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Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health
complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome
proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPAR𝛼,
PPAR𝛾, and PPAR𝛿.They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators
of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly
associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims
to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology onmyocardial
function.

1. Introduction

Heart failure (HF) is a major health issue that is anticipated
to affect over 8 million people by 2030 [1]. Ischemic cardiac
disease, cardiomyopathies, and hypertension are major risk
factors that eventually lead to HF. Moreover, various drugs,
which are used for treating metabolic disorders, have been
associated with HF. Specifically, the drug class of peroxi-
some proliferator-activated receptor (PPAR) agonists have
come under great controversy for adverse effects on cardiac
function. PPAR agonists are indicated to treat a variety of
metabolic disorders, like diabetes and hyperlipidemias, via
individual or combined activation of PPAR isoforms.

PPARs are members of the class II nuclear hormone
receptor superfamily. The three PPAR isoforms, PPAR𝛼,
PPAR𝛾, and PPAR𝛿, respond to a wide variety of endoge-
nous ligands such as steroids, retinoids, and cholesterol
metabolites [2, 3]. All PPARs can be activated by numerous
endogenous ligands such as saturated and unsaturated fatty
acids [4–6]. PPARs heterodimerize with retinoid X receptors
(RXR) and bind to cis-acting DNA elements, known as PPAR
response elements (PPREs), which increases gene transcrip-
tion.

PPAR𝛼, PPAR𝛾, and PPAR𝛿 regulate several aspects of
lipid metabolism in the heart, skeletal muscle, liver, and
adipose tissue (Figure 1). Tissue distribution of PPARs is

broad [3]. PPAR𝛼 is primarily expressed in the liver but also
present in the heart, intestine, adipose tissue, skeletal muscle,
and kidney. PPAR𝛾 is mainly expressed in adipose tissue
and the large intestine and is a major regulator of adipocyte
differentiation and storage. PPAR𝛿 is expressed in all tissues.

This review aims to summarize basic and clinical research
findings associating PPARs with beneficial or aggravating
effects on myocardial function.

2. Transcriptional Regulation of PPARs

The transcription of PPARs can be regulated by multiple
factors, such as pharmacological agents, hormone receptors,
and fatty acids (Table 1). A marked reduction of cardiac
PPAR𝛼 accompanies LPS administration [7, 8]. The mech-
anisms that lead to this reduction are not fully known. The
JNK signaling pathway has been associated with reduced
cardiac PPAR𝛼 gene expression [9]. Other factors such as HF
[10], myocardial infarction (MI) [11], hypoxia [12, 13], IL-1𝛽
[14], IL-6 [14], PPAR𝛿 [15, 16], NF-𝜅Β [17], glucose [18, 19],
insulin [20], Akt [21], c-Myc [22], the Janus kinase/signal
transducers and activators of transcription (JAK/STAT) path-
way [23], reactive oxygen species [17], growth hormone
[24], androgens [25], and angiotensin II [26] have also been
reported to downregulate Ppara expression.There are several
factors that are known to increase Ppar𝛼 expression, such
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Table 1: Transcriptional regulators of PPARs (see text for acronyms).

Target Effect Stimulus

PPAR𝛼
↓

LPS [7, 8], JNK signaling [9], HF [10], MI [11], hypoxia [12, 13], IL-1𝛽 [14], IL-6 [14], PPAR𝛿 [15, 16], NF-𝜅Β [17], glucose
[18, 19], insulin [20], Akt [21], c-Myc [22], JAK/STAT pathway [23], ROS [17], growth hormone [24], androgens [25], and
angiotensin II [26]

↑
Glucocorticoids [27], FXR [28], AMPK [29–31], ERR𝛼 [32], retinoic acid [33], RxR [34], phorbol-12-myristate-13-acetate
[35], exercise training [36], and heat shock factor-1 [37]

PPAR𝛿
↓ IL-6 [80], NF-𝜅B [81], and ATGL deficiency [82]

↑
AMPK-PGC1a axis, exercise training [73], PML tumor suppressor gene [74], ERK5 [75], HL hydrolytic activity [76], LPS
[77], HIV-1 Vpr [78], and fasting [79]

PPAR𝛾

↓

LPS [51, 52], JNK [53–55], TNF𝛼 [56–59], IL-11 [58], CHOP [60], retinoic acid [33, 61], ER-𝛼 [62], JAK/STAT pathway
[23, 38, 39], interferon-gamma [51, 63], leptin [64] angiotensin II [26], fasting [65], androgens [66], KLF2 [53, 69], KLF7
[70], and KLF6 [72]

↑

C/EBPs [38, 39], estrogen [40], MEK/ERK signaling [41], c-Fos [42] TGF-𝛽 [43], Smad1 [44], p38 kinase, Egr-1 [45],
polyunsaturated fatty acids [19, 46, 47], the orphan nuclear receptor ROR𝛼 [48], Zfp423 [49], vitamin E [50], KLF5 [67],
KLF15 [68], and KLF6 [71]
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Figure 1: Metabolic regulation by PPARs.The different PPAR isoform regulates fatty acid and lipidmetabolism in liver, heart, skeletal muscle,
and adipose tissue. Figures were produced using Servier Medical Art (http://www.servier.com/).

as glucocorticoids [27], farnesoid X receptor (FXR) [28],
AMP-activated protein kinase (AMPK) [29–31], estrogen
related receptor (ΕRR) 𝛼 [32], retinoic acid [33], retinoid
X receptor (RXR) [34], phorbol-12-myristate-13-acetate [35],
exercise training [36], and heat shock factor-1 [37]. Ppara
gene expression levels and subsequent fatty acid oxidation
(FAO) are upregulated by estrogen related receptor (ΕRR)
𝛼, which acts in conjunction with PPAR𝛾 coactivator 1𝛼
(PGC1𝛼) and binds directly to the PPAR𝛼 promoter [32].

PPAR𝛾 is detected in several tissues and it is upregulated
by various factors, such as C/EBPs [38, 39], estrogen [40],
MEK/ERK signaling [41], c-Fos [42], TGF-𝛽 [43], Smad1
[44], p38 kinase, early growth-response factor-1 (Egr-1) [45],
polyunsaturated fatty acids [19, 46, 47], the orphan nuclear
receptor ROR𝛼 [48], the zinc-finger protein Zfp423 [49],
and vitamin E [50]. Downregulation of PPAR𝛾 is mediated
by multiple factors including LPS [51, 52], JNK [53–55],
TNF𝛼 [56–59], IL-11 [58], CCAAT/enhancer-binding protein
homologous protein (CHOP) [60], retinoic acid [33, 61],
estrogen receptor- (ER-) 𝛼 [62], the JAK/STAT pathway [23,
38, 39], interferon-gamma [51, 63], leptin [64], angiotensin II

[26], fasting [65], and androgens [66]. Krüppel-like factors
(KLFs) have also been shown to affect PPAR𝛾 and lipid
metabolism in different ways. For instance, KLF5 [67] and
KLF15 [68] induce PPAR𝛾 expression and adipogenesis while
KLF2 [53, 69] and KLF7 [70] have the opposite effect.
KLF6 induces the transcription of PPAR𝛾 and adipocyte
differentiation [71], although it has been shown to cause the
opposite effect as well [72].

PPAR𝛿 plays a pivotal role in FAO, especially in adipose
tissue and skeletalmuscle. Similar to PPAR𝛼, it is also induced
by the AMPK-PGC1a axis and exercise training [73]. Other
factors also increase Ppard expression such as promyelocyte
leukemia (PML) tumor suppressor gene [74], extracellular-
signal-regulated kinase 5 (ERK5) [75], hepatic lipase (HL)
hydrolytic activity [76], LPS [77], and HIV-1 viral protein
R (HIV-1 Vpr) [78]. PPAR𝛿 mRNA levels increase after
fasting and are returned to baseline with refeeding [79].
Other variables that downregulate PPAR𝛿 expression are IL-
6 [80], NF-𝜅B [81], and adipose triglyceride lipase (ATGL)
deficiency [82]. In conclusion, PPARs are responsive to awide
variety of signals, which makes their biology complex.
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3. Posttranslational Regulation of PPARs

PPARs undergo a number of posttranslational modifications
that alter their activity. Regulation through phosphorylation,
small ubiquitin-like modifier (SUMOylation), ubiquitina-
tion, O-GlcNAc modification, and acetylation have been
documented.

3.1. Phosphorylation. PPAR𝛼 and PPAR𝛾 activity can be
modulated by phosphorylation. PPAR𝛼 and PPAR𝛾 can be
phosphorylated at serine residues by ERK/MAPK, protein
kinase A (PKA), protein kinase C (PKC), AMPK, JNK,
glycogen synthase kinase 3 (GSK3), and cyclin-dependent
kinase 5 (Cdk5) [83, 84]. Phosphorylation by each of these
kinases results in a differential modification of protein
activity, which is dependent on the isoform, phosphoryla-
tion site, and cellular state [83]. PPAR𝛾 phosphorylation at
Ser273 by Cdk5 is blocked by PPAR𝛾 agonists and decreased
phosphorylation of PPAR𝛾 at the Cdk5 site correlates with
improved insulin sensitivity [84]. Contrary to what would
be expected, adipose-specific Cdk5 knock-out mice (Cdk5-
FKO) showed increased PPAR𝛾 Ser273 phosphorylation and
impaired glucose homeostasis despite unchanged food intake
and body weight as wild type mice [85]. It was found that
PPAR𝛾 Ser273 is phosphorylated by both Cdk5 and ERK and
Cdk5 inhibits the MEK/ERK pathway. Further inhibition of
the ERK pathway improved glucose and insulin tolerance in
the Cdk5-FKO mice [85]. PPAR𝛾 transcriptional activation
also decreases with phosphorylation. The S84A mutation
increased PPAR𝛾 activity as measured with a luciferase
reporter system [86]. An example of PPAR phosphorylation
leading to transcriptional activation is seen with insulin and
fatty acid stimulation. A previous in vitro study showed that
insulin increases PPAR𝛼 phosphorylation [87]. In addition
to insulin, PPAR𝛼 phosphorylation could also be increased
in rat adipocyte cultures treated with vanadate, an insulin
mimetic, and okadaic acid. Increased PPAR𝛼 phosphoryla-
tion translated into an increase in PPAR𝛼 transcriptional
activity. Although PPAR𝛿 phosphorylation has not been
studied to the same extent, this isoform contains consensus
sites that have been predicted as potential targets of phos-
phorylation. Nevertheless, PPAR𝛿 transcriptional activity is
modulated by activation or inhibition of kinases, such as PKA
[88] and p38 MAPK [89].

3.2. Ubiquitination and SUMOylation. Ubiquitin is a post-
translationalmodifiermost known for its role in the nonlyso-
somal proteolytic pathway. A variety of proteins can be
degraded through the ubiquitin system including PPARs
[90]. Residues on PPAR𝛾 that have been shown in literature
to be targets for ubiquitination include K184 and K185 in
adipocytes [90]. SUMO is a covalently bound posttrans-
lational modification that is associated with a repression
of PPAR activation [91–93]. SUMOylation occurs on lysine
residues of all three PPAR isoforms [91, 94]. Reported
SUMOylation sites include K185 for PPAR𝛼 in COS-7 and
humanhepatoma cells (HuH-7); K358 inNIH3T3 andHepG2
cells; K77, K107, K365, and K395 for PPAR𝛾 in human
embryonic kidney 293 (HEK293), HepG2, and NIH3T3 [92];

and K185 for PPAR𝛿. Although there is evidence that PPARs
can be regulated by ubiquitin and SUMO in several cell types,
there are limited studies in cardiomyocytes or cardiac tissue.
Rodriguez et al. showed that increased activity of muscle ring
finger-1 (MuRF1), a ubiquitin ligase, reduced PPAR𝛼 activity
and FAO in neonatal rat cardiomyocytes (NRCMs) [95].
MuRF1 mediates monoubiquitination of PPAR𝛼 at residues
K292, K310, and K358 which leads to nuclear export. MuRF1
did not target PPAR𝛿 or PPAR𝛾, but other ubiquitin ligases
may mediate ubiquitination of these isoforms.

3.3. O-GlcNAc Modification. O-GlcNAc transferase (OGT)
catalyzes the addition of N-acetylglucosamine (O-GlcNAc)
to serine or threonine residues of target proteins [96, 97].
O-GlcNAcase (OGA) catalyzes the removal of O-GlcNAc
[97]. OGT modifies PPAR𝛾 predominantly at Thr54 but not
PPAR𝛼 or PPAR𝛿 [97]. Inhibition of OGA blocked removal
of O-GlcNAc, decreased PPAR𝛾 transcriptional activity and
adipogenesis, and inhibited insulin signaling [98]. As there
are studies denoting O-GlcNAcylation by a cardiovascular
stress signal, this type of modification of PPAR is emerging
as a potential therapeutic target [96].

3.4. Acetylation. Acetylation refers to the addition of an
acetyl group onto lysine residues of a substrate, which is
catalyzed by histone acetyltransferases (HATs) and can be
reversed by histone deacetylases (HDACs) [99].

Acetylation can occur on many proteins, including
PPARs. It has been shown that HDAC3 interacts with PPAR𝛾
and represses its activity [100]. Interaction between HDAC3
and PPAR𝛾 is facilitated by retinoblastoma protein (RB),
which binds both [101]. HDAC3 is present in the heart
and is involved in cardiac energy metabolism. Mice with
cardiomyocyte-restricted deletion of HDAC3 (Hdac3cko)
showed modest upregulation of genes involved in FAO such
as acyl-CoA oxidase 1 (AOX) and PDK4, which are PPAR
responsive genes, without concomitant changes in PPAR
gene expression levels [102]. However, the acetylation state
of PPARs was not elucidated in this study. Determining
how acetylation regulates PPARs in the heart would be
advantageous for understanding how this posttranslational
modification may modulate PPAR activity.

4. Gene Regulation by PPARs

PPARs bind to PPREs of genes that encode for fatty acid
metabolism, inflammation, and adipocyte differentiation
proteins. In the early 1990s, one of the first pieces of evidence
that linked PPAR isoforms and FAO was found; it was
shown that PPARs, particularly PPAR𝛼, upregulate acyl-CoA
oxidase, which catalyzes the first step in fatty acid𝛽-oxidation
[103]. Further studies have provided additional evidence that
PPARs are master regulators of fatty acid metabolism.

Cardiomyocyte PPAR𝛼, which is activated by intracel-
lular TG-derived fatty acids [82, 104], regulates genes that
encode for FAO-related enzymes like cluster of differentiation
(Cd) 36, carnitine palmitoyl transferase I (Cpt1), diacyl-
glycerol acyltransferase (Dgat), malonyl-CoA decarboxylase
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(Mcd), and fatty acid-binding protein (Fabp) [105]. Mice
lacking PPAR𝛼 have reduced levels of FAO, increased glucose
oxidation, and increased hepatic lipid content [106]. On the
other hand, overexpression of PPAR𝛼 increases FAO and
decreases glucose oxidation, while also surprisingly leading
to cardiac lipid accumulation [107]. Cardiac-specific over-
expression of PPAR𝛼 mice (𝛼MHC-PPAR𝛼) increases oxi-
dation rate, measured through increased palmitate turnover
from triacylglyceride (TAG) stores [108]. PPAR𝛼 activation
can also increase cellular fatty acid uptake through CD36 and
mitochondrial fatty acyl-CoA import via upregulation ofCpt1
gene expression [109]. It was recently found that KLF15 and
PPAR𝛼 cooperate synergistically to induce gene expression
[110]. In conclusion, PPAR𝛼 plays a central role in controlling
FAO and fatty acid uptake.

PPAR𝛾 is vital for the regulation of adipogenesis and
therefore is expressed in both white and brown adipose
tissue, as well as in 3T3-L1 cells [111]. Target genes include
adipocyte fatty acid-binding protein (aP2), CD36, lipoprotein
lipase (LPL), phosphoenolpyruvate carboxykinase (PEPCK),
and glucose transporter type 4 (GLUT4) [112]. Although
PPAR𝛾 is not as highly expressed in cardiac tissue as PPAR𝛼,
it is still critical for cardiac function. Four- and 8-month-
oldmice overexpressing PPAR𝛾

1
(𝛼MHC-PPAR𝛾1H) showed

increased expression of downstream targets: CPT1, CD36, FA
synthase (FAS), and adipose differentiation-related protein
(ADRP) [113]. GLUT4 and GLUT1 were also upregulated in
𝛼MHC-PPAR𝛾1H. Hearts from 𝛼MHC-PPAR𝛾1H displayed
an enlarged and dilated phenotype with decreased fractional
shortening compared to controls, suggesting that PPAR𝛾
influences cardiac remodeling.

Similar to PPAR𝛼, PPAR𝛿 is a regulator of FAO. PPAR𝛿
is an important activator of genes involved in FAO in
adipocytes and myocytes [79, 114]. Cardiomyocyte-specific
knockout PPAR𝛿 mice (CR-Ppard−/−) displayed up to 50%
decrease in FAO genes including Cpt1, long-chain acyl-CoA
dehydrogenase (Lcad), 3-oxoacyl-CoA thiolase (thiolase),
and pyruvate dehydrogenase kinase 4 (Pdk4) [115]. Reduced
basal FAO in hearts from CR-Ppard−/− was associated with
hypertrophy, dilation, and increased fibrosis [115]. Further,
PPAR𝛿 has a protective effect against high-fat-diet-induced
obesity [114].

5. PPAR Animal Models

5.1. PPAR𝛼. Genetic mouse models show the importance of
PPAR𝛼 for the heart (Table 2). It has been well established
that PPAR𝛼−/− mice have decreased myocardial fatty acid
metabolism [116–118]. Nevertheless, these mice have normal
cardiac function at baseline according to several studies [118–
120].However, others have reported that PPAR𝛼−/−mice have
reduced cardiac function at baseline, which has been associ-
ated with fibrosis [117, 121], increased number of cristae in the
mitochondria, increased number of caveolae in endothelial
cells in the myocardium [117], and increased oxidative stress
[122, 123]. Oxidative stress was caused by decreased MnSOD
activity, and antioxidant therapy prevented left ventricular
dysfunction, indicating that oxidative damage contributes

to the cardiac dysfunction seen in mice that lack PPAR𝛼
[123]. These cardiac abnormalities progressed during aging
[117]. PPAR𝛼−/− mice also have an impaired response to
metabolic stress. Following starvation, high temperature
stress, and high workload, PPAR𝛼−/− mice had lower levels
of cardiac ATP [117, 120]. High workload challenge also
decreased contractile performance [120]. Stimulation of 𝛽

1
-

adrenergic receptors by isoproterenol resulted in reduced
positive inotropic effect [121]. Short term starvation [106,
119] and CPT1 inhibition [116] caused hepatic and cardiac
lipid accumulation and hypoglycemia. CPT1 inhibition also
increased mortality.

Tg-PPAR𝛼 mice have mild cardiac hypertrophy, systolic
dysfunction, and lipotoxicity, and over 50% die within 30
weeks [124, 125]. Cardiomyocyte-specific overexpression of
PPAR𝛼 increases FAO and decreases glucose uptake and
oxidation [107]. Together with ventricular hypertrophy and
dysfunction, these mice have a phenotype similar to diabetic
cardiomyopathy, since they have profound accumulation of
intramyocardial triglycerides after short term fasting [107].

These studies implicate that PPAR𝛼 is important for acti-
vation of cardiac FAO and inhibition of glucose utilization.
It is possible that PPAR𝛼−/− mice do not always present
with explicit cardiac dysfunction at baseline, because of
an upregulation of glucose utilization [119]. However, this
compensation is not sufficient during myocardial stress.

5.2. PPAR𝛾. Both transgenic and knockout PPAR𝛾 mouse
models have been generated (Table 2). Global PPAR𝛾−/− is
lethal and the embryos have cardiac abnormalities caused
by placental defects [126]. Cardiomyocyte-specific PPAR𝛾−/−
mice develop cardiac hypertrophy with preserved systolic
cardiac function and most likely have normal cardiac
metabolism [127–129]. Increased NF𝜅B expression [127]
or macrophage infiltration [128] might contribute to the
development of hypertrophy. Isolated cardiomyocytes from
PPAR𝛾−/− mice have increased length, which may also con-
tribute to the observed hypertrophy [130]. Amore severe phe-
notype was also found in cardiomyocyte-specific PPAR𝛾−/−
mice [131]. These mice have increased oxidative damage.
Beginning at 3-4months of age, they develop progressive car-
diac hypertrophy andmitochondrial abnormalities and even-
tually die from dilated cardiomyopathy [131]. Antioxidant
treatment largely prevented pathological changes. PPAR𝛾-
related gene expression profile was not changed in these
models of PPAR𝛾−/−, possibly due to compensatory mech-
anisms that may involve other PPAR isoforms. Inducible
cardiomyocyte-specific PPAR𝛾−/− decreased expression of
FAO-related genes and proteins and decreased FA utilization,
whereas glucose utilization was not changed [132].This led to
onlymodest hypertrophy and reduced cardiac function.Mice
with cardiomyocyte-specific PPAR𝛾1 overexpression have
increased cardiac lipid accumulation, distortion ofmitochon-
drial contours, disrupted cristae, and dilated cardiomyopathy.
The timing and severity of the phenotype were dependent on
the level of PPAR𝛾 expression [113].
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5.3. PPAR𝛿. PPAR𝛿 in the cardiovascular system is of
increasing interest and there are a number of mouse mod-
els that have been generated to study its role (Table 2).
Total PPAR𝛿−/− results in embryonic lethality [133, 134].
Cardiomyocyte-specific PPAR𝛿−/− results in decreased FAO
and increased glucose oxidation, cardiac lipid accumulation,
hypertrophy, and fibrosis [115, 119]. Furthermore, these mice
havemitochondrial abnormalities, develop dilated cardiomy-
opathy, and have reduced survival [115, 119]. Inducible car-
diomyocyte PPAR𝛿−/− results in cardiac dysfunction associ-
ated with oxidative damage andmitochondrial abnormalities
and cardiac hypertrophy [119, 135]. Interestingly, although
cardiac dysfunction progressed over time, it did not decrease
survival [135].

Meanwhile, cardiomyocyte-specific PPAR𝛿 overexpres-
sion increased glucose utilization and glycogen content, while
FA utilization remained normal. These mice do not develop
cardiac lipid accumulation and have normal cardiac function
[136]. Similarly, inducible cardiomyocyte-specific overex-
pression of constitutively active PPAR𝛿 also increases glucose
utilization [137]. However, these mice also have increased
FAO and decreased glycogen content. Further, they have
increased mitochondrial DNA content and increased mito-
chondrial biogenesis without oxidative stress and increased
cardiac performance [137].

5.4. Animal Models with Combined Activation or Inhibition
of PPAR Isoforms. The PPAR isoforms have overlapping
functions and combined activation or inhibition of PPAR iso-
forms could aggravate or benefit the cardiac function.Cardiac
dysfunction induced by cardiomyocyte-specific PPAR𝛾 over-
expression can be improved by PPAR𝛼−/−, althoughmice still
have increased FAO and profound lipid accumulation [138].
Lipid redistribution and decreased mitochondrial and ER
stress might contribute to the improved cardiac function and
survival. In cardiomyocyte PPAR𝛿−/− mice, treatment with
the PPAR𝛼 agonist fenofibrate increased Cd36 and Cpt1 gene
expression but did not affect myocardial lipid content [129].

Cardiac dysfunction induced by cardiomyocyte-specific
PPAR𝛿−/− could neither be rescued by PPAR𝛼−/− nor worsen
the phenotype compared to PPAR𝛿−/− [119]. The double
PPAR𝛿−/−; PPAR𝛼−/− did not further decrease FAO; neither
did it alleviate mitochondrial abnormalities, oxidative stress,
hypertrophy, and cardiac dysfunction that was observed in
the cardiomyocyte-specific PPAR𝛿−/−.

Although the study of Bedu et al. mainly focuses on skele-
tal muscle, their study shows that double knockout of PPAR𝛼
and PPAR𝛿 does not affect heart weight. Cardiac HAD activ-
ity, reflecting 𝛽-oxidation activity, is decreased only in the
PPAR𝛼−/− but is unchanged in the PPAR𝛿−/− or the double
knockout [139]. This suggests that PPAR𝛿−/− can rescue
decreased FAO inPPAR𝛼−/−. Further, cardiac citrate synthase
(KREBS cycle activity) or LDH (glycolysis) activities are not
changed in either the single or double knockout mice. Sug-
gesting that PPAR𝛿−/− have unchanged cardiac metabolism
and PPAR𝛼−/− have decreased FAO that can be rescued by
PPAR𝛿−/−, in contradiction to other reports [115, 119].

Long-term treatment of rats with the pan-PPAR agonist
tetradecylthioacetic acid (TTA) changes FA composition,
including a decrease in saturated fat and arachidonic acid
and an increase in n-3 PUFA [140]. Treatment of mice with
TTA for 8 days increased FAO and decreased glucose oxida-
tion, increased myocardial contractility, and reduced cardiac
efficiency [141]. These effects appeared to be mediated via
PPAR𝛼 since there was no effect of TTA treatment in PPAR𝛼-
null mice. Treatment of diabetic mice with the dual-PPAR𝛼/𝛾
agonist GCP-02 increased cardiac triglyceride content [142].
Treatment of db/db mice with the dual-PPAR𝛼/𝛾 agonist
aleglitazar increased heart weight, whereas the PPAR𝛼/𝛿 ago-
nist GFT 505 had no effect on heart weight [143]. Moreover,
long-term treatment of cynomolgusmonkeys had no adverse
cardiac effects [143]. Treatment of ratswith the dual-PPAR𝛼/𝛾
agonist LY510929 induced cardiac hypertrophy [144].

6. Cardiac Pathology: Involvement of
PPAR Isoforms in Protection

Several pharmacologic approaches aiming to either activate
or inhibit PPARs have been used for treating various com-
plications of cardiac function (Figure 2). PPAR agonist treat-
ment is mostly beneficial in animal models of heart failure,
but the beneficial or aggravating role of PPAR𝛼 activation in
ischemia/reperfusion remains controversial (Figure 3).

6.1. PPAR𝛼

6.1.1. Aging-Related Cardiac Dysfunction. Cardiac PPAR𝛼
levels are decreased during aging [36, 145]. PPAR𝛼−/− mice
have decreased longevity [146]. Although this study did not
find enhanced cardiomyopathy in the PPAR𝛼−/− mice, min-
imal myocardial mineralization occurred more frequently in
these mice. Metabolomic analysis showed an age-dependent
decrease in cardiac glucose content and signs of decreased
ketone supply and altered FA synthesis [147]. The cardiac
abnormalities found in PPAR𝛼−/− mice progressed as they
aged [117].

Treatment of 20-month-old rats with the lipid-lowering
drug atorvastatin increases PPAR𝛼, PPAR𝛿, and PPAR𝛾
expression [148]. Atorvastatin reduced cardiac hypertrophy,
collagen deposition, oxidative stress, expression of inflamma-
tory cytokines, and the aging marker 𝛽-galactosidase in aged
rats. PPARs are known to have an anti-inflammatory effect
[149, 150]. Pretreatment with PPAR inhibitors attenuated
the inhibitory effect of atorvastatin on the expression of
inflammatory cytokines, suggesting that part of the beneficial
effects of atorvastatin on cardiac aging may be mediated
by inhibition of inflammatory cytokines via PPAR signaling
[148]. Another study also shows that activation of PPAR𝛼 in
aged mice reduces inflammation [145].

6.1.2. Pressure Overload Cardiac Hypertrophy. Most studies
show decreased PPAR𝛼 after pressure overload induced
cardiac hypertrophy. PPAR𝛼 levels are decreased at 1 week
[151, 152], 9 days [153], and 4 weeks after aortic constriction
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Figure 2: Effect of PPAR activation during cardiac dysfunction. Administration of PPAR agonists has generally been found to have
beneficial effects on cardiac function during ischemia (with reperfusion), pressure overload induced hypertrophy, and sepsis-induced cardiac
dysfunction. However, the role of PPAR𝛼 activation in ischemia reperfusion (I/R) injury is unclear as both beneficial and detrimental effects
have been reported. Figures were produced using Servier Medical Art (http://www.servier.com).
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Figure 3: Effect of PPAR𝛼 activation on cardiac function after I/R.The role of peroxisome proliferator-activated receptor (PPAR) 𝛼 activation
in I/R injury is unclear as both beneficial and detrimental effects have been reported depending on the experimental model and timing of
activation.

[154, 155]. However, increased PPAR𝛼 levels at 4 weeks after
aortic constriction have been reported as well [124].

Several studies show that treatment with the PPAR𝛼
agonist fenofibrate improves LV hypertrophy and remodeling
after pressure overload in mice and rats. Treatment of mice
with fenofibrate decreased hypertrophy, improved cardiac
contractility, and decreased LV dilation at 4 weeks after
transverse aortic constriction [154] and at 8 weeks after
ascending aortic constriction [156]. Treatment of rats with
fenofibrate for 4 weeks after abdominal aortic constriction
decreased hypertrophy and fibrosis [155, 157]. Fenofibrate
prevented the translocation of NFATc4 and p65 from cyto-
plasm to nucleus induced by pressure overload [155]. Fenofi-
brate treatment of spontaneously hypertensive rats (SHR)
decreased hypertrophy, fibrosis, and oxidative stress in young
SHR with cardiac hypertrophy. On the contrary, fenofibrate
aggravated hypertrophy, fibrosis, and oxidative stress in old
SHR with cardiac hypertrophy and decreased FAO [158].

PPAR𝛼 agonist WY14643 treatment of rats with cardiac
hypertrophy and preserved cardiac power after ascending
aortic constriction prevented energy substrate switching but
decreased cardiac power [152].

Four weeks after TAC, mice displayed increased hyper-
trophy and decreased cardiac contractility in PPAR𝛼−/− mice
compared towild typemice [159]. Additionally, hypertrophic,
fibrotic, and inflammatorymarkers were higher in PPAR𝛼−/−

mice [159, 160]. Contrary, PPAR𝛼+/−mice have less hypertro-
phy and less systolic dysfunction after TAC [124].

6.1.3. Myocardial Ischemia. PPAR𝛼 expression is decreased
at 4 weeks after MI in mice [161], increased at 6 weeks after
MI in rats [162], and unchanged at 20 weeks after MI in
rats [163]. Treatment of rats with a PPAR𝛼 agonist from
8 to 12 weeks after MI increased LV hypertrophy but did
not worsen or improve cardiac function [163]. Treatment of
rats that underwent MI with PPAR𝛼 agonist AVE8134 for
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10 weeks after MI decreased fibrosis and improved cardiac
function [164]. Thus, cardiac Ppara downregulation seems to
constitute the initial response to MI, which reverses at a later
stage.Thismay indicate an increased post-MImetabolic state
in other cardiac cell types, such as fibroblasts.

6.1.4. Ischemia/Reperfusion Injury. In isolated perfused rat
hearts with 30 minutes of ischemia followed by 2 hours
of reperfusion, the PPAR𝛼 agonist WY14643 or clofibrate
improved cardiac contractile function and decreased infarct
size [165–169]. In isolated perfused rat hearts with 30minutes
of ischemia followed by 30minutes of reperfusion, the PPAR𝛼
inhibitorGW6471 blocked the beneficial effects ofmetformin
in terms of cardiac contractility and mitochondrial function
but had no detrimental effect by itself [170]. Beneficial effects
on infarct size and cardiac performance were also found in
rats and mice with in vivo ischemia reperfusion and PPAR𝛼
agonist treatment [171–175].

On the other hand, several studies reported detrimental
effects of PPAR𝛼 after ischemia reperfusion. Isolated hearts
from mice with cardiomyocyte-specific overexpression of
PPAR𝛼 subjected to 18 minutes of ischemia followed by 40
minutes of reperfusion had decreased cardiac power asso-
ciated with increased FAO and decreased glucose oxidation
[176]. The opposite phenotype was found in hearts from
PPAR𝛼−/− mice. Also in vivo studies report increased infarct
size and decreased cardiac function after ischemia followed
by 24 hours of reperfusion with PPAR𝛼 agonist treatment
[177] or in mice with cardiomyocyte-specific overexpression
of PPAR𝛼 [136, 178]. Treatment of mice with the pan-PPAR
agonist TTA for 8 days reduced recovery after I/R as indicated
by a significant decrease in postischemic recovery of aortic
flow, cardiac output, and rate-pressure product [141]. These
effects are mediated by PPAR𝛼 since there was no effect
of TTA treatment in PPAR𝛼-null mice. Thus, activation of
PPAR𝛼 during I/R may be either beneficial or detrimental,
most likely determined by the timing of activation.

6.1.5. Septic CardiacDysfunction. During sepsis, both inflam-
mation and reduced FAO lead to cardiac dysfunction. A
metabolomics study on sepsis patients showed an association
between increased FAOmarkers and improved survival, sug-
gesting that FAO is a potential therapeutic target [179]. Car-
diac PPAR𝛼 expression is decreased within the first 24 hours
after LPS-induced sepsis [7, 180]. Inducible cardiomyocyte-
specific peroxisome proliferator-activated receptor 𝛾 coac-
tivator 1-beta (PGC1𝛽) overexpression largely reversed the
LPS-mediated decrease of PPAR𝛼 expression and cardiac
function [180]. Also, inhibition of JNK prevented the LPS-
induced downregulation of PPAR𝛼, FAO, and cardiac dys-
function [181]. However, treatmentwith PPAR𝛼 agonist could
not prevent the LPS-induced cardiac dysfunction, likely due
to profound inhibition of Ppara gene expression [182].

6.2. PPAR𝛾

6.2.1. Pressure Overload Cardiac Hypertrophy. Treatment
of mice with PPAR𝛾 agonist pioglitazone from 1 week
before until 3 weeks after abdominal aorta constriction

decreased hypertrophy [183]. Pressure overload-mediated
cardiac hypertrophy was more marked in PPAR𝛾−/+ mice
compared towild typemice. Treatment with pioglitazonewas
less effective in these mice, implicating that the protective
effect of pioglitazone is through PPAR𝛾. Pioglitazone treat-
ment also decreased LV hypertrophy and fibrosis in Dahl
salt-sensitive rats without lowering blood pressure [184].
The beneficial effects were associated with increased serum
adiponectin and increased phosphorylation of AMPK in the
heart, which indicate elevated cardiac FAO.

Mice have decreased PPAR𝛾 expression after TAC, which
is reversed in mice when TGF𝛽 signaling is blocked [185].
Treatment of mice with rosiglitazone from 3 days before
till 3 weeks after TAC decreased fibrosis and hypertrophy,
whereas treatment with PPAR𝛾 antagonist had the opposite
effect [185]. In rats with L-NAME induced hypertension,
treatment with L-carnitine normalizes hypertension, hyper-
trophy, fibrosis, PPAR𝛾 expression, and expression of fibrotic
factors [186]. PPAR𝛾 negatively correlates with fibrosis in
these rats, suggesting that L-carnitine at least partly acts
through PPAR𝛾 activation. Thus, cardiac PPAR𝛾 activation
is protective against pressure overload hypertrophy.

6.2.2. Myocardial Ischemia. Rats receiving PPAR𝛾 agonist
rosiglitazone from 6 hours to 8 weeks after MI had partially
preserved LV function, but treatment did not prevent LV
dilatation or hypertrophy. Moreover, it increased mortality
[187]. However, treatment of mice with MI with PPAR𝛾
agonist rosiglitazone from 3 days before till 1 or 2 weeks after
MI resulted in decreased infarct size, apoptosis, and oxidative
stress and improved cardiac function and survival [188].
Treatment increased adiponectin levels and the protective
effects were absent in adiponectin knockout mice, suggesting
PPAR𝛾’s protective effect is mediated by adiponectin.

Telmisartan, an AngII type I receptor blocker that also
acts as partial PPAR𝛾 agonist, was administered to rats
with MI with improved LV remodeling and survival [189].
Although infarct size was not affected, treatment resulted in
the alleviation of LV dilatation, hypertrophy, fibrosis, apop-
tosis, inflammatory cell infiltration, and ejection fraction. All
of these beneficial effects were abolished by treatment with
a PPAR𝛾 antagonist, implying that telmisartan improves LV
remodeling afterMI via PPAR𝛾 activation. Treatment ofmice
with PPAR𝛾 agonist pioglitazone from 6 hours till 4 weeks
after MI did not affect infarct size or survival but improved
cardiac function and decreased LV dilatation, hypertrophy,
fibrosis, and inflammatory cytokines [190].

6.2.3. Ischemia/Reperfusion Injury. Several PPAR𝛾 agonists
reduce infarct size in rats with 25 minutes of ischemia
followed by 2 hours of reperfusion [173]. Rosiglitazone
treatment of rats with 30 minutes of ischemia followed by 4
hours of reperfusion reduced infarct size; involvement of the
NF𝜅B pathway was indicated [191]. However, a high dose of
rosiglitazone before ischemia is not protective.

Inducible cardiomyocyte-specific PPAR𝛾−/− increased
infarct size after 30 minutes of ischemia followed by 4
hours of reperfusion [192]. Treatment with PPAR𝛾 agonist
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pioglitazone reduced infarct size in both wild type and
PPAR𝛾−/− mice, suggesting that the beneficial effect of
pioglitazone is PPAR𝛾 independent. However, pioglitazone
treatment also reduced infarct size in rabbits with ischemia
followed by 48 hours of reperfusion [193]. This effect was
prevented by treatment with PPAR𝛾 antagonist, (PI)3-kinase
inhibitor, or nitric oxide synthase inhibitor, but not by a
mitochondrial KATP channel blocker.

6.2.4. Septic Cardiac Dysfunction. Mice with cardiomyocyte-
specific PPAR𝛾 overexpression are protected from LPS-
induced decreased FAO and cardiac dysfunction [182]. Also,
PPAR𝛾 agonist protected LPS-treated mice from decreased
FAO and cardiac dysfunction [182]. PPAR𝛾 agonist treat-
ment did not prevent elevated cardiac TG content as the
cardiomyocyte-specific PPAR𝛾 overexpression did, but it pre-
vented a decrease inmitochondrial number and size. None of
these treatments decreased the inflammatory response in the
heart [181, 182]. Also treatment with PPAR𝛾 agonist has been
shown to be protective in LPS-treated rats, as it decreased
mean arterial pressure, increased heart rate, increased inflam-
matory markers TNF𝛼 and IL-6, and increased markers
of cardiac injury lactic dehydrogenase (LDH) and creatine
phosphokinase (CPK) [194, 195].

6.3. PPAR𝛿

6.3.1. Pressure Overload Cardiac Hypertrophy. Inducible
cardiomyocyte-specific constitutively active PPAR𝛿 overex-
pression does not affect TAC-mediated hypertrophy but
improves LV dilatation, LV function, fibrosis, and mitochon-
drial abnormalities [137]. These findings indicate the impor-
tance of cardiac PPAR𝛿 as a therapeutic target for alleviating
certain aspects of cardiac pathology during hypertrophy.

6.3.2. Myocardial Ischemia. Treatment of rats with MI with
PPAR𝛿 agonist immediately after MI had no beneficial
effect on LV function. Nevertheless, it reversed the shift
from FAO to glucose oxidation and normalized increased
RV hypertrophy and lung congestion [196]. Also in mice,
treatment with PPAR𝛿 agonist from 8 to 12 weeks afterMI did
not change LV function [197]. Thus, PPAR𝛿 activation seems
not to be beneficial for post-MI LV function.

6.3.3. Ischemia/Reperfusion Injury. Cardiomyocyte-specific
overexpression of PPAR𝛿 resulted in reduced infarcted area
after 30 minutes of ischemia and 24 hours of reperfusion
[136]. This is in contrast to cardiomyocyte-specific over-
expression of PPAR𝛼 and might be due to the increased
glucose oxidation seen in 𝛼MHC-PPAR𝛿 mice, but not in
𝛼MHC-PPAR𝛼 mice [136, 178]. Also in rats, the activation
of PPAR𝛿 by treatment with agonist GW0742 resulted in
decreased infarct size after 25 minutes of ischemia and 2
hours of reperfusion [198]. Whether treatment was applied
before ischemia or at the start of reperfusion did not affect
the improvement. It was proposed that the beneficial effect
is caused by activation of the AKT pathway and subsequent
inhibition of GSK3𝛽 and NF-𝜅B and inflammation [198].

6.3.4. Septic Cardiac Dysfunction. Cardiac PPAR𝛿 expression
is decreased at 4 and 16 hours after LPS-induced sepsis [7].
Another study reported increased PPAR𝛿 at 6 hours after
LPS-induced sepsis and unchanged PPAR𝛿 at 12 and 24
hours [180]. LPS-induced cardiac dysfunction is worsened
in PPAR𝛿−/− mice [199]. Contrarily, treatment with PPAR𝛿
agonist GW0742 attenuated LPS-induced cardiac dysfunc-
tion and improved survival after cecal ligation and puncture-
induced sepsis [199]. The PPAR𝛿 activation was associated
with suppression of inflammatory pathways [199].

7. PPAR Agonists on Cardiac Function in
the Clinical Setting

PPARs have been pharmacologically targeted through PPAR
agonists, as described in numerous studies previously. In
general, PPAR agonist binding enhances its activity and
increases downstream target transcription. There are four
main classes of PPAR agonists: PPAR𝛼, PPAR𝛾, PPAR𝛿, and
dual PPAR agonists.

7.1. PPAR𝛼 Agonists: Fibrates. Fibrates, such as fenofibrate,
bezafibrate, ciprofibrate, and clofibrate, are PPAR𝛼 agonists
used clinically for treating dyslipidemias such as primary
hypertriglyceridemia, combined hyperlipidemia, and pri-
mary hypercholesterolemia [200]. Fibrates are generally well
tolerated upon administration and theoretically beneficial as
lowering LDL can reduce cardiovascular-related mortality
[200–202]. Fibrates are reported to either have no effect on
or decrease the risk of HF [202, 203]. The ACCORD Study
showed that type II diabetic patients currently taking sim-
vastatin and given fenofibrate had no significant difference in
the number of HF events [203]. An older double-blind study
in men with coronary heart disease receiving gemfibrozil
instead of placebo had a 23% reduced risk of having a nonfatal
MI [204].Thus, fibrates seem to contribute to preserving car-
diovascular health by decreasing coronary events [202, 204].

7.2. PPAR𝛾 Agonists: Thiazolidinediones. TZDs are a major
class of PPAR𝛾 agonists that include rosiglitazone, pioglita-
zone, and troglitazone. TZD binding to the PPAR𝛾:RXR is
thought to prevent corepressor interactions, thus enhancing
transcriptional activity [205]. They are indicated for type II
diabetes and help to improve insulin sensitivity in adipose tis-
sue, skeletalmuscle, and liver either via increased adiponectin
levels [206, 207] or via increased glucose uptake [205].
Despite these benefits, rosiglitazone and pioglitazone have
come under massive controversy for their cardiovascular-
related effects. The use of pioglitazone may also be associated
with an increased risk of bladder cancer [208]. Troglitazone
has been removed from the market since 2000 due to its
hepatotoxicity [209, 210]. In 2003, a retrospective study
that included 17 million patients and their prescriptions,
pharmacy, provider, and facility claims concluded that TZD
was associated with a 60% increased risk for HF due to direct
cardiovascular effects or other indirect effects [211].

Compared to pioglitazone, rosiglitazone appears to be
associated with a higher risk of HF and other cardiovascular
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events, like stroke and MI [212]. Another study on the corre-
lation and causation of TZDs and HF reported increased risk
(43%) of MI in patients treated with rosiglitazone, compared
to 82 deaths in the control groups treated with metformin,
sulfonylurea, insulin, and placebo [209]. A TZD consensus
statement acknowledged a small increase in HF incidents
in patients on rosiglitazone but concluded that patients and
health care providers should simply be aware of the risks
[213]. A meta-analysis of randomized trials using rosiglita-
zone treatment found an association between rosiglitazone
and increased risk for MI [209]. The PROactive study and
a meta-analysis of randomized trials showed that although
treatment of diabetes patients with pioglitazone increases
heart failure incidence, subsequent all-cause mortality, MI,
or stroke is decreased [214, 215]. Compared to pioglitazone,
rosiglitazone appeared to be associated with a higher risk
of HF and other cardiovascular events like stroke and MI
[212]. However, the RECORD trial showed that rosiglitazone
treatment is associatedwith an increased risk for heart failure,
but not for MI, stroke, or cardiovascular mortality [216,
217]. A 2010 AHA/ACCF Science Advisory reevaluated TZDs
and their cardiovascular risks based on more recent clinical
trials and meta-analyses and concluded that a link between
rosiglitazone and HF could not be established [210]. In 2013
the FDA removed restrictions on rosiglitazone.

7.3. PPAR𝛿 Agonists. PPAR𝛿 agonists are neither as wide-
spread nor as developed as PPAR𝛼 or PPAR𝛾 agonists.
Currently, telmisartan is one drug on the market that targets
PPAR𝛿, as well as PPAR𝛾 [218]. Telmisartan is indicated
for hypertension, as it is an angiotensin II receptor blocker
(ARB), but it can also partially target PPAR𝛿 [218, 219]. HF
is included in the list of spontaneous events most frequently
reported during postmarketing surveillance, but it remains
unknown how concrete the link between PPAR𝛿 agonists
and cardiac function is. A study that assessed the risk of
cardiovascular events in patients, who recently suffered from
an ischemic stroke, using telmisartan, showed a slightly less
rate of developing MI and HF for the telmisartan group
[220].There have been two trials on the effects of telmisartan:
ONTARGETandTRANSCEND [221].TheONTARGET trial
randomly divided 25,620 patients into three groups to receive
telmisartan, ramipril, or a combination of both [222]. No
significant differences were observed between the groups in
terms of primary outcomes (fatal cardiovascular complica-
tions, MI, HF, or stroke) and secondary outcomes (revas-
cularization, nonfatal HF, diabetes, angina, or renal impair-
ment) [222]. The TRANSCEND trial, which utilized 6,000
patients receiving telmisartan or placebo, came to a similar
conclusion [223]. However, the females that used telmisartan
showed a 20% overall risk reduction of MI [221]. It is
difficult to determine whether telmisartan’s beneficial effect
on cardiac function is accounted for by direct action of the
drug on cardiac PPAR𝛿 or solely because of ARB targeting.

7.4. Dual- and Pan-PPAR Agonists: Glitazars. The fourth
class of PPAR agonists includes the dual-PPAR agonists
and the pan-PPAR agonists, also known as glitazars. The
insulin sensitizing effects of the PPAR𝛾 agonists combined

with the lipid-lowering effects of the PPAR𝛼 agonists would
theoretically be efficacious in treating patients withmetabolic
syndrome or type II diabetes. Indeed, dual-PPAR𝛼/𝛾 agonists
have been in development under great interest. Although
there are none approved in the US, saroglitazar was approved
in June 2013 for clinical use in India [224]. Saroglitazar has a
higher affinity for PPAR𝛼 than PPAR𝛾. Saroglitazar, like the
PPAR𝛼 agonists, is generally well tolerated and significantly
effective (𝑃 < 0.001) in lowering plasma triglyceride levels,
45% reduction compared to control [225]. It is too early to tell
whether saroglitazar has any cardiovascular impact, although
its product information contains a warning and precaution-
ary statement with its use in type II diabetics with congestive
HF [226]. Saroglitazar is still in its Phase IV postmarketing
surveillance study. Other glitazars that were in development
include aleglitazar, muraglitazar, tesaglitazar, and cevogli-
tazar. As of present, all have been abandoned due to adverse
side effects, including cardiovascular adverse effects. The
trials evaluating aleglitazar, called AleCardio, were halted
during Phase III trials in July 2013 due to increased incidents
of gastrointestinal hemorrhage, bone fractures, and HF in
patients receiving aleglitazar compared to placebo [227].
Similarly, muraglitazar, another dual-PPAR𝛼/𝛾 agonist, had a
negative cardiovascular impact on its patients. In an analysis
of multiple clinical trials, muraglitazar was compared to
pioglitazone and placebo in order to assess the cardiovascular
risks [228]. Muraglitazar, as monotherapy or as combination
therapy, had higher incidents of HF, MI, and transient
ischemic attacks (TIAs) compared to control.Themechanism
of cardiovascular toxicity of these dual-PPAR𝛼/𝛾 agonists is
still unknown and needs to be elucidated [227, 228].

8. Epilogue

PPARs have major roles in regulating cardiac metabolism
and function in health and disease. Administration of PPAR
agonists or antagonists can be either beneficial or detrimental
for cardiac function depending on the type of stress that
the heart undergoes and the timing of administration. Thus,
alteration of PPAR activation may be used in therapeutic
approaches that aim to improve cardiac function.
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15 (KLF15) in transcriptional regulation of adipogenesis,” The
Journal of Biological Chemistry, vol. 280, no. 13, pp. 12867–12875,
2005.

[69] S. Sen Banerjee, M. W. Feinberg, M. Watanabe et al., “The
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