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Abstract

Visual information is extremely important to generate internal spatial representations. In the

auditory modality, the absence of visual cues during early infancy does not preclude the

development of some spatial strategies. However, specific spatial abilities might result

impaired. In the current study, we investigated the effect of early visual deprivation on the

ability to localize static and moving auditory stimuli by comparing sighted and early blind

individuals’ performance in different spatial tasks. We also examined perceptual stability in

the two groups of participants by matching localization accuracy in a static and a dynamic

head condition that involved rotational head movements. Sighted participants accurately

localized static and moving sounds. Their localization ability remained unchanged after rota-

tional movements of the head. Conversely, blind participants showed a leftward bias during

the localization of static sounds and a little bias for moving sounds. Moreover, head move-

ments induced a significant bias in the direction of head motion during the localization of

moving sounds. These results suggest that internal spatial representations might be body-

centered in blind individuals and that in sighted people the availability of visual cues during

early infancy may affect sensory-motor interactions.

1. Introduction

Sound localization is an important aspect of our hearing as it facilitates interactions with envi-

ronmental stimuli. Within real environments, sound sources are not always static but can be

dynamic, and accounting for these spatial changes over time becomes crucial for an accurate

localization. Furthermore, humans are meant to move, so the big challenge for the brain is to

extrapolate spatial positions of moving objects and preserve these representations despite self-

movements.

Identifying sound source locations becomes particularly relevant when external stimuli are

not accessible to the visual system; for example, when stimuli are located out of the visual field

(as in the case of a car approaching from behind) or, more importantly, in the case of visual

impairment. A number of studies reported enhanced hearing abilities in blind individuals

after early visual deprivation, suggesting that the brain might take advantage of the auditory

modality to compensate for the lack of vision [1–4]. Some forms of sensory compensation

seem to be driven by a cortical reorganization of the visual cortex, which preserves its compu-

tational processing but develops sensitivity to non-visual stimuli [5–11]. Other recent studies
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reported task-specific spatial auditory impairment in blind individuals [12–15], supporting the

idea that the visual system might be important for the spatial calibration of the auditory space

[16], [17]. Most of these studies used static auditory stimuli paired with a static body position

of the participant, neglecting more natural conditions that consider body movements and

dynamic auditory stimuli.

The localization of moving auditory stimuli may be poorly accurate, as object in motion

can be displaced toward the direction of motion [18–20]. This spatial displacement depends

on a number of variables [19] such as target velocity [20], predictability and position of the tar-

get [21], type of visual motion and response mode [22]. Although the idea of a perceptual spa-

tial distortion for moving objects might seems detrimental, such displacement sometimes

plays an important role for the organization of goal-directed movement. For instance, to catch

a target in motion the perceptual system must compensate for the target’s movement occur-

ring during visual processing and during the phase of motor preparation. Under this perspec-

tive, a spatial displacement may reflect the ability of the brain to predict the future position of

the target and facilitate rapid and accurate motor responses, binding the gap between percep-

tion and action [19], [23]. This hypothesis is consistent with “forward models” suggesting an

internal mechanism triggered by the efferent copy of the motor command that predicts sen-

sory consequences to improve sensory-motor interaction [24–26].

The localization of visual stimuli or sound sources apparently doesn’t change under

dynamic conditions [27], [28]. In fact, people make no directional errors when have to report

the final location of a moving auditory target after rotational movement of the head. Percep-

tual stability occurs through a spatial remapping of the stimulus from an egocentric (eye, head

and body centered coordinates) to an allocentric, i.e. external, frame of reference that guaran-

tees a stable representation of objects in world coordinates. In the acoustic domain, external

stimuli are represented in both egocentric and allocentric frames of reference [29]. Indeed, the

egocentric spatial representation of sound sources that is originally deduced from the process-

ing of binaural cues such as interaural time difference (ITD) and interaural level difference

(ILD) afterward is remapped in an allocentric frame of references, to ensure an accurate multi-

sensory perception and sensory-motor interaction.

To overcome the limits of using static auditory stimuli and static body positions of partici-

pants, we tested a group of sighted and early blind individuals in different auditory tasks to

investigate auditory localization of static and moving sound sources with and without head

movements. This study explores: i) audio processing in dynamic contexts; ii) the role of body

movement on sound perception and iii) the association between auditory processing and body

movement (in terms of reference systems and interaction abilities). As mentioned above, mov-

ing stimuli are usually displaced toward the direction of motion and this perceptual illusion

might be important for sensory-motor interaction. Head movements affect binaural cues

adopted by the auditory system for localization and these changes may result in a spatial dis-

placement. Nevertheless, if self-movements trigger the spatial remapping of the sound in allo-

centric frames of reference, the perceived location of the sound should not change. Our

hypothesis is that visual deprivation might affect the localization of static and dynamic audi-

tory stimuli and the remapping into allocentric coordinates that usually occurs during head

movements.

2. Methods

Eight healthy volunteers (4 males, 4 females, mean age: 36 ± 6 years of age) and eight early

blind individuals (3 males, 5 females, mean age: 40.12 ± 6 years of age) participated in the

experiment. S1 Table (Supplemental material) shows additional details about the age,
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pathology and residual vision of the blind participants. All participants were right handed and

had normal hearing. Sighted participants were blindfolded during the experiment. The study

was conducted according to the principles defined in the declaration of Helsinki. All testing

procedures were approved by the ASL3 of Genoa (Italy). Participants provided signed in-

formed consent after the experimental procedures were explained.

The experimental setup was composed by 18 speakers placed at 5 cm distance one from

another and arranged in an arc with 57 cm radius (see Fig 1). Each speaker was covered with

4X4 array of tactile sensors, used to record participants’ responses. Participants sat in the mid-

dle of the array. Auditory stimuli were static or moving sounds (white noise burst), presented

at 70 dB of sound pressure level. We recorded motor responses by using tactile sensors directly

attached to the speaker surface and head movements by using the Vicon motion tracking sys-

tem (Vicon Motion Systems, Ltd., UK). This is an infrared marker-tracking system that

acquires live movements in 3D space with high temporal and spatial precision.

Participants performed three different auditory tasks in a random order: 1) a simple point-

ing task with static sound sources to control for any bias in sound localization, 2) a localization

task with moving sounds, 3) a localization task with moving sounds while participants per-

formed a head movement (see Fig 1 for methods and procedures). During the localization task

with static auditory stimuli (task 1), a 300 ms sound was delivered by one of the 18 speakers

from the setup. Participants had to identify and touch the speaker that produced the sound.

We run a single block where every sound location was repeated 10 times, in a random order,

for a total of 180 trials.

In the localization task with moving sounds sources (task 2), participants kept their head

straight while listening to a sound moving from left to right or from right to left. While the

space displacement of the moving sound was fixed at 15 cm across the experiment, the dura-

tion of the sound, and consequently its velocity, was manipulated across three values: 200, 300

and 500 ms where the duration is inversely proportional to the velocity. After the presentation

of the moving sound, participants had to locate its endpoint by touching the last speaker that

played the sound. We manipulated the direction of sound motion generating a “rightward”

and a “leftward” condition. For each direction of the moving sound, participants performed

three experimental blocks: one for each stimulus duration. The endpoint of the moving sound

Fig 1. Upper panels shows the procedures for the three different localization tasks. The lower panel

shows a picture of the experimental setup.

https://doi.org/10.1371/journal.pone.0177407.g001
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ranged between -7.5, 2.5, 12.5, 22.5 and 32.5 cm (given the fixed spatial displacement of the

moving sound its start-point ranged between -27.5, -17.5, -7.5, 5 and 12.5 cm) in the rightward

condition, where negative values represent the left side and positive values the right side of the

array, and -32.5, -22.5, -12.5, -2.5, 7.5 for the leftward condition. Each endpoint location was

repeated 10 times in a constant stimuli algorithm, in a random order, for a total of 100 trials.

In the localization task with moving sounds and head movements (task 3), we used the

same auditory stimuli of task 2, but this time participants had to perform a head rotation dur-

ing sound presentation. Specifically, we asked participants to rotate their head in the opposite

direction of sound motion (for example in the rightward condition, while the sound was mov-

ing to the right the head was rotating to the left side) and to start the movement after a go sig-

nal simultaneous to the start of the sound. At the end of the auditory stimulation, participants

had to maintain the head rotated and localize the endpoint of the moving sound by touching

the speaker with their right hand. Also in this task, participants performed one experimental

blocks for each stimulus duration (three blocks).

Before the experiment, we trained participants to perform precise head movements. We

analyzed head movements with the Vicon motion capture system. For an accurate analysis, we

used seven markers: three of them were placed on participants’ shoulders to form a horizontal

line, two markers were placed above the ears, one on the forehead and one above the inion.

These last two markers generated a vertical line on the antero-posterior axes of the brain. We

measured the intersection between the horizontal and the vertical line and calculated the

amplitude of the angle produced by the rotation of the head and the speed of the head

movement.

3. Results

Results from the pointing task with static sound sources are showed in Fig 2. Average errors,

calculated for each subject as the difference between the reproduced and the real location of

the sound and then averaged across participants for each group, are plotted for each speaker

location. Positive values represent a mislocalization to the right, while negative value a dis-

placement to the left. The dashed line represents the central position of the speaker array, so

that bars on the right side of the line denote speakers on the right side of the array and bars on

the left side of the line denote speakers on the left side of the array. Sighted participants had a

small tendency to expand the auditory space, displacing sounds location on the right side of

the array to the right (positive errors) and location on the left side of the array to the left (nega-

tive errors). However, errors were not statistically different from zero. On the other side, the

Fig 2. Average errors for each speaker location (locations are represented up in the figure) for the

sighted (black bars, left panel) and blind group (green bars, right panel) measured in the localization

task with static sounds.

https://doi.org/10.1371/journal.pone.0177407.g002
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group of early blind participants showed a significant mislocalization to the left (one sample,

two-tailed t-test: t(17) = -4.53, p<0.001). A repeated measure ANOVA revealed a significant

effect of the speaker location (F(17) = 4.43, p<0.0001, η2 = 0.38). Specifically the error in localiz-

ing the last speaker on the right was significantly higher than all the others (all p<0.01).

Localization errors in task 2 were analysed with a repeated measure ANOVA (within fac-

tors: motion direction, speed and endpoint location; between factor: group). For this task,

errors were calculated as the difference between reproduced endpoint locations measured

in task 2 and reproduced locations measured in task 1. Moreover, we normalized errors to cor-

rect for the direction of motion so that positive values of the error represent a bias in the direc-

tion of sound motion. Since endpoint locations were specular for the two motion direction

conditions, we considered 5 endpoint locations from 1 (most central) to 5 (most peripheral).

We found a significant interaction between endpoint location and group (F(1,2,4,1) = 4.11,

p = 0.006, η2 = 0.25), but no effect of speed and motion direction. Fig 3 shows the results for

task 2 for sighted (black symbols and line) and blind (green symbols and line) participants. As

we did not find any significant effect of speed, we averaged individual data across the three

speed conditions. Group mean errors are plotted as a function of all the endpoint locations of

the sound. Positive value of the error represent a displacement toward the direction of sound

motion. On average error were significantly different from zero (showing a bias in the direc-

tion of sound motion) only for blind participants when the sound ended 5 cm to the right

(one sample, 2-tailed t-tests with Bonferroni correction for multiple comparison, t(7) = 4.73,

p = 0.002). Sighted controls’ error when the sound ended 25 cm to the right was only margin-

ally significant (one sample, 2-tailed t-tests with Bonferroni correction for multiple compari-

son, t(7) = 2.44, p = 0.04).

The head rotation, performed in task 3, differently affected the performance of the two

group of participants, with blind individuals showing a bias in the direction of head motion.

Fig 3. Average errors (from the bias observed in task 1) measured in the localization task with moving

sounds and static head for the sighted (black lines and symbols) and blind (green lines and symbols)

groups of participants. Data are averaged across the three speed conditions (200, 300 and 500 ms).

https://doi.org/10.1371/journal.pone.0177407.g003

Intercepting a sound without vision

PLOS ONE | https://doi.org/10.1371/journal.pone.0177407 May 8, 2017 5 / 10

https://doi.org/10.1371/journal.pone.0177407.g003
https://doi.org/10.1371/journal.pone.0177407


Results for the localization tasks with moving sounds and moving head are reported in Fig 4.

Group mean errors are calculated as the difference between reproduced endpoint locations

measured in task 3 and errors measured in task 1. Errors were normalized to correct for the

direction of motion so that positive values of the error represent a bias in the direction of

sound motion and negative values of the error show a bias in the direction of head motion. A

repeated measure ANOVA (within factors: motion direction, speed and endpoint location;

between factor: group) showed a significant interaction between motion direction, endpoint

location and group (F(1,2,4,1) = 4.12, p = 0.008, η2 = 0.31); motion direction and endpoint

location (F(1,2,4,1) = 8.9, p<0.001, η2 = 0.49); speed and endpoint location (F(1,2,4,1) = 3.28,

p = 0.003, η2 = 0.26); endpoint and group (F(1,2,4,1) = 3.42, p = 0.01, η2 = 0.27); and a significant

effect of endpoint location (F(1,2,4,1) = 13.72, p<0.001, η2 = 0.6). Pairwaise comparison (cor-

rected for multiple comparison) revealed that the mislocalization of peripheral speakers was

larger than the mislocalization of the most central speakers (p<0.002).

For the rightward condition, differences in localization’s error between the two groups of

participants were significant only for the 500 ms condition (repeated measure ANOVA, group

for the 500 ms condition; within factors: endpoint location; between factor: group, F(4,1) =

9.28, p = 0.009, η2 = 0.39). We also compared localization error measured in this task with

localization errors observed in the task with moving sound and static head. A repeated mea-

sure ANOVA (within factor: head, speed and endpoint; between factor: group) showed a sig-

nificant effect of head (F(1,3,4,1) = 8.44, p = 0.01, η2 = 0.37) and endpoint (F(1,3,4,1) = 6.57, p<

0.001, η2 = 0.44), a significant interaction between head and group (F(1,3,4,1) = 4.66, p = 0.04,

η2 = 0.25) and head and endpoint (F(1,3,4,1) = 15.09, p<0.001, η2 = 0.40). Similarly to the right-

ward condition, for the leftward condition, a repeated measure ANOVA (within factor: head,

speed and endpoint; between factor: group) showed a significant interaction between endpoint

and group (F(1,3,4,1) = 3.88, p = 0.01, η2 = 0.30) and head, endpoint and group (F(1,3,4,1) = 3.49,

p = 0.01, η2 = 0.28).

4. Discussion

Results from this study showed that early blind individuals are inclined to displace static

sounds toward the left side of space. Results also showed that rotational head movements affect

auditory localization in early blind individuals but not in sighted people. Overall, these find-

ings suggest that early visual deprivation has an effect on auditory localization and that audi-

tory spatial representations in blind individuals may be body-centered.

Fig 4. Average errors (from the bias observed in task 1) measured in the localization task with moving

sounds and moving head for the sighted (black lines and symbols) and blind (green lines and

symbols) groups of participants, for the three speed conditions (200, 300 and 500 ms).

https://doi.org/10.1371/journal.pone.0177407.g004
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In the localization task with static sound, blind participants showed a spatial bias to the left.

This result might appear in conflict with previous study reporting similar or even higher audi-

tory spatial accuracy in blind as compared to sighted individuals (Lessard et al., 1998; Röder

et al., 1999). We believe that the high spatial resolution provided by our setup (the distance

between the center of two adjacent speakers was 5 cm) enabled us to highlight even small spa-

tial errors that otherwise might not be detectable. Indeed, in a previous study (Lessard et al.,

1998) the distance between speakers was 10 cm, which is the largest error that we reported in

this task.

By positioning speakers on a table (not at the ear level) we might have added reverberation

and affected sound perception. On the other hand, reverberation should have equally impaired

the performance of both group of participants, and not only that one of the blind group. Other

studies support our result, showing a leftward bias in blind individuals for a tactile bisection

task [30] that might depend on differences in the role of the right and left hemisphere in the

control of spatial attention [31].

Stimulus motion induced a small spatial bias in both groups, as previously reported in the

visual modality [18], [19] and in the auditory modality [20]. Interestingly, blind and sighted

participants showed opposite trend with blind individuals displacing central stimuli and

sighted controls only peripheral sounds. This might be explained by an enhanced auditory

localization for peripheral stimuli in blind individuals [3].

The more interesting result of the current study is that rotational head movements impaired

sound localization in blind individuals, inducing a bias in the direction of head motion, but

did not affect the performance of sighted participants as previously reported [28]. This result

suggests that in early blind, the spatial remapping of the auditory stimulus in an allocentric

frame of reference does not occur and that blind participants might be more susceptible to a

motor bias. An egocentric representation of the surrounding space may be extremely func-

tional for blind individuals during navigation as it provides an additional “margin of safety”

and can help to avoid obstacles [32]. Previous studies already supported an egocentric spatial

representation in blind individuals [33], [34]. This result is also consistent with a recent study

from Finocchietti et al. [12] reporting a deficit in blind individuals in encoding sound motion

in the lower side of the sagittal plane with a spatial bias toward the head.

We propose that vision plays a crucial role in organizing auditory spatial processing. Devel-

opmental studies already showed that before 10–14 years of age, audio-visual and visual-haptic

stimuli are not integrated optimally as in adults, but vision dominates over audition and touch

for spatial judgments [16], [35], supporting the idea that vision is important for the spatial cali-

bration of the other sensory modalities [17]. In agreement with recent findings [12–14], [36–

38], here we showed that the presence of visual cues during the early infancy affects auditory

spatial representations.

Vision, over all sensory modalities, is usually defined as a spatial sense [39] because it repre-

sents proximal and distal items simultaneously, extracts spatial invariants despite self-motion

and provides the most precise information about consequences of self-displacement. The

severe reduction of distal information and the poor representation of external landmarks

induced by the loss of vision may prompt the use of egocentric frames of reference because

allocentric representations become more difficult to process. Indeed, it has been argued that

early blind spatial knowledge rely more on body-centered proprioceptive and kinesthetic

information (Millar, 1994). In agreement with this hypothesis, we suggest that early visual

deprivation shapes internal spatial representations, enhancing the salience of the body as a ref-

erence. Our findings suggest that visual information is important not only for a spatial calibra-

tion of the other sensory modalities, but also for the correct development of sensory-motor

interactions.
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