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Background: The degenerative pattern of white matter (WM) microstructures during

Alzheimer’s disease (AD) and its relationship with cognitive function have not yet been

clarified. The present research aimed to explore the alterations of the WMmicrostructure

and its impact on amnestic mild cognitive (aMCI) and AD patients. Mechanical learning

methods were used to explore the validity of WM microstructure lesions on the

classification in AD spectrum disease.

Methods: Neuropsychological data and diffusion tensor imaging (DTI) images were

collected from 28 AD subjects, 31 aMCI subjects, and 27 normal controls (NC).

Tract-based spatial statistics (TBSS) were used to extract diffusion parameters in WM

tracts. We performed ANOVA analysis to compare diffusion parameters and clinical

features among the three groups. Partial correlation analysis was used to explore the

relationship between diffusion metrics and cognitive functions controlling for age, gender,

and years of education. Additionally, we performed the support vector machine (SVM)

classification to determine the discriminative ability of DTI metrics in the differentiation of

aMCI and AD patients from controls.

Results: As compared to controls or aMCI patients, AD patients displayed widespread

WM lesions, including in the inferior longitudinal fasciculus, inferior fronto-occipital

fasciculi, and superior longitudinal fasciculus. Significant correlations between fractional

anisotropy (FA), mean diffusivity (MD), and radial diffusion (RD) of the long longitudinal

tract and memory deficits were found in aMCI and AD groups, respectively. Furthermore,

through SVM classification, we found DTI indicators generated by FA andMD parameters

can effectively distinguish AD patients from the control group with accuracy rates of up

to 89 and 85%, respectively.

Conclusion: The WM microstructure is extensively disrupted in AD patients, and the

WM integrity of the long longitudinal tract is closely related to memory, which would hold
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potential value for monitoring the progression of AD. The method of classification based

on SVM and WM damage features may be objectively helpful to the classification of

AD diseases.

Keywords: Alzheimer’s disease, white matter damage, cognitive impairment, diffusion tensor imaging, support

vector machine

INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
characterized by progressive cognitive decline in multiple
domains, including memory, language, executive function, and
attention. AD accounts for 60–70% of the ∼47.5 million
dementia cases worldwide (1), exerting huge distress to patients
and their families, as well as an extraordinary financial burden.
Amnesic mild cognitive impairment (aMCI) is a prodromal stage
of dementia, between normal aging and very early dementia, of
which 10–15% progress to AD annually (2). Since there is no cure
for AD, there is a great need for monitoring markers in the earlier
phase of the disease.

The etiology and pathogenesis of AD are still unsolved.
Gray matter neurodegeneration theory has attracted the most
attention, particularly the decrease of hippocampal volume (3).
Recently, however, there has been an increasing interest in the
potential contributions of white matter (WM) integrity damage
to the pathogenesis of AD (4, 5). Evidence from the autosomal-
dominant AD revealed that WM hyperintensities were a core
feature in the process of AD, which can impair cognition either
directly, or indirectly by interacting with tau pathology (6, 7).
Moreover, the tract-specific WM hyperintensities volume rate
was negatively associated with the functional connection in
the corresponding connected brain regions (8). The gradual
loss of morphological and functional integrity of cortico-
cortical pathways [e.g., corpus callosum (CC), inferior fronto-
occipital fasciculi (IFOF), superior longitudinal fasciculi (SLF),
and inferior longitudinal fasciculi (IFL)] and limbic pathways
(e.g., fornix and cingulum) were dominant features accompanied
with AD pathogenesis (9). To our knowledge, few studies have
investigated the role of cortico-cortical WM integrity on memory
processes in patients with aMCI or AD.

Diffusion tensor imaging (DTI) provides an indirect method
of detecting a neuroanatomical structure on a microscopic
level using water molecules’ degree of anisotropy and structural
orientation within a voxel (10), which is sensitive to the
alterations in the WM structure such as myelin loss, axonal
injury, cell death, and edema (11). The parameter of fractional
anisotropy (FA) reflects the integrity of the axon. Decreased FA
values indicate axonal damage. Mean diffusivity (MD) indicates
the rate of molecular diffusion, which increases along with
the WM injury (10, 12, 13). Axial diffusion (AxD) reflects the
diffusion of water molecules parallel to the axon direction. The
radial diffusion (RD) reflects the diffusion of water molecules
perpendicular to the axon direction.

Region of interest (ROI) based analysis, voxel-based analysis
(VBA), and tract-based spatial statistics (TBSS) are all methods
widely used in DTI studies (10). ROI-based methods are highly

subjective and only focuses on a certain fiber bundle or a few
fiber bundles. Due to requiring a prior assumption, describing the
intrinsic WM lesions with ROI-based methods are difficult and
may result in poor repeatability. Meanwhile, the VBA method
also exhibits some problems, such as registration irregularity and
smooth kernel selection (14). Superior to ROI and VBA, TBSS
analyzes WM lesions using standard registration algorithms,
which do not require prior assumptions, smoothness, or data
distribution (14, 15).

The support vector machine (SVM) approach represents a
data-driven method for solving classification tasks (16). This
approach for neuroimaging data has been widely applied to
diagnose individual-level patients. Compared to classifiers based
on other methods like decision trees and artificial neural
networks, SVM has certain advantages such as high accuracy,
avoids less overfitting, and direct geometric interpretation (16).
Several studies have used the SVM to classify AD and healthy
control based on the features screened from structural MRI (17,
18). The results have shown a high performance with accuracy
of up to 92.48%. Until now, few studies have focused on the
classification effect based on information from DTI data in the
AD spectrum. Therefore, our study aimed to explore the pattern
of WM microstructure changes in AD-spectrum patients using
the TBSS method. Moreover, SVM was performed to determine
the discriminative ability of these DTImetrics in separating aMCI
and AD from controls.

MATERIALS AND METHODS

Participants
Overall, 78 right-handed subjects were recruited from the
Neurological Department of Nanjing Drum Tower Hospital
from September 2016 to December 2018. Among them, 20
subjects were AD patients, 31 subjects were aMCI patients,
and 27 subjects were healthy elderly controls. The research
protocol received approval from the ethics committees of the
Affiliated Drum Tower Hospital of Nanjing University Medical
School (clinical trials government identifier: NCT01364246),
and each participant provided written informed consent before
the experiment. A series of standardized clinical evaluations
were arranged, including an interview to obtain medical
records, a detailed neuropsychological test battery, a whole-
brain 3.0T MRI scan, a general medical examination, and an
integrated neurological examination which was implemented by
an experienced neurologist (Dr. Zhao).

The clinical diagnosis of aMCI was based on the
recommendations of previous studies (19–21), which were
as follows: (1) chief complaint of memory impairment,
corroborated by the subject and/or an informant; (2) objective
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impaired memory function documented by an auditory verbal
learning test—Huashan 20-min delayed recall (AVLT-DR) score
≤ 1.5 SD of age and education adjusted norms; clinical dementia
rating scale—sum of the boxes (CDR-SB) score = 0.5 (with
a score of at least 0.5 on the memory domain); (3) normal
general cognitive functions evaluated by a mini-mental state
examination (MMSE) score ≥24; (4) preserved basic activities
of daily living or minimal impairment in complex instrumental
functions; (5) not diagnosed with dementia. Patients with AD
met the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADDRA) criteria for probable
AD (22). The criteria for NC participants were as follows: (1) no
concerns of cognitive impairment; (2) normal in the neurological
examination and cerebral MRI scan; (3) MMSE scores ≥28,
Montreal cognitive assessment (MoCA) scores ≥25, CDR scores
= 0, and other scores of neuropsychological battery (as described
in Part 2.2) within the normal range.

The exclusion criteria applied to all subjects were as follows:
(1) vascular cognitive impairment (Hachinski Ischemic Scale
score > 4 points), or other types of dementia; (2) depression or
other mental disorders, or a history of drug or alcohol addiction;
(3) other central nervous system diseases that impact cognitive
decline (e.g., epilepsy, Parkinson’s disease, or encephalitis) or
systemic diseases that interfere with cognitive function (e.g.,
thyroid dysfunctions, vitamin b12 or folacin deficiency); (4)
severe end-stage disease or severe diseases in acute stages; (5)
visible WM hyperintensities higher than Fazekas I grade (23);
(6) any contraindication for MRI or poor images quality; (7) <6
years of education.

Neuropsychological Evaluation
A standardized neuropsychological test battery was performed
by a professional neuropsychologist who was blinded to the
MR imaging results. The Chinese version of the MMSE, the
Beijing version of MoCA (24), and CDR (25) scores were used
for general cognitive screening. Depression was assessed by the
Hamilton depression rating scale (HAMD). Daily life ability was
assessed by the activities of daily living scale (ADL). Memory was
assessed using the AVLT-DR test and auditory verbal learning
test recognition (AVLT-R) (20). The animal fluency test (AFT)
and Boston naming test (BNT) were used for language domain
assessment. Executive function was evaluated using the trail
making test B (TMT-B) and the Stroop-C test. Processing speed
was assessed using the trail making test A (TMT-A) and the
Stroop-B test. The raw scores of AFT, BNT, TMT-B, Stroop-C,
TMT-A, and Stroop-B were transformed to a Z standardization
value by the following rule: standardized language (Z-lang)= (Z-
AFT+Z-BNT)/2; standardized executive function (Z-EF) = (Z-
TMT-B+Z-Stroop-C)/2; standardized processing speed scores
(Z-proc) = (Z-TMT-A+Z-Stroop-B)/2. Due to severe dementia,
some patients in the AD group failed to complete the TMT test
within 10min, which resulted in missing data.

MRI Data Acquisition
Whole-brain MRI scanning was performed on a 3.0 T scanner
(Achieva 3.0 T TX, Philips Medical Systems, the Netherlands,

equipped with an 8-channel head coil). During scanning,
cushions and headphones were used to immobilize the
subject’s head and reduce scanner noise. The conventional
three-dimensional T1-weighted acquisition was performed
for anatomical reference, using magnetization-prepared rapid
gradient-echo sequence with the following parameters: repetition
time (TR)/echo time (TE) = 9.8/4.6Ms, flip angle (FA) = 8◦,
in-plane resolution = 1.0 mm2, field of view (FOV) = 256
× 256mm, matrix = 256 × 256, and 192 sagittal slices, slice
thickness = 1mm. Diffusion-weighted images were acquired
using a spin-echo planar imaging (EPI) sequence (TR/TE= 9,154
/5ms, FOV= 224× 224mm, matrix size 112× 112, voxel size 2
× 2× 2 mm3, slice thickness= 2.5mm) with both 32-directional
diffusion encoding (b = 1,000 s/mm2 for each direction) and no
diffusion encoding (b = 0 s/mm2). In addition, fluid-attenuated
inversion recovery (FLAIR) sequence images were collected to
exclude organic physical illness or WM hyperintensity lesions
and were obtained with the following parameters: TR/TE =

4,500/344ms, FA = 90◦, matrix = 272 × 272, slice thickness =
1.0mm, slice number= 200.

Image Preprocessing and TBSS
Before any pre-process procedures, visual inspection was
conducted for all images’ artifact, signal-noise ratio, and
head motion for quality control. The imaging data were
preprocessed using the FSL toolbox (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki) (26, 27). Preprocessing steps comprised of the
following: (1) NIFTI format images were converted from the
DICOM format; (2) corrected for head motion and eddy
current distortions using affine registration in Eddy Current
Correction; (3) non-brain voxels were extracted using the Brain
Extraction Tool (28) (included in the FSL package) with an
extraction factor of 0.2 to generate a binary brain mask; (4)
voxel-wise diffusion parameters, including FA, MD, RD, and
AxD were then calculated using DTIFIT. All individual FA,
MD, RD, and AxD images were performed using TBSS in
the FMRIB software library (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
TBSS/UserGuider). Detailed methods were introduced in the
article by Smith et al. (14). The main steps were as follows:
(1) each individual original FA map was aligned to a target
FMRIB58_ FA template in the MNI space using fully non-
linear registrations; (2) all co-registered FA maps were averaged
to produce a mean FA image and a mean FA skeleton which
represents the centers of all tracts common to the group (using
a threshold of mean FA at 0.2 to include non-skeleton voxels);
(3) individually aligned FA images were projected onto the mean
FA skeleton; (4) the resulting skeletonized FA images were used
for voxel-wise cross-subject statistical analysis. Diffusivity maps
for MD, RD, and AxD were generated by applying the same steps
outlined above.

Support Vector Machine-Based
Classification
SVM has been extensively applied in disease classification.
Generally, the SVM procedure involves three stages: feature
selection, classifier training, and predication. SVM starts with
the feature selection as the basis for classification to form
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a high dimensional space. Then SVM conducts the classifier
training to construct a hyperplane that optimally separates the
classes. Lastly, the classifier is used to predict the class label

when a new sample is added to the classifier. The validation
testing and training dataset is completely independent. In
this study, the SVM analysis was performed based on the

TABLE 1 | Demographic and clinical characteristics of all subjects.

NC (n = 27) aMCI (n = 31) AD (n = 20) P Power

Age (years) 62.30 ± 6.46 66.70 ± 8.90 65.85 ± 9.47 0.113 0.65

Gender (n, %) 0.259

Male 14 (51.9) 10 (32.3) 10 (50.0) -

Female 13 (48.1) 21 (67.7) 10 (50.0) -

Education (years) 11.74 ± 2.90 11.55 ± 3.00 9.55 ± 3.79a,b 0.046 0.68

Hypertension 12 (44.4) 12 (38.7) 5 (25.0) 0.385 -

Hyperlipidemia 3 (11.1) 7 (22.6) 1 (5.0) 0.182 -

Diabetes 4 (14.8) 6 (19.4) 0 (0.0) 0.121 -

MMSE (M,IQR) 29 (2) 27 (1) 19.5 (11.25)a,b <0.001 -

MOCA (M,IQR) 26 (3) 22 (5)a 14 (6.75)a,b <0.001 -

HAMD 5.67 ± 5.13 5.03 ± 3.97 4.50 ± 3.58 0.653 0.95

ADL (M, IQR) 8 (0) 8 (0) 10.5 (5.75)a,b <0.001 -

CDR (M, IQR) 0 (0) 0.5 (0)a 1 (1)a,b <0.001 -

CDR = 0 27 (100) 0 0 -

CDR = 0.5 0 31 (100) 1 (5) -

CDR = 1 0 0 10 (50) -

CDR = 2 0 0 5 (25) –

CDR = 3 0 0 4 (20) -

AVLT-DR 6.32 ± 1.89 2.23 ± 1.65a 0.65 ± 1.14a,b <0.001 0.97

AVLT-R 21.33 ± 1.96 17.52 ± 2.56a 11.05 ± 5.78a,b <0.001 0.99

Z-Lang 0.45 ± 0.46 0.16± 0.76a −0.85 ± 0.67a,b <0.001 0.997

Z-Executive 0.7η ± 0.85 0.6η ± 0.76 / 0.271 -

Z-Processing speed 0.4η ± 0.87 0.3η± 0.82 / 0.846 -

Data are represented as mean ± SD or median (IQR) or n (%); a: vs. NC P < 0.05; b: vs. aMCI P < 0.05; η, data × 10−4 equal to original data; Z-Lang, Z standardized language

ability; Z-EF, Z standardized executive function; Z-proc, Z standardized processing speed; MMSE, mini-mental state examination; MoCA, Montreal cognitive assessment; CDR, clinical

dementia rating; AVLT-DR, auditory verbal learning test delayed recall; AVLT-R, auditory verbal learning test recognition; HAMD, Hamilton depression rating scale; ADL, activities of daily

living scale. aMCI, amnestic mild cognitive; AD, Alzheimer’s disease; NC, normal control.

TABLE 2 | Significant clusters of FA values among the three groups by TBSS analysis.

Anatomical extent of cluster#,& Cluster voxel NC aMCI AD P Power

ATR-L 100 0.342 ± 0.038 0.332 ± 0.056 0.289 ± 0.031a,b <0.001*** 0.994

ATR-R 128 0.348 ± 0.041 0.338 ± 0.043 0.298 ± 0.028a,b <0.001*** 0.972

CST-L 67 0.475 ± 0.034 0.472 ± 0.041 0.433 ± 0.041a,b 0.001*** 0.986

CST-R 161 0.482 ± 0.037 0.5 ± 0.048 0.455 ± 0.041b 0.002*** 0.967

For ma 598 0.668 ± 0.02 0.661 ± 0.036 0.611 ± 0.025a,b <0.001*** 1.0

For mi 1099 0.55 ± 0.031 0.541 ± 0.036 0.5 ± 0.026a,b <0.001*** 1.0

IFOF-L 295 0.49 ± 0.023 0.486 ± 0.044 0.438 ± 0.022a,b <0.001*** 1.0

IFOF-R 285 0.51 ± 0.03 0.505 ± 0.044 0.454 ± 0.035a,b <0.001*** 1.0

ILF-L 88 0.539 ± 0.034 0.548 ± 0.066 0.481 ± 0.035a,b <0.001*** 1.0

ILF-R 58 0.53 ± 0.037 0.528 ± 0.045 0.479 ± 0.044a,b <0.001*** 0.997

SLF-R 20 0.481 ± 0.038 0.481 ± 0.06 0.448 ± 0.06 0.062 0.845

UF-L 18 0.375 ± 0.035 0.373 ± 0.037 0.346 ± 0.029 0.01 0.778

CC 3401 0.642 ± 0.029 0.629 ± 0.047 0.582 ± 0.039a,b <0.001*** 1.0

&Significant clusters from TBSS results among three groups through a GLM (corrected by threshold-free cluster enhancement, P < 0.01); FA values are presented as means ± SD; ***P

< 0.05 after Bonferroni correction. a: vs. NC P < 0.05 (Bonferroni correction); b: vs. aMCI P < 0.05 (Bonferroni correction); #Anatomical locations were defined from JHU ICBM-DTI-81

white-matter labels and JHUWM tractography atlas. ATR, anterior thalamic radiation; CST, corticospinal tract; For ma, forceps major; For mi, forceps minor; IFOF, inferior fronto-occipital

fasciculus; ILF, inferior longitudinal fasciculus; SIF, superior longitudinal fasciculus; UF, uncinate fasciculus; CC, corpus callosum; L, left; R, right; aMCI, amnestic mild cognitive; AD,

Alzheimer’s disease. NC, normal control; FA, fractional anisotropy.
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combined mean FA and mean MD values of clusters which
showed significant group differences using the LIBSVM toolkit
(https://www.csie.ntu.edu.tw/∼cjlin/libsvm/). Due to the small
sample size, we used the leave one out cross-validation (LOOCV)
test to evaluate the average discriminant accuracy among the
three groups. This strategy provides an optimistic estimation
of accuracy since only one subject is left out for testing while
the others are used to train the classifier and get the optimal
parameters, just as mentioned in Weikai et al.’s research (29,
30). The performance of a classifier can also be quantified
using sensitivity, specificity, and the area under the receiver
operating characteristic curve (ROC) according to the results of
cross-validation.

Statistical Analysis
Voxel-wise statistical analysis of FA, MD, RD, and AxD maps
was conducted using randomize (part of FSL toolbox), a non-
parametric permutation program inference on statistic maps
when the null distribution is ambiguous. A standard general
linear model (GLM) design matrix was applied across all subjects
to identify the significant regions among three groups with
age, gender, and years of education controlled as possible
confounding variables. Random permutations were 5000, P
< 0.01, using threshold-free cluster enhancement (TFCE) for

multiple comparison corrections. Mean FA, MD, RD, and AxD
values of significant clusters on each tract (anatomical locations
of the significant clusters were defined by ICBM-DTI-81 white-
matter labels atlas and JHUwhite-matter tractography atlas) were
extracted based on the fslstats command. The following WM
tracts were discussed in our present research: anterior thalamic
radiation (ATR); corticospinal tract (CST); cingulum of the
cingulate gyrus (Ccing); cingulum of the hippocampus (Chippo);
forceps major (for ma); forceps minor (for mi); IFOF; IFL;
SLF; uncinate fasciculus (UF); superior longitudinal fasciculus-
temporal part (SLFt); and CC. Mean FA, MD, RD, and AxD
values of each significant cluster were analyzed using ANOVA
and post-hoc analyses (using the Bonferroni correction).

Statistical analysis of demographic, clinical variables, and
neuropsychological scores was all performed using SPSS version
20 (SPSS, Chicago, IL, U.S.A). Continuous variables were tested
by one-way ANOVA (LSD for post-hoc analysis) or a Kruskal–
Wallis test (non-normally distributed variables). Categorical
variables were compared using the Chi-squared test or Fisher’s
exact test. Partial correlation analysis was performed to detect
the relationship between diffusion metrics of a cluster which
showed significant group differences and the neuropsychological
scores in aMCI and AD groups, respectively, controlling for the
effect of age, gender, and years of education. Power analysis

FIGURE 1 | Clusters with decreased FA in AD patients by TBSS analysis. Significant clusters (red, threshold-free cluster enhancement corrected and Bonferroni

corrected) in axial views overlaid onto the group averaged FA skeleton (green) and the MNI152 T1 template; ATR, anterior thalamic radiation; CST, corticospinal tract;

FMa, forceps major; FMi, forceps minor; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; CC, corpus callosum; L, left; R, right. FA,

fractional anisotropy.
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TABLE 3 | Significant clusters of MD values among the three groups by TBSS analysis.

Cluster#,& Cluster voxel NC aMCI AD P Power

ATR-L 628 0.819 ± 0.05 0.848 ± 0.085 0.964 ± 0.077a,b <0.001*** 1.0

ATR-R 353 0.811 ± 0.058 0.823 ± 0.084 0.95 ± 0.067a,b <0.001*** 1.0

CST-L 568 0.708 ± 0.02 0.717 ± 0.019 0.753 ± 0.03a,b <0.001*** 1.0

CST-R 126 0.725 ± 0.019 0.736 ± 0.03 0.762 ± 0.038a,b <0.001*** 0.99

Ccing-L 219 0.726 ± 0.023 0.729 ± 0.04 0.781 ± 0.039a,b <0.001*** 1.0

Ccing-R 5 0.703 ± 0.032 0.712 ± 0.051 0.741 ± 0.048 0.014 0.96

For ma 333 0.772 ± 0.029 0.784 ± 0.039 0.83 ± 0.03a,b <0.001*** 0.99

For mi 3358 0.75 ± 0.031 0.772 ± 0.048 0.817 ± 0.04a,b <0.001*** 0.99

IFOF-L 691 0.745 ± 0.026 0.754 ± 0.041 0.8 ± 0.039a,b <0.001*** 0.99

IFOF-R 462 0.731 ± 0.029 0.738 ± 0.039 0.784 ± 0.035a,b <0.001*** 1.0

ILF-L 87 0.818 ± 0.035 0.811 ± 0.035 0.859 ± 0.04a,b <0.001*** 0.995

SLF-L 1278 0.733 ± 0.026 0.732 ± 0.031 0.774 ± 0.027a,b <0.001*** 1.0

SLF-L 428 0.729 ± 0.02 0.729 ± 0.032 0.764 ± 0.03a,b <0.001*** 1.0

UF-L 142 0.737 ± 0.02 0.756 ± 0.032 0.784 ± 0.033a,b <0.001*** 1.0

UF-R 8 0.714 ± 0.026 0.719 ± 0.04 0.75 ± 0.03a,b <0.001*** 0.995

CC 5093 0.832 ± 0.03 0.859 ± 0.062 0.918 ± 0.046a,b 0.001*** 1.0

&Significant clusters from TBSS results among three groups through a GLM (corrected by threshold-free cluster enhancement, P< 0.01); MD data reflect the original values× 10−3 and

are presented as means± SD; ***P< 0.05 after Bonferroni correction. a: vs. NC P< 0.05 (Bonferroni correction); b: vs. aMCI P< 0.05 (after Bonferroni correction); #Anatomical locations

were defined from JHU ICBM-DTI-81 white-matter labels and JHU WM tractography atlas. ATR, anterior thalamic radiation; CST, corticospinal tract; Ccing, cingulum (cingulate gyrus);

For ma, forceps major; For mi, forceps minor; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SIF, superior longitudinal fasciculus; UF, uncinate fasciculus;

CC: corpus callosum; L, left; R, right; aMCI, amnestic mild cognitive; AD, Alzheimer’s disease. NC, normal control, MD, mean diffusivity.

was performed in the G power 3.1.9.2 version. P < 0.05 was
statistically significant.

RESULTS

Demographics and Clinical
Characterizations
No significant differences were found in gender, age, HAMD,
hyperlipidemia ratio, hypertension ratio, or diabetes ratio among
the three groups (Table 1). However, the individuals in the AD
group had significantly lower years of education than those in the
NC and aMCI groups (P= 0.046,Table 1). Significant differences
in the MMSE, MoCA, ADL, CDR, AVLT-DR, AVLT-R, and Z-
lang scores were found among the three groups (for details see
Table 1). There was no difference in the scores of executive
function and processing speed between the NC and aMCI groups.

TBSS Analyses Between Groups and
post-hoc Analysis
The TBSS analyses revealed widespread WM microstructure
changes among the three groups. For reduced FA, the anatomical
locations and clusters voxel were listed in Table 2, including the
bilateral ATR, CST, IFOF, ILF, and unilateral for ma, for mi, right
SLF, left UF, and CC. For each subject, the mean FA values across
all voxels in each significant cluster were computed for further
post-hoc analysis. Compared to the NC and aMCI groups, the AD
group presented decreased FA values in the bilateral ATR, IFOF,
ILF, and unilateral left CST, for ma, for mi, and CC (Bonferroni

correction, P < 0.05) (Figure 1). No significant differences in FA
values were found between the NC and aMCI groups.

The significant clusters of MD values among the three
groups were listed as follows: the bilateral ATR, CST, Ccing,
IFOF, SLF, UF, and unilateral for ma, for mi, CC, and
left ILF (Table 3). In contrast to the NC group, the AD
group displayed increased MD in the bilateral ATR, CST,
IFOF, SLF, UF, and unilateral for ma, for mi, CC, left ILF,
and left Ccing (Bonferroni correction, P < 0.05) (Figure 2).
No significant changes in MD values were found in aMCI
and NC.

Multiple tracts were identified where elevated RD reached
significant levels in ADpatients, including the bilateral ATR, CST,
IFOF, ILF, SLF, and for ma, for mi, and left Ccing (Bonferroni
correction, P < 0.05). Compared with the NC group, significant
elevated RD values were found (Table 4, Figure 3) in the tract
of the right CST, right IFOF, right ILF, and for mi in the
aMCI group. Likewise, significant elevated AxD values were
identified (Table 5, Figure 3) in the bilateral ATR, ILF, SLF,
and left CST, left IFOF, right UF, for ma, and for mi. As for
AxD value, there was no difference between the aMCI and
NC groups.

Correlation Between Cognitive Domains
and Diffusion Metrics in the aMCI or AD
Group
For the aMCI group, significant correlations were found between
the mean FA value of ROI and AVLT-DR scores in the following
tracts: left IFOF (r = 0.42, P = 0.024, Figure 4A), right IFOF (r
= 0.39, P = 0.035, Figure 4B), and left ILF (r = 0.45, P = 0.014,
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FIGURE 2 | Clusters with increased MD in AD patients by TBSS analysis. Significant clusters (blue, threshold-free cluster enhancement corrected and Bonferroni

corrected) in axial views overlaid onto the averaged MD skeleton of all participants (green) and the MNI152 T1 template; ATR, anterior thalamic radiation; CST:

corticospinal tract; Ccing: cingulum (cingulate gyrus); FMa: forceps major; FMi: forceps minor; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal

fasciculus; SIF, superior longitudinal fasciculus; UF, uncinate fasciculus; CC, corpus callosum; L: left; R: right; MD, mean diffusivity.

TABLE 4 | Significant clusters of RD values among three groups by TBSS analysis.

Cluster#,& Cluster voxel NC aMCI AD P Power

ATR-L 523 0.649 ± 0.053 0.68 ± 0.093 0.802 ± 0.077a,b <0.001*** 1.0

ATR-R 288 0.646 ± 0.066 0.668 ± 0.093 0.807 ± 0.068a,b <0.001*** 1.0

CST-L 646 0.467 ± 0.025 0.476 ± 0.025a 0.514 ± 0.035a,b <0.001*** 1.0

CST-R 311 0.519 ± 0.027 0.525 ± 0.035 0.56 ± 0.036a,b <0.001*** 0.999

Ccing-L 226 0.446 ± 0.034 0.452 ± 0.044 0.514 ± 0.054a,b <0.001*** 1.0

Ccing-R 21 0.5 ± 0.039 0.518 ± 0.043 0.548 ± 0.064a,b 0.005 0.965

For ma 621 0.413 ± 0.025 0.424 ± 0.045 0.481 ± 0.038a,b <0.001*** 1.0

For mi 3254 0.512 ± 0.032 0.531 ± 0.049a 0.579 ± 0.041a,b <0.001*** 1.0

IFOF-L 705 0.545 ± 0.027 0.55 ± 0.047 0.604 ± 0.039a,b <0.001*** 1.0

IFOF-R 664 0.544 ± 0.028 0.551 ± 0.044a 0.602 ± 0.035a,b <0.001*** 1.0

ILF-L 126 0.533 ± 0.03 0.527 ± 0.058 0.588 ± 0.05a,b <0.001*** 1.0

ILF-R 44 0.511 ± 0.03 0.511 ± 0.042a 0.552 ± 0.045a,b 0.001*** 0.998

SLF-L 653 0.547 ± 0.031 0.538 ± 0.031 0.58 ± 0.033a,b <0.001*** 0.993

SLF-L 187 0.531 ± 0.031 0.53 ± 0.04 0.572 ± 0.039a,b <0.001*** 0.997

&Significant clusters from TBSS results among three groups through a GLM (corrected by threshold-free cluster enhancement, P < 0.01); RD data equal to the original values × 103

and are presented as means± SD; ***P< 0.05 after Bonferroni correction. a: vs. NC P< 0.05; b: vs. aMCI P< 0.05; #Anatomical locations were defined from the JHUWM tractography

atlas. ATR, anterior thalamic radiation; CST, corticospinal tract; Ccing, cingulum (cingulate gyrus); For ma, forceps major; For mi, forceps minor; IFOF, inferior fronto-occipital fasciculus;

ILF, inferior longitudinal fasciculus; SIF, superior longitudinal fasciculus; L, left; R, right; aMCI, amnestic mild cognitive; AD, Alzheimer’s disease. NC, normal control, RD, radial diffusion.
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FIGURE 3 | Clusters with increased RD/AxD in AD patients in TBSS analysis. Significant clusters (significant RD clusters are in yellow, significant AxD clusters are in

pink, threshold-free cluster enhancement corrected and Bonferroni corrected) in axial views overlaid onto the averaged FA skeleton of all participants (green) and the

MNI152 T1 template; RD, radial diffusion; AxD, axial diffusion.

Figure 4C). The mean MD value of ROI in the right Ccing (r
= −0.48, P = 0.006, Figure 4E) and right SLF (r = −0.37, P
= 0.039, Figure 4F) was negatively associated with the AVLT-
DR scores. The average RD value of ROI in the left ILF was
negatively correlated with the AVLT-DR scores (r = −0.438, P
= 0.02, Figure 4D) and language function (r = −0.414, P =

0.028 Figure 4G). Moreover, the left ILF FA value had a negative
correlation with the AVLT-DR scores in the AD group (r =

−0.54, P = 0.0159, Figure 4H). It is worth pointing out that the
correlations all listed above were not able to survive Bonferroni
correction. No significant correlations were observed between
other cognitive domains and DTI metrics in both the aMCI and
AD groups.

DTI Metrics Separate AD Patients From
Other Participants by SVM Classification
The results of the SVM classification demonstrated the
discriminative power of disrupted diffusion metrics in the
differentiation of AD patients from the other two groups
(Figure 5). The disrupted FA value exhibited an area under
curve (AUC) of 0.94 (accuracy 89%, sensitivity 85%, specificity
93%, Figure 5A) for discriminating AD patients from controls,
and an AUC of 0.77 (accuracy 69%, sensitivity 70%, specificity
68%, Figure 5B) for discrimination between AD and aMCI. The
disrupted MD value showed an AUC of 0.94 (accuracy 85%,
sensitivity 85%, specificity 85%, Figure 5C) for discrimination
between AD and controls, and an AUC value of 0.78
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TABLE 5 | Significant clusters of AxD values among three groups by TBSS analysis.

Anatomical extent of cluster#,& Cluster voxel NC aMCI AD P Power

ATR-L 748 1.21 ± 0.058 1.236 ± 0.092 1.361 ± 0.075a,b <0.001*** 1.0

ATR-R 498 1.202 ± 0.068 1.21 ± 0.101 1.346 ± 0.11a,b <0.001*** 1.0

CST-L 398 1.199 ± 0.035 1.229 ± 0.058 1.287 ± 0.061a,b <0.001*** 1.0

CST-R 362 1.185 ± 0.032 1.208 ± 0.06 1.213 ± 0.034a,b 0.084 0.84

For ma 197 1.666 ± 0.066 1.686 ± 0.08 1.747 ± 0.073a,b 0.001*** 0.971

For mi 2430 1.243 ± 0.042 1.276 ± 0.057 1.325 ± 0.042a,b <0.001*** 1.0

IFOF-L 646 1.141 ± 0.028 1.151 ± 0.048 1.206 ± 0.037a,b <0.001*** 1.0

IFOF-R 781 1.238 ± 0.034 1.21 ± 0.056 1.207 ± 0.054a,b 0.053 0.898

ILF-L 60 1.327 ± 0.046 1.309 ± 0.058 1.375 ± 0.056a,b <0.001*** 0.996

ILF-R 64 1.384 ± 0.055 1.329 ± 0.091 1.296 ± 0.084a,b 0.001*** 0.999

SLF-R 1080 1.116 ± 0.037 1.138 ± 0.048 1.212 ± 0.037a,b <0.001*** 1.0

SLF-L 551 1.122 ± 0.032 1.139 ± 0.054 1.195 ± 0.04a,b <0.001*** 1.0

UF-L 172 1.2 ± 0.038 1.227 ± 0.042 1.27 ± 0.052a,b <0.001*** 1.0

&Significant clusters from TBSS results among three groups through a GLM (corrected by threshold-free cluster enhancement, P < 0.01); AxD data equal to the original values × 103

and are presented as means± SD; ***P< 0.05 after Bonferroni correction. a: vs. NC P< 0.05; b: vs. aMCI P< 0.05; #Anatomical locations were defined from the JHUWM tractography

atlas. ATR, anterior thalamic radiation; CST, corticospinal tract; Ccing, cingulum (cingulate gyrus); For ma, forceps major; For mi, forceps minor; IFOF, inferior fronto-occipital fasciculus;

ILF, inferior longitudinal fasciculus; SIF, superior longitudinal fasciculus; L, left; R, right; aMCI, amnestic mild cognitive; AD, Alzheimer’s disease. NC, normal control, AxD, axial diffusion.

(accuracy 73%, sensitivity 65%, specificity 78%, Figure 5D) for
discrimination between AD and aMCI. It should be noted that
the identifying accuracy of aMCI from control participants was
lower than 50% for both the FA and MD value.

DISCUSSION

This current study investigated the potential roles of DTI metrics
in the discriminative ability of AD-spectrum patients. Using
TBSS and SVM classification approaches, three observations
were made: (i) limbic association tracts, cortico-cortical,
interhemispheric, and corticospinal tracts were widely damaged
in AD patients; (ii) the long longitudinal tracts (including IFOF,
ILF, and SLF in our study) are closely related to memory
function in aMCI or AD patients. (iii) DTI metrics of the WM
microstructure allowed for the classification of these samples,
indicating their potential role as “trait” neuroimagingmarkers for
monitoring the progression of AD.

Relative to normal elderly adults, AD patients displayed
decreased FA values and increased MD/RD/AxD values in
widespread brain regions, including temporoparietal regions and
the fronto-parietal cortex. The aMCI group showed a tendency
topographic concordant with the AD group. Previous DTI
studies have demonstrated that WM alterations in clinical AD
spectrum disease were initially localized in the medial temporal
limbic associated tracts, then prominently spread to the temporal
and parietal, and to a lesser extent, the frontal lobes which
was associated with WM as the disease progressed (31–33). The
pattern of WM change is consistent with the pathology of AD
which primarily involves the temporal lobe. In the present study,
the WM integrity of AD patients decreased in the bilaterally
limbic tracts (UF and Ccing), which were in line with previous
literatures (34, 35). The UF is aWM tract connecting the anterior
part of the temporal lobe with the frontal lobe which is associated
with episodic memory. A 3-years follow-up research considered

WM abnormality in UF as a potential indicator of the conversion
from aMCI to AD (36). The cingulum occupying the central
position of the papez circuit is assumed to be vital for normal
memory functions (37). UF and cingulum tract damage would
lead to memory decline. In addition, impaired CC was also
observed in the dementia group. CC is the main connectivity
pathway between hemispheres. Any neurodegenerative process
involving the cerebral WMmay have an impact on the diffusivity
of CC (31). Our findings of destruction in the IFOF, ILF, and SLF
in the aMCI and AD groups were consistent with previous ROI-
based and voxel-based DTI studies, which showed damage of the
WM regions outside the medial temporal lobe (MTL) network in
AD patients (34). Our results supported the hypothesis that AD
had a disconnection process (38).

There are many theories about the underlying
pathophysiology of WM damage (39). Previous studies observed
Wallerian degeneration secondary to neuronal damage in the
AD brains postmortem (40). Pathological vascular deposition of
amyloid protein β (Aβ) might play a role in the microvascular
alterations and WM lesions in AD through neuroinflammation
(39–41). A large body of literature on prior DTI work has
shown neurodegenerative changes of brain WM in aMCI when
compared to healthy controls (42–44), typically in the posterior
cingulate gyrus and hippocampus (45, 46). In the present study,
we failed to observe cingulate gyrus and hippocampus diffusion
metric differences in the aMCI subjects. Nonetheless, the mean
RD value in ROI of the for mi, right IFOF, and left ILF have
shown significant differences in the aMCI group when compared
with normal control. It might be due to the fact that the patients
in our cohort are in the extremely early stage of aMCI, and the
cognitive impairment was relatively slight.

When considering the relation between cognitive domains
and DTI metrics, the scores of memory performance revealed
significant correlations with the FA, MD, and RD index in
certain specific fiber bundles in the present aMCI or AD group.
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FIGURE 4 | Partial correlations between cognitive scores and altered diffusion value, adjusted for years of education, age, and gender (A-G: aMCI group; H: AD

group); (A) correlation between IFOF-L FA value and AVLT delayed recall score; (B) correlation between IFOF-R FA value and AVLT delayed recall score; (C) correlation

between ILF-L FA value and AVLT delayed recall score; (D) correlation between ILF-L RD value and AVLT delayed recall score; (E) correlation between Ccing-R MD

value and AVLT delayed recall score; (F) correlation between SLF-R MD value and AVLT delayed recall score; (G) correlation between ILF-L RD value and z

standardized language AVLT delayed recall score; (H) correlation between ILF-L FA value and AVLT delayed recall score. Ccing, cingulum (cingulategyrus); IFOF, inferior

fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SIF, superior longitudinal fasciculus; L, left; R, right. FA, fractional anisotropy; MD, mean diffusivity; RD,

radial diffusion aMCI, amnestic mild cognitive; AD, Alzheimer’s disease; AVLT-DR, auditory verbal learning test delayed recall. Different colors represent different fibers.

Recent research has shown that associations between the WM
microstructure and memory or executive function were evident
across widespread regions of the brain in a mixed sample of
AD and healthy elderly subjects (47). However, no significant
linear relationship between the degree of WM disruption and
the level of cognitive function (memory and executive abilities)
were found within either the AD or healthy older adult group
(47). In our study within the aMCI group, AVLT-DR scores were
positively related to the mean FA value of significant clusters
in the bilateral IFOF and left ILF; and negatively related to the
mean MD value of significant clusters in the right Ccing and
right SLF. The IFOF served as a direct connection from the extra-
striata occipital cortex to the anterior temporal lobe, playing an
important role in visuospatial processing, object recognition, and
memory (46). Previous tractography studies in aMCI and AD
have shown diffusion abnormalities in the IFOF (34, 48). We
further confirmed its close relationship to memory function in
the preclinical phase of dementia. Meanwhile, the relationship
between the IFOF, the cingulum tracts, andmemory performance
indicated that memory function depends on both the integrity of
MTL structures and their connectivity with temporal, parietal,
and frontal lobe regions. On the contrary, the FA value in
the left ILF was negatively related to the AVLT-DR scores in
the AD group. Namely, some subjects with higher FA values
suffered from poorer memory function. It could be the results
of dispersed WM impairment and gray matter atrophy in the
AD group.

MTL substructures are the earliest regions affected by AD
pathology, mainly amyloid deposition, and neurofibrillary tangle
tau pathology. Anatomically, WM degeneration in AD follows
the topographic progression of cortical AD pathology (49, 50).
As mentioned above, AD pathological invasion was initially
localized in MTL, and then gradually spread to the temporal,
parietal, and frontal lobes. In the current study, the early stage
of the aMCI group showed WM disruption in the right IFOF
and left ILF as reflected by the RD property. While in the
dementia stage, more extensive and severe white matter damage
was observed. IFOF has complex intrinsic projections of the
brain, including extensive cortical termination territories within
the middle and superior frontal, middle and posterior temporal
lobes, superior parietal, and angular gyri (51, 52). This means that
the diffusion abnormalities of IFOF could influence the structural
connectivity architecture among the MTL, the frontal lobe, and
the parietal lobe (53). Besides, the ILF also has projections
involving theMTL (54). Therefore, we speculated that in the early
stages, long fibers pathway damage could indirectly affect the
MTL connectivity, which can be used to explain early memory
loss. The mediation role of long longitudinal tract alterations
during the progression of AD needs to be investigated in more
large-scale cohorts.

SVM provides great potential for future artificial intelligence
aided diagnosis, and has been increasingly implemented
in various classification problems (49). For instance, SVM
successfully classified multiple sclerosis patients from healthy
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FIGURE 5 | ROC curves of the SVM classification between groups. (A) differentiate the AD and NC group according to FA value; (B) differentiate the AD and aMCI

group according to FA value; (C) differentiate the AD and NC group according to MD value; (D) differentiate the AD and aMCI group according to MD value; AUC, area

under curve; SVM, support vector machine; ROC, receiver operating characteristic curve.

controls with accuracies as high as 89% by combined DTI
and functional data (50). Similarly, we revealed that combining
disrupted diffusion metrics and SVM classification, the accuracy
of classification was higher than 85% in distinguishing AD
patients from controls, which shows promise comparable with
previous brain microstructure studies to predict progression
(55, 56). A moderate discernment was observed between the AD
patients and aMCIwith the accuracy of 69 and 73%.We did fail to
distinguish with high accuracy (lower than 50%) between aMCI
patients with the NC. This could be due to the little difference
between cognitive levels between both groups. It may also be
due to insufficient sample size which affects the classification
efficiency. These findings shed light on the potential utility of
brain WM microstructural-based markers combined with SVM

classification for the individual prediction of disease progression,
which may provide a novel avenue into the early diagnosis of AD.

Several limitations of the study should be considered. Firstly,
our small sample may limit the statistical power of the differences
of WM integrity between groups. Replication in an independent
and larger cohort is necessary. Secondly, our diagnosis of
aMCI was purely based on clinical symptoms. The sample
would be less heterogeneous if biomarkers were added into the
inclusion criteria. Thirdly, our research mainly focused on WM
microstructure alteration. Future research should investigate
the association between WM alterations, gray matter atrophy,
metabolic function changes, and pathological indicators to
offer a comprehensive insight into the pathologic basis of
WM neurodegeneration.
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The original intention of this study was to analyze the
integrity of the whole brain WM in patients on the AD
spectrum and hoped that the machine learning classification
could suitably classify the disease according to the characteristics
of WM damage. We initially explored the role of mechanical
classification in assisting clinical diagnosis of AD diseases
to make up for the drawbacks of subjectivity in assessment
by the artificial cognition scale and to compensate for the
shortcomings of being easily affected by education level and
cultural background. This study found that consistent with
previous reports, AD patients have extensive WM damage. Long
connective fibers lesions are obviously associated with memory
deficiency. The effect of mechanical classification in the early
stage of the disease is not very satisfactory, but it is very favorable
in the AD stage.

CONCLUSION

The WM microstructure is extensively disrupted in AD. An
impaired long longitudinal tract (including IFOF, ILF, and SLF) is
closely related to memory deficits. DTI metrics of the brain WM
microstructure may hold potential value for the diagnosis of AD
as an imaging biomarker. The classification effect of SVM in the
early stages of AD disease needs to be further exploration.
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