March 2022 | Volume 13 | Article 8411361

https://www.frontiersin.org/articles/10.3389/fimmu.2022.841136/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.841136/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.841136/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.841136/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.841136/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:dtevans2@wisc.edu
https://doi.org/10.3389/fimmu.2022.841136
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.841136
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.841136&domain=pdf&date_stamp=2022-03-23


Nicholas et al. KIR3DL05 and KIR3DS02 Recognition of Mamu-AG
INTRODUCTION

MHC class I molecules play a central role in both innate and
adaptive immunity. In addition to presenting peptides derived
from intracellular antigens on the cell surface for recognition by
CD8+ T cells, MHC class I molecules serve as ligands for killer
cell Ig-like receptors (KIRs) on natural killer (NK) cells (1, 2).
Whereas the extensive polymorphism of classical MHC class I
molecules ensures the presentation of a diverse repertoire of
peptides derived from intracellular pathogens to CD8+ T cells,
the limited polymorphism of nonclassical MHC class I molecules
reflects their more specialized functions.

Macaques and other Old World monkeys express an
expanded array of polymorphic MHC class I genes that
correspond to the classical HLA-A and -B genes of humans (3–5).
However, these species lack an ortholog ofHLA-C as a consequence
of the recent evolutionary origin of HLA-C as a duplication of an
ancestral MHC-B gene that occurred after the divergence of apes
and Old World monkeys (3, 6). Old World monkeys have
accordingly expanded their lineage II KIR, which encode KIR3D
receptors for MHC-A and -B, but lack lineage III KIR that encode
KIR2D receptors for HLA-C in humans (7–13). Old World
monkeys also have orthologs of each of the human nonclassical
HLA-E, -F and -G genes. MHC-E and -F are well-conserved and
broadly expressed in primates (14–16). However, theMHC-G genes
of OldWorld monkeys have accumulated multiple stop codons and
no longer encode functional proteins (17, 18). In the absence of a
functional MHC-G locus, Old World monkeys have evolved
another nonclassical MHC class I gene, designated MHC-AG,
which appears to serve a similar function (19–22).

Macaques, vervets, and baboons express MHC-AG molecules
with similar molecular features and tissue distribution as HLA-G
(22, 23).MHC-AG sequences are more similar toMHC-A than to
MHC-G as a consequence of their evolutionary origins as an
MHC-A gene duplication (19–22). However like HLA-G, MHC-
AG exhibits limited polymorphism, a truncated cytoplasmic tail,
and is only expressed on placental trophoblasts that form the
barrier between the mother and the developing fetus (19, 20, 23).
Hence, Mamu-AG is believed to serve a similar function as HLA-
G, namely contributing to pregnancy success through
interactions with NK cells and myeloid cells that promote
placental vascularization, tolerance to the haploidentical fetus,
and protect the maternal-fetal interface from invading pathogens
(23, 24).

The rhesus macaque (Macaca mulatta) is an important
animal model for infectious diseases such as HIV/AIDS, CMV,
Zika virus and SARS-CoV-2 (25–35), transplantation (36, 37),
and reproductive biology (23, 38). We previously identified
Mamu-AG as a ligand for KIR3DL05 (39). Here we show that
KIR3DL05 recognizes certain allotypes of Mamu-AG, but not
others, and define residues in the a1- and a2-domains of Mamu-
AG essential for interactions with this receptor. We further
identify Mamu-AG as a ligand for the activating receptor
KIR3DS02. These observations provide an essential foundation
for investigating the role of NK cells in the rhesus macaque as a
nonhuman primate model for infectious diseases and
reproductive biology. These findings also illustrate how
Frontiers in Immunology | www.frontiersin.org 2
polymorphisms in the a1-domain can lead to variation in KIR
recognition of closely related MHC class I ligands.
MATERIALS AND METHODS

MHC Class I-Transduced 721.221 Cells
Codon-optimized cDNA sequences encoding Mamu-AG
molecules were synthesized by GenScript. These sequences were
then cloned into the retroviral vector pQCXIP. Retroviral vectors
were packaged into VSV-G-pseudotyped murine leukemia virus
(MLV) particles by co-transfecting GP2-293 cells with pQCXIP-
Mamu-AG constructs and pVSV-G (Clontech Laboratories). The
cell culture supernatant was collected two days after transfection
and cellular debris was removed by centrifugation followed by
filtration through a 0.45 µm nylon membrane. HLA-null 721.221
cells were transduced by spinoculation for one hour with
supernatant collected from the transfected GP2-293 cells. After
two days, the transduced cells were placed under antibiotic
selection with RPMI medium supplemented with 10% FBS, L-
glutamine, penicillin, streptomycin (R10) and 0.4 µg/ml
puromycin (Calbiochem). The concentration of puromycin in
the medium was gradually increased to 1.0 µg/ml over 3-4
weeks to eliminate untransduced parental 721.221 cells. After 3-
4 weeks of selection, cell lines were maintained in medium
containing 0.4 µg/ml puromycin. Mamu-AG expression was
confirmed by flow cytometry via surface staining with a PE-
conjugated, pan-MHC class I-reactive monoclonal antibody (W6/
32, Life Technologies). Mamu-AG-transduced 721.221 cell lines
were maintained in R10medium containing 0.4 µg/ml puromycin.
The GenBank accession numbers for Mamu-AG alleles are as
follows: Mamu-AG2*01:01 (U84783.1), -AG3*02:01:01:01
(U84785.1), -AG3*02:02:01 (U84786.1), -AG3*03:01:01:01
(U84787.1), -AG3*03:02 (U84789.1), -AG3*03:03 (KF855159.1),
-AG3*03:04 (KF855160.1), and -AG1*05:01 (FJ409466). Only
partial-length cDNA sequences were available for Mamu-
AG3*03:03, -AG3*03:04, and -AG1*05:01. For constructs
expressing these alleles, sequences encoding the a3-,
transmembrane and cytoplasmic domains were therefore
inferred from the Mamu-AG consensus sequence.

KIR-CD3z-Transduced Jurkat NFAT
Luciferase Reporter Cells
Constructs for the expression of chimeric KIR-CD3z receptors
with an N-terminal Flag-tag were engineered by cloning cDNA
sequences into pQCXIP encoding the D0, D1, D2 and stem
domains of KIR3DL05 downstream of sequences for the
KIR3DL05*008 leader peptide and Flag-tag (DYKDDDDK)
and upstream of sequences coding for the transmembrane and
cytoplasmic domains of CD3z. Retroviral vectors were packaged
into VSV-G-pseudotyped MLV particles as described above.
Jurkat NFAT luciferase (JNL) cells (Signosis) were transduced
by spinoculation for one hour with filtered supernatant from
transfected GP2-293 cells. Two days after transduction, the JNL
cells were placed under antibiotic selection in R10 medium
containing 100 µg/ml hygromycin to maintain the luciferase
March 2022 | Volume 13 | Article 841136
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reporter gene and 0.5 µg/ml puromycin to select for KIR-CD3z
expression. The puromycin concentration in the medium was
gradually increased to 1.0 µg/ml over 3-4 weeks to eliminate
untransduced cells and then maintained at a concentration of 0.4
µg/ml. GenBank accession numbers for rhesus macaque KIR
sequences are as follows: KIR3DL05*001/KIR3DLW36*001
(EU419045), KIR3DL05*004 (EU419066.1), KIR3DL05*005/
KIR3DLW37*001 (EU419069), KIR3DL05*X (EU419067.1),
KIR3DL05*008 (GU112291), and KIR3DS02*004 (EU419026).

Ligand Identification Assay
KIR-CD3z+ JNL cells (1x105) were co-cultured with Mamu-AG+

or parental 721.221 cells (1x105) overnight at 37°C and 5% CO2

in triplicate wells of white 96-well plates in 100 µl R10 medium
without antibiotics. As a positive control, KIR-CD3z+ JNL cells
were treated with 5 µg/ml of an anti-Flag-tag monoclonal
antibody (GenScript) and 10 µg/ml of a goat anti-mouse
secondary antibody (Poly4053, Biolegend). After 12-18 hours,
100 µl of BriteLite Plus luciferase substrate (PerkinElmer) was
added to each well and luciferase activity in relative light units
(RLU) was measured using a VICTOR X4 multiplate
reader (PerkinElmer).

Flow Cytometry
KIR-CD3z expression was verified by surface staining parental
and KIR-CD3z-transduced JNL cells with a PE-conjugated anti-
Flag antibody (Miltenyi Biotec). MHC class I expression was
confirmed by surface staining parental and Mamu-AG-
transduced 721.221 cells with a PE-conjugated pan-MHC class
I-specific monoclonal antibody (W6/32, eBioscience). JNL and
721.221 cells were also stained with live-dead near-IR fluorescent
stain (Invitrogen) to exclude dead cells. Data was collected on a
BD FACSymphony flow cytometer and analyzed using FlowJo
software (TreeStar, Inc.). After gating on singlet, viable cells, the
surface expression of KIR-CD3z and Mamu-AG on transduced
cells was compared to parental JNL and 721.221 cells.

Statistical Analysis
The RLU data was analyzed by one-way ANOVA followed by
Dunnett’s test for multiple comparisons of mean KIR-CD3z+

JNL cell responses to each of the Mamu-AG+ 721.221 cells with
mean responses to the parental 721.221 cells as a negative
control. For analysis of responses to the Mamu-AG2*02:01
variants, mean RLU values in response to 721.221 cells
expressing each variant were compared with mean RLU values
in response to 721.221 cells expressing wild-type Mamu-
AG2*02:01 using an unpaired t test. Statistical analyses were
performed using GraphPad Prism for Mac OS version 9.2.0.
RESULTS

Allotypic Variation in KIR3DL05 Responses
to Mamu-AG Ligands
Mamu-AG2*01:01 was previously identified as a ligand for
KIR3DL05*008 (39). However, Mamu-AG and KIR3DL05 are
Frontiers in Immunology | www.frontiersin.org 3
both polymorphic, raising the possibility of allelic variation in
ligand recognition. To assess the impact of polymorphisms in
these molecules on receptor-ligand interactions, five allotypes of
KIR3DL05 were tested for the recognition of eight allotypes of
Mamu-AG. KIR3DL05*001, *004, *005, *X and *008 were
selected from a previous study showing differences in
KIR3DL05 binding to Mamu-A1*002-peptide complexes (40)
(Figure 1) and Mamu-AG2*02:01, -AG3*02:01, -AG3*02:02,
-AG3*03:01, -AG3*03:02, -AG3*03:03, -AG*03:04 and
-AG1*05:01 were selected as representative allomorphs of
predicted Mamu-AG loci (Figure 2A). Jurkat cells containing
an NFAT-inducible luciferase reporter gene (JNL cells) were
transduced with retroviral vectors expressing chimeric KIR-
CD3z receptors consisting of the extracellular domains of
KIR3DL05 (D0, D1, D2 and stem) fused to the transmembrane
and cytoplasmic domains of human CD3z. To verify surface
expression, a Flag-tag (DYKDDDDK) was appended to the N-
terminus of the D0 domain of each of the KIR-CD3z chimeras
(Figure 1B). 721.221 cells, which are deficient for the expression
of endogenous HLA class I molecules (42), were in turn
transduced with vectors expressing individual Mamu-AG
alleles (Figure 2B).

Polymorphic differences were observed in KIR3DL05-
mediated responses to different Mamu-AG molecules. Ligand
recognition was detected by the MHC class I-dependent
upregulation of luciferase by the KIR-CD3z+ JNL cells after an
overnight incubation with each of the Mamu-AG+ 721.221 cells.
Differences in luciferase induction were compared to parental
721.221 cells as a negative control and to KIR-CD3z+ JNL cells
incubated with anti-Flag and anti-mouse IgG antibodies to cross-
link receptors as a positive control for signaling. All five
KIR3DL05 allotypes responded to Mamu-AG2*01:01
(Figure 3). Dominant responses to Mamu-AG1*05:01 were
also observed for KIR3DL05*001 and KIR3DL05*X, and
additional responses to Mamu-AG3*03:01, -AG3*03:02,
-AG3*03 :03 and -AG3*03 :04 were de tec tab l e for
KIR3DL05*004, KIR3DL05*X and KIR3DL05*008 (Figure 3).
However, none of the KIR3DL05 allotypes responded to either
Mamu-AG3*02:01 or -AG3*02:02 (Figure 3). These differences
in ligand recognition did not correspond to differences in the
surface expression of KIR-CD3z on JNL cells or Mamu-AG on
721.221 cells, but instead reflected polymorphisms in KIR3DL05
and Mamu-AG.

Mamu-AG Recognition by an
Activating KIR
KIR3DL05*X is the product of a recombination event that
resulted in a hybrid receptor with D0 and D1 domains
corresponding to KIR3DS02 and a D2 domain typical of
KIR3DL05. We therefore tested KIR3DS02*004, which shares
identical D0 and D1 domains with KIR3DL05*X, to determine if
this activating KIR could also recognize Mamu-AG (Figure 4A).
JNL cells expressing a KIR3DS02*004-CD3z fusion responded to
721.221 cells expressing Mamu-AG2*01:01, but not to cells
expressing other Mamu-AG alleles (Figures 4B, C). These
resul ts ident i fy Mamu-AG2*01 :01 as a l igand for
March 2022 | Volume 13 | Article 841136
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KIR3DS02*004 and suggest that the more restricted pattern of
responses to Mamu-AG compared to KIR3DL05*X reflects
differences in the D2 domain.

Mamu-AG Determinants of Recognition
by KIR3DL05
To define Mamu-AG polymorphisms that account for
differences in KIR3DL05 recognition, amino acid substitutions
were introduced into Mamu-AG2*01:01 at positions that differ
from Mamu-AG3*02:01 and -AG3*03:01. 721.221 cells
expressing these variants were then tested for recognition by
KIR3DL05-CD3z+ JNL cells (Figure 5). The replacement of any
one of three amino acids in the a1-domain of Mamu-AG2*01:01
with the corresponding residues of Mamu-AG3*02:01 (W18G,
E19Q or V76E) partially or completely impaired KIR3DL05
recognition (Figure 5A). Likewise, individually exchanging three
amino acids of Mamu-AG2*01:01 with the corresponding residues
of Mamu-AG3*03:01 (S11A, R75Q or I95F) significantly impaired
interactions with KIR3DL05 (Figure 5A). Conversely, a
combination of three amino acid changes in the a1-domain of
Mamu-AG3*02:01 (G18W, Q19E and E76V) was sufficient to
restore interactions with KIR3DL05 to a similar level as Mamu-
AG2*01:01 (Figure 5A). Thus, similar to the KIR recognition of
Frontiers in Immunology | www.frontiersin.org 4
classical MHC class I ligands, the specificity of KIR3DL05 is
primarily determined by polymorphisms in the a1-domain of
Mamu-AG.

The amino acid residues of Mamu-AG2*01:01 that
participate in interactions with KIR3DL05 were modeled by in
silico replacement of the corresponding residues in a three-
dimensional structure of Mamu-A1*002. Mamu-A1*002 was
selected for modeling due to its general sequence similarity
with Mamu-AG and because it is also a ligand for KIR3DL05
(43). All of the polymorphic residues that affect KIR3DL05
recognition are in close proximity to the Bw4 motif (residues
77-83) at the C-terminal end of the a1-domain (Figure 6).
Residues 75 and 76, for which the R75Q and V76E
polymorphisms had the greatest impact on KIR3DL05
responses, are part of the a-helical region directly adjacent to
the Bw4 motif (Figure 6). Residues 18 and 19 are located in an
underlying loop that was previously identified as a KIR contact
site based on the crystal structure of human KIR3DL1 in
complex with HLA-B*5701 (Figure 6) (41). The side chains of
these residues are surface exposed in a region where the W18G
and E19Q polymorphisms would be expected to contribute to a
patch of sequence diversity together with polymorphisms at
positions 75 and 76. In contrast, residues 11 and 95 are located
A

B

FIGURE 1 | KIR3DL05 allotypes and surface expression of their KIR-CD3z chimeras on JNL cells. (A) Predicted amino acid sequence alignment for the D0, D1 and
D2 domains of KIR3DL05*001, *004, *005, *X and *008. Regions shaded in gray indicate predicted MHC class I contact sites (41). Positions of amino acid identity
are indicated by periods and amino acid differences are identified by their single-letter code. (B) KIR-CD3z+ JNL cells and parental JNL cells were stained with a PE-
conjugated anti-Flag antibody and Near-IR LIVE/DEAD stain. After gating to exclude dead cells, the fluorescence intensity of KIR-CD3z (Flag-tag) staining on KIR-
CD3z-transduced JNL cells (open) was compared to background staining on parental JNL cells (shaded). Flow cytometry data was analyzed using FlowJo 10.6 for
Mac OSX. Values indicate geometric mean fluorescence intensity of staining.
March 2022 | Volume 13 | Article 841136
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in the floor of the peptide binding pocket and are unlikely to be
surface exposed. The partial effects of the S11A and I95F on
KIR3DL05 responses may therefore reflect differences in peptide
binding and/or conformational changes to the peptide-MHC
class I complex. Overall, these results are consistent with the
structure of KIR3DL1 in complex with HLA-B*5701 showing
extensive contacts between the D0 and D1 domains of the KIR
and the a1-domain of the MHC class I molecule (41). These
findings also illustrate that while polymorphisms in residues 77-
83 may determine broad patterns of KIR recognition (e.g. Bw4
Frontiers in Immunology | www.frontiersin.org 5
specificity), polymorphisms in adjoining regions can contribute
to variation in responses to closely related MHC class I allotypes.
DISCUSSION

Definition of the MHC class I ligands of rhesus macaque KIRs is
foundational for studying NK cell responses in this species as an
animal model for infectious diseases, transplantation and
reproductive biology. In a previous survey of KIR-MHC class I
A

B

FIGURE 2 | Mamu-AG allotypes and their surface expression on 721.221 cells. (A) An alignment showing the predicted amino acid sequences for Mamu-
AG2*01:01, -AG3*02:01, -AG3*02:02, -AG3*03:01, -AG3*03:02, -AG3*03:03, -AG3*03:04, and -AG1*05:01. Regions shaded in gray indicate predicted KIR
contact sites (41). Residues 77-83 that correspond to a Bw4 motif are underlined. Positions of amino acid identity are indicated by periods and amino acid
differences are identified by their single-letter code. Sequences in the a3-, transmembrane and cytoplasmic domains of Mamu-AG3*03:03, -AG3*03:04, and
-AG1*05:01 that were inferred from the consensus sequence are indicated in light gray. (B) Mamu-AG+ 721.221 cells and parental 721.221 cells were
stained with a PE-conjugated pan-MHC class I-specific antibody (W6/32) and Near-IR LIVE/DEAD stain. After gating to exclude dead cells, the fluorescence
intensity of MHC class I staining on Mamu-AG-transduced 721.221 cells (open) was compared to background staining of their respective parental cell lines
(shaded). Flow cytometry data was analyzed using FlowJo 10.6 for Mac OSX. Values indicate geometric mean fluorescence intensity of staining.
March 2022 | Volume 13 | Article 841136
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interactions in the rhesus macaque, Mamu-AG2*01:01 was
identified as a ligand for KIR3DL05*008 (39). Although
Mamu-AG does not have a direct human ortholog, it shares
similar molecular features and tissue distribution as HLA-G (19,
20, 23). However, Mamu-AG is considerably more polymorphic
than HLA-G owing to allelic variation at multiple loci (44).
KIR3DL05 is also polymorphic with at least 33 different
KIR3DL05 alleles identified so far (45). To gain a better
understanding of the determinants of KIR3DL05 specificity for
Frontiers in Immunology | www.frontiersin.org 6
Mamu-AG, we investigated the impact of Mamu-AG
polymorphisms on this receptor-ligand interaction.

Our findings reveal three general patterns of Mamu-AG
recognition among the KIR3DL05 allotypes selected for this study.
The most common pattern exhibited by KIR3DL05*004, *005 and
*008 includes dominant responses to Mamu-AG2*01:01 and lower,
more variable responses to Mamu-AG3*03:01, -AG3*03:02,
-AG3*03:03 and -AG3*03:04. The nearly identical responses of
KIR3DL05*004 and *008 reflect the overall similarity of their
A B

C D

E F

FIGURE 3 | Mamu-AG recognition by five different allotypes of KIR3DL05. Jurkat NFAT luciferase (JNL) cells expressing the ectodomains of KIR3DL05*001
(A), KIR3DL05*004 (B), KIR3DL05*005 (C), KIR3DL05*X (D), or KIR3DL05*008 (E) fused to the transmembrane and cytoplasmic domains of CD3z were
incubated at a 1:1 E:T ratio with 721.221 cells expressing eight different Mamu-AG allotypes. KIR-CD3z+ JNL cells were also incubated with parental
721.221 cells as a negative control and with a combination of anti-Flag and anti-mouse IgG antibodies as a positive control (X-link). Ligand recognition was
detected by the upregulation of luciferase. (A–E) Bars indicate the mean relative light units (RLU) of luciferase activity in triplicate wells for each of the
receptors plotted separately, or (F) the fold-induction of luciferase over background responses to parental 721.221 cells for each of the receptors plotted
together. Error bars indicate SD of the mean and asterisks denote statistically significant differences (*p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001,
one-way ANOVA with Dunnett’s test).
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extracellular domains, which only differ by a single amino acid in the
D1 domain (Q139H). KIR3DL05*005 differs from each of these
KIRs by seven residues in D0 domain and two in the D1 domain.
However, only one of these polymorphisms (Y29H) is located in a
predicted MHC class I contact site. In contrast to the other allotypes,
KIR3DL05*001 responded strongly to Mamu-AG1*05:01, weakly to
Mamu-AG2*01:01, and not at all to Mamu-AG3. Since
KIR3DL05*001 and *008 share identical D1 and D2 domains, but
differ by nine amino acids in the D0 domain, including three residues
in predicted MHC class I contact sites, this shift in Mamu-AG
recognition is a function of polymorphisms in the D0 domain.
KIR3DL05*X exhibited a more complex pattern that included
dominant responses to both Mamu-AG2*01:01 and -AG1*05:01,
and detectable responses to Mamu-AG3*03:01, -AG3*03:02,
-AG3*03:03 and -AG3*03:04. Whereas KIR3DL05*X differs from
KIR3DL05*008 by only two amino acids in the D0 domain, there are
Frontiers in Immunology | www.frontiersin.org 7
thirteen differences in the D1 domain. The more extensive
differences in D1 reflect the hybrid origins of this KIR, which is
comprised of the leader peptide, D0 and D1 domains of KIR3DS02
(exons 1-4) and the D2, stem, transmembrane and cytoplasmic
domains of KIR3DL05 (exons 5-9) (40). Overall, these observations
reveal differences in KIR3DL05 recognition of Mamu-AGmolecules
that are determined by polymorphisms in their D0 and D1 domains.

We also tested an allotype of KIR3DS02 with identical D0 and
D1 domains to KIR3DL05*X. KIR3DS02*004 recognized
Mamu-AG2*01:01, but did not respond to other Mamu-AG
allotypes. These results identify Mamu-AG2*01:01 as a ligand for
this activating KIR and indicate that differences in the D2
domains of KIR3DS02*004 and KIR3DL05*X account for
differences in their responses to other Mamu-AG molecules.

An analysis of single amino acid variants identified Mamu-
AG polymorphisms that affect KIR3DL05 recognition.
A

B C

FIGURE 4 | KIR3DS02 recognition of Mamu-AG. (A) Predicted amino acid sequence alignment for the D0-D2 domains of KIR3DL05*008, KIR3DL05*X and KIR3DS02*004.
Regions shaded in gray indicate predicted MHC class I contact sites (41). Positions of amino acid identity are indicated by periods and amino acid differences are identified by
their single-letter code. (B) KIR3DS02*004-CD3z+ JNL cells and parental JNL cells were stained with a PE-conjugated anti-Flag antibody and Near-IR LIVE/DEAD stain. After
gating to exclude dead cells, the fluorescence intensity of KIR-CD3z (Flag-tag) staining on KIR-CD3z-transduced JNL cells (open) was compared to background staining on
parental JNL cells (shaded). Geometric MFI values indicated. Flow cytometry data was analyzed using FlowJo 10.6 for Mac OSX. (C) KIR3DS02*004-CD3z+ JNL cells were
incubated with 721.221 cells expressing eight different Mamu-AG allotypes at a 1:1 E:T ratio. KIR-CD3z+ JNL cells were also incubated with parental 721.221 cells as a
negative control and with a combination of anti-Flag and anti-mouse IgG antibodies as a positive control (X-link). Ligand recognition was detected by the upregulation of
luciferase. Bars indicate the mean relative light units (RLU) of luciferase activity in triplicate wells. Error bars indicate SD of the mean and asterisks denote statistically significant
differences (****p < 0.0001, one-way ANOVA with Dunnett’s test).
March 2022 | Volume 13 | Article 841136

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nicholas et al. KIR3DL05 and KIR3DS02 Recognition of Mamu-AG
These include differences in the a-helical region of the a1
domain (R75Q & V76E), an N-terminal loop of the a1
domain (W18G & E19Q), and the b-sheet that forms the floor
of the peptide binding pocket (S11A & I95F). Residues 18, 19, 75
and 76 are located on the same face of the a1 domain and
coincide with predicted KIR contact sites (41). Thus, the effects
of polymorphisms at these positions may be attributed to
interactions with KIR3DL05. On the other hand, residues 11
and 95 are not predicted to contact the KIR, but may alter the
conformation of the bound peptide or adjacent residues in the a1
domain in a manner that indirectly affects interactions with
KIR3DL05. These observations illustrate how a few amino acid
differences in surfaces of the a1 domain can result in differential
Frontiers in Immunology | www.frontiersin.org 8
recognition of closely related MHC class I molecules and are
consistent with the co-evolution of the D0 and D1 domains of
KIRs in concert with the a1 domain of MHC class I ligands.

In humans, HLA-G is expressed by fetal trophoblasts that
invade the uterine endometrium during early stages of
pregnancy and on extravillous trophoblasts that remodel spiral
arteries of the developing placenta (46). HLA-G is a ligand for
KIR2DL4 (47, 48), which is an unusual 2 domain KIR with both
activating and inhibitory features. KIR2DL4 has a positively
charged arginine residue in the transmembrane domain for
pairing with FceRIg to transduce activating signals and a long
cytoplasmic tail with an immunotyrosine-based inhibitory motif
(ITIM) (49). This receptor interacts with a soluble isoform of
A

B

FIGURE 5 | Identification of residues in the a1- and a2-domains of Mamu-AG that contribute to recognition by KIR3DL05. (A) 721.221 cells expressing
Mamu-AG2*01:01 variants with single amino acid substitutions at positions that differ from Mamu-AG3*02:01 or -AG3*03:01 and Mamu-AG3*02:01 variants
with substitutions at positions that differ from Mamu-AG2*01:01 were co-incubated with of KIR3DL05*008-CD3z+ JNL cells overnight at a 1:1 E:T ratio.
KIR-CD3z+ JNL cells were also incubated with parental 721.221 cells as a negative control and with anti-Flag and anti-mouse IgG antibodies as positive
control (X-link). Bars represent the mean luciferase activity (RLU) from triplicate wells. Error bars indicate SD of the mean and asterisks denote statistically
significant differences (***p < 0.0005, ****p < 0.0001, one-way ANOVA with Dunnett’s test). (B) Mamu-AG+ 721.221 cells and parental 721.221 cells were
stained with a PE-conjugated pan-MHC class I-specific antibody (W6/32) and Near-IR LIVE/DEAD stain. After excluding dead cells, the fluorescence
intensity of MHC class I staining on the surface of Mamu-AG-transduced 721.221 cells (open) was compared to background staining on parental 721.221
cells (shaded). Flow cytometry data was analyzed using FlowJo 10.6 for Mac OSX. Values indicate geometric mean fluorescence intensity of staining.
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HLA-G in endosomes to stimulate the release of pro-
inflammatory and pro-angiogenic factors by decidual NK cells
that promote placental vascularization (50–52). Although the
presence of HLA-E on extravillous trophoblasts is thought to
play a dominant role in maintaining fetal tolerance via inhibitory
interactions with CD94/NKG2A on decidual NK cells, HLA-G
may facilitate tolerance through additional interactions with
inhibitory receptors and by serving as a source of leader
peptides bound by HLA-E (52, 53).

The ortholog of HLA-G (Mamu-G) in rhesus macaques is a
pseudogene (17). However, macaques express another
nonclassical MHC class I molecule with similar tissue
distribution (19). Like HLA-G, Mamu-AG is expressed on fetal
cytotrophoblasts that invade the endometrium and on
syncytiotrophoblasts of the placental chorionic villi (23). While
it has been difficult to experimentally verify the function of HLA-
G in humans, passive transfer of a Mamu-AG-specific
monoclonal antibody to pregnant macaques was shown to
disrupt leukocyte responses to implantation, vascularization,
and placental development (38). Thus, Mamu-AG appears to
serve a similar function as HLA-G.

The identification of Mamu-AG as a ligand for KIR3DL05
and KIR3DS02 reveals that certain macaque KIRs are capable of
mediating functional interactions with this nonclassical
molecule. While macaques express a recognizable ortholog of
KIR2DL4 (KIR2DL04) (7, 54), there is no reason to believe that
this receptor interacts with Mamu-AG, which bears no
homology to HLA-G. Nevertheless, it is likely that there are
other receptors for Mamu-AG that are yet to be identified. These
may include additional KIRs or other types of receptors that react
more broadly with MHC class I molecules, such as the Ig-like
Frontiers in Immunology | www.frontiersin.org 9
transcripts 2 and 4 (ILT-2 and ILT-4) that are known to serve as
receptors for HLA-G in humans (55).

A complex and precarious balance of NK cell activating and
inhibitory receptor interactions is essential for normal placental
development, fetal tolerance, and immune surveillance of the
maternal-fetal interface. Precisely how KIR3DL05 and
KIR3DS02 interactions with Mamu-AG contribute to this
balance in macaques is presently unclear. The ligation of
activating receptors on decidual NK cells may stimulate the
release of pro-inflammatory and pro-angiogenic factors that
promote placental vascularization and increase blood supply to
the developing fetus, similar to the interactions of KIR2DL4 with
soluble HLA-G or lineage III KIRs (KIR2Ds) with HLA-C in
humans (52, 56). In the absence of HLA-G or HLA-C, it is
conceivable that macaques depend on Mamu-AG recognition by
activating KIRs such as KIR3DS02 to stimulate placental
vascularization. Mamu-AG may also facilitate fetal tolerance
through interactions with inhibitory KIRs such as KIR3DL05
or by providing leader peptides that stabilize Mamu-E on the
surface of trophoblasts for inhibitory signaling through CD94/
NKG2A (57).

Recent studies have demonstrated a role for decidual NK cells
in protecting the maternal-fetal interface. Extravillous
trophoblasts are susceptible to a number of pathogens that are
transmitted in utero , including Zika virus (ZiKV),
cytomegalovirus (CMV), and Toxoplasma gondii (58–63). In
the case of ZiKV, infection of extravillous trophoblasts causes
ER stress that results in the downregulation of HLA-C and -G,
which renders these cells susceptible to killing by decidual NK
cells (60). Similar antimicrobial functions of decidual NK cells
have been reported for CMV and Listeria monocytogenes (64–
66). Thus, disruption or alteration of Mamu-AG expression on
macaque trophoblasts may trigger decidual NK cell responses
through inhibitory or activating KIRs. KIR3DL05 and KIR3DS02
may thereby contribute to pregnancy success by protecting the
maternal-fetal interface from invading microorganisms.
Furthermore, polymorphic differences in these KIRs and
Mamu-AG could account for individual variation in resistance
to placental transmission of viral and bacterial pathogens.

The rhesus macaque has become an increasingly valuable
animal model for studying viral pathogens such as CMV and
Zika virus that are frequently transmitted to the developing fetus
during pregnancy (67–70). Hence, the molecular interactions
between macaque NK cell receptors and their MHC class I
ligands that occur at the maternal-fetal interface may be
especially important for understanding viral transmission and
pathogenesis in this context. The present study defines many of
the Mamu-AG ligands recognized by diverse allotypes of
KIR3DL05 and identifies KIR3DS02*004 as an activating
receptor for Mamu-AG2*01:01. These findings afford greater
insight into NK cell recognition of a nonclassical molecule
implicated in pregnancy and provide a broader foundation for
investigating NK cell biology in the rhesus macaque as a
nonhuman primate model for infectious diseases and
reproductive biology.
FIGURE 6 | Location of amino acid polymorphisms in Mamu-AG that affect
recognition by KIR3DL05. The side chains of Mamu-AG2*01:01 residues that
affect recognition by KIR3DL05*008 (red) were modeled on a three-dimensional
crystal structure of Mamu-A1*002 (grey) in complex with peptide (blue) and b2-
microglobulin (green) (PDB 3jtt) using PyMol software.
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