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a Escuela Profesional de Ingeniería Agronómica, Facultad de Ciencias Agrarias, Universidad Nacional del Altiplano. Av. Floral 1153, Código postal 21001, Puno, Perú
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A B S T R A C T

The objective of this study was to fit four nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to 
realizations of llama weight, using frequentist and Bayesian approaches. Animals from both sexes and types 
(K’ara and Ch’accu) were observed. Data consisted of 43,332 monthly body weight records, taken from birth to 
12 months of age from 3611 llamas, collected from 1998 to 2017 in the Quimsachata Experimental Station of the 
Instituto Nacional de Innovación Agraria (INIA) in Peru. Parameters for Non-linear models for growth curves 
were estimated by frequentist and Bayesian procedures. The MCMC method using the Metropolis-Hastings al-
gorithm with noninformative prior distributions was applied in the Bayesian approach. All non-linear functions 
closely fitted actual body weight measurements, while the Brody function provided the best fit in both frequentist 
and Bayesian approaches in describing the growth data of llamas. The analysis revealed that female llamas 
reached higher asymptotic weights than males, and K’ara-type llamas exhibited higher asymptotic weights 
compared to Ch’accu-type animals. The asymptotic body weight, estimated for all data using the Brody model, 
was 42 kg at 12 months of age in llamas from Peru. The results of this research highlight the potential of applying 
nonlinear functions to model the weight-age relationship in llamas using a Bayesian approach. However, limi-
tations include the use of historical data, which may not fully represent current growth patterns, and the reliance 
on non-informative priors, which could be improved with prior knowledge. Future studies should refine these 
aspects.

1. Introduction

It is estimated that more than 5.5 million South American camelids, 
including only alpacas and llamas, are found in Peru, among which the 
llama (Lama glama) represents 19 % of the total. Most llamas are found 
in the regions of Puno (33.4 %), Cusco (13.5 %), and Huancavelica (12 
%) (Midagri, 2021). The habitat of these animals is primarily 
high-altitude areas, which extend from northern Peru to northern 
Argentina, including the respective mountainous zones of Bolivia and 
Chile. Llama and alpaca farming is one of the main socio-economic 

activities for a large sector of the Andean population in Peru (Huanca 
Mamani et al., 2012), as they provide a variety of products such as fibers, 
meat, and manure, and are used as pack animals. In Peru, llamas are 
traditionally classified into two different types: Ch’accu, characterized 
by greater fiber coverage, and K’ara, which lack fibers at the extremities, 
head, and ears and have reduced fiber growth on the neck, However, 
K’ara llamas are more hardy and are often used as a pack animals. Both 
types of llamas provide meat with high protein content, which is 
regarded as healthy and nutritious, making it an important food source 
for the inhabitants of the Andean region (Polidori et al., 2007; Quispe 
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et al., 2009).
Currently, llama meat and fiber are being progressively commer-

cialized, reflecting a growing demand for these products. However, the 
lack of infrastructure and the quality and quantity standards of llama 
meat and fiber are the main factors hindering more market-oriented 
farming. Additionally, challenges such as disease management and 
climate change impacts further complicate sustainable production. This 
issue arises because llamas are handled and produced in small produc-
tion systems by low-income farmers, facing the consequences of the 
marginalization of subsistence systems (Quispe et al., 2009). Further-
more, while small-scale farmers have clear production objectives (e.g., 
meat, fiber, or other purposes), these objectives are not typically aligned 
with the specific goals required for structured genetic improvement 
programs. Under these production conditions, where small-scale 
farmers prioritize specific objectives (e.g., meat or fiber production), 
an important phenotypic indicator of meat production capacity is the 
live weight of animals over time. This is because meat production is 
directly influenced by the growth rate and body size of the animals, 
which are key traits for improving productivity in genetic improvement 
programs.

Mathematical modeling of growth data allows for better explanation 
and interpretation of growth events, which in turn helps improve overall 
productivity. Growth curves, using nonlinear functions, describe the 
animal’s growth over a period of time. There are many nonlinear 
mathematical functions, such as Gompertz (Winsor, 1932), Brody 
(Brody, 1945), von Bertalanffy (von Bertalanffy, 1957), and Logistic 
(Nelder, 1961) that have been widely used in different livestock species 
because they provide biologically meaningful parameters and describe 
the growth patterns underlying body weight development in most ani-
mals (e.g., Domínguez-Viveros et al., 2023; Araujo et al., 2023, in cattle; 
Ozturk et al., 2023, in sheep; Tavares et al., 2023, in pigs; and Yadav 
et al., 2023, in chickens). Riek and Gerken (2007) adjusted growth 
curves in llamas using simple linear regression and the Gompertz 
equation and concluded that linear regression could be adequate to 
describe body weight development from birth to 27 weeks post-partum. 
Recent studies have fitted growth curves in one-year-old young llamas 
using different nonlinear functions. Canaza-Cayo et al. (2015) evaluated 
four nonlinear growth models—Brody, von Bertalanffy, Gompertz, and 
Logistic—and identified the Gompertz function as the most suitable, 
with K’ara llamas reaching higher mature weights but lower precocity, 
while their peak growth occurred earlier than in Ch’accu llamas. In 
contrast, Maquera (2023) found that the Brody and von Bertalanffy 
models best described llama growth, with males maturing earlier than 
females.

Growth curve parameter estimates are often obtained using the 
maximum likelihood (ML) approach, also known as the frequentist 
method. In this framework, model parameters are treated as fixed con-
stants, while their estimates are random variables obtained through 
iterative algorithms due to the nonlinear nature of the models. The ML 
approach is computationally efficient and provides asymptotically un-
biased estimates; however, it is sensitive to small sample sizes and model 
misspecification (Casella and Berger, 2002). An alternative is the 
Bayesian approach, which estimates parameters by integrating the 
posterior probability distribution, combining prior knowledge (repre-
sented by a prior distribution) with a probability model for the observed 

data (likelihood) (Iqbal et al., 2019a). The Bayesian method allows for 
the incorporation of prior information and provides full posterior dis-
tributions of parameters, offering a more comprehensive uncertainty 
quantification. However, it is computationally intensive and requires 
careful selection of priors, as these can significantly influence the results 
(Gelman et al., 2013).

The Bayesian approach has been widely applied in modeling growth 
curves across various livestock species, demonstrating its effectiveness 
in parameter estimation and uncertainty incorporation. For instance, 
Salles et al. (2020) employed Bayesian methods to model the growth 
curve of Santa Inês sheep, highlighting the approach’s flexibility in 
integrating prior information and providing more precise parameter 
estimates. Similarly, Iqbal et al. (2019b) used Bayesian inference to fit 
nonlinear growth functions to Thalli sheep, identifying the Brody model 
as the most suitable for describing the weight-age relationship. These 
studies underscore the applicability of the Bayesian approach in live-
stock growth modeling, providing a relevant context for its application 
in llamas.

In general, this approach produces accurate point estimates along 
with respective credibility intervals. The present study is, as far as we 
know, the first to model weight-age relationship of llamas (Lama glama) 
using Bayesian methods, in contrast to previous studies that have relied 
on frequentist approaches (e.g., Riek and Gerken, 2007; Canaza-Cayo 
et al., 2015; Maquera, 2023). In addition, the growth characteristics of 
llamas from birth to their first year of age have not been adequately 
studied, likely due to data availability limitations and the fact that 
weight recording is often prioritized within this period for animal se-
lection purposes. Therefore, the objective of this study was to fit four 
nonlinear models (Brody, von Bertalanffy, Gompertz and Logistic) to the 
realizations of weight during the first year of age of peruvian llamas 
from both sexes and types (K’ara and Ch’accu). Results were compared 
with frequentist and Bayesian methods based on goodness-of-fit 
measures.

2. Materials and methods

2.1. Data

The dataset used in this study was obtained from the Quimsachata 
Experimental Station, of the Instituto Nacional de Inovacion Agraria 
(INIA) located in Puno, Peru. The Quimsachata Station is located at 4025 
meters above sea level, 15◦45’ 38.9’’ south latitude, 70◦ 34’ 18.9’’ 
western longitude. The temperature at the station varies between − 5 
and 18◦C, and rainfall reaches 700 mm/year. The animals are managed 
under extensive grazing systems, with access to natural pastures sup-
plemented by cultivated forages and mineral supplements as needed. 
Health protocols include regular deworming and vaccination programs 
to prevent common diseases such as enterotoxemia. Additionally, 
reproductive management involves careful monitoring of females dur-
ing gestation and parturition. The initial database contained 70,113 
records from 5,924 llamas. Data were edited to ensure consistency in the 
number of records per animal, considering only those with 12 monthly 
weight records from birth to one year of age. Records with inconsistent 
dates or weights were removed, as well as those from animals outside 
the age range. After editing, the final dataset comprised 43,332 monthly 
body weight records from 3,611 young llamas (1702 males and 1909 
females), belonging to two types: K’ara (2,133 animals: 974 males and 
1,159 females) and Ch’accu (1,478 animals: 728 males and 750 females) 
from birth to 365 days of age, born from 1998 to 2017. Individual body 
weight of animals was obtained by using a digital weighing scale.

2.2. Statistical analysis

The growth trajectory of animals was described by applying four 
non-linear models: Brody, Von Bertalanffy, Logistic, and Gompertz 
(Table 1), where yij is the observed body weight of individual i (i =1, . . ., 

Table 1 
Non-linear models used to describe the growth the growth curve of 
young llamas.

Model Equation

Brody yij = Ai
(
1 − Bie− ki tij

)
+ εij

Gompertz yij = Aie− Bie
− ki tij

+ εij

Logistic yij = Ai
(
1 + Bie− ki tij

)− 1
+ εij

von Bertalanffy yij = Ai
(
1 − Bie− ki tij

)3
+ εij
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n) at measurement time j (j = 1, . . ., ni) for animal i; Ai, the asymptotic 
body weight of animal I; Bi, the proportion of the asymptotic mature 
weight to be gained after birth for animal i; ki, is the maturity index of 
growth rate relative to the mature weight of animal i; tij is age of animal i 
in days at time j and εij is the random residual term. Detailed biological 
interpretations of these nonlinear growth models can be found in Freitas 
(2005).

Initially, a frequentist or classical approach was performed to esti-
mate the growth curve parameters from Brody, Von Bertalanffy, Logis-
tic, and Gompertz models. The NLIN procedure from the SAS software 
package (SAS Institute Inc., 2013) was used to estimate the least-squares 
estimates and the standard errors of parameters A, B and k. Parameter 
estimation was performed using the Gauss-Newton algorithm. The 
goodness of fit to these growth models was evaluated using R2

Adj, the 
Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC). Lower values of AIC and BIC indicate a better model fit while 
balancing model complexity and goodness of fit.

Secondly, a Bayesian approach was used to fit the nonlinear models 
previously mentioned. Bayesian hierarchical model, was adjusted to 
obtain the joint posterior distribution for the model parameters of each 
growth model separately by sex and breed of llamas. A growth model for 

a single animal was assumed as yij = f
(
tij,θ

)
+ εij, where f(⋅) represents 

one of the four nonlinear growth curve models outlined in Table 1, and 
the subscripts follow the same notation. The distribution of the sample 

data for the growth model was y|θ, σ2
y ∼ N

(
f
(
tij, θ

)
, σ2

y

)
, where θ =

[A,B, k] and σ2
y is the sample variance. To estimate the probability pos-

terior density of θ given the sample y, denoted by p(θ|y), obtained from 
the expression: p(θ|y)∝p(θ)L(θ|y), where p(θ) is the prior density and 

L(θ|y) is likelihood function which was obtained as: L
(

θ, σ2
y

)
∝ 

∏n

i=1

∏ni

j=1
1/

̅̅̅̅̅̅̅̅̅̅̅
2πσ2

y

√
exp

{

− 1
2σ2

y

∑n
i=1

[
yij − f

(
tij, θ

)]2
}

. The non-informative 

prior distributions for the parameters of every growth model as well 
as for the precision parameter were: A Normal(0, τa); B Normal(0, τb);

k Normal(0, τk) and τ. gamma(0.001,0.001), respectively. In all models, 
chain lengths of 40,000 cycles were considered to ensure convergence 
and adequate exploration of the parameter space, with a burn-in period 
of first 15,000 cycles. Every 4th sample is retained in the next 40,000 
samples to reduce the auto-correlation and improve the efficiency of 
posterior distribution estimation, resulting in a total of 10,000 effective 
samples.

Table 2 
Descriptive statistics of live weight (kg) of llamas.

Factor n Mean SD Minimum Maximum Lower quartile Upper quartile

Sex       
Male 20424 28.44 10.29 5.00 61.5 21.5 36.0
Female 22908 28.75 10.59 5.00 63.5 21.5 36.5
Type       
K’ara 25596 29.27 10.67 5.00 63.5 22 37.0
Ch’accu 17736 27.64 10.06 5.00 57.0 20.5 35.0

n: total number of weight records, SD: Standard deviation.

Table 3 
Estimates (mean ± standard error) of growth curve parameters under four models in llamas through the frequentist approach.

Factor N Parameters Model
Brody Logistic Gompertz von Bertalanffy

All 43332 A 42.12±0.14 38.25±0.07 39.42±0.09 40.06±0.10
  B 0.77±0.01 57.47±0.41 25.29±0.36 0.36±0.00
  k 0.01±0.00 0.02±0.00 0.01±0.00 0.01±0.00
  R2adj 0.731658 0.712344 0.7236901 0.7270336
  AIC 269357.4 270725.8 269929 269698
  BIC 269392.1 270760.5 269963.7 269732.7
Sex      
Male 20424 A 41.34±0.19 37.75±0.1 38.84±0.12 39.44±0.14
  B 0.76±0.00 55.55±0.58 23.88±0.51 0.36±0.00
  k 0.01±0.00 0.02±0.00 0.01±0.00 0.01±0.00
  R2adj 0.7302318 0.7112328 0.7224713 0.7257576
  AIC 126428.9 127057.3 126688.8 126582.9
  BIC 126460.6 127088.9 126720.5 126614.6
Female 22908 A 42.84±0.21 38.71±0.1 39.95±0.13 40.62±0.14
  B 0.77±0.00 59.2±0.57 26.59±0.5 0.37±0.00
  k 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00
  R2adj 0.7335713 0.7140041 0.7254319 0.7288212
  AIC 142850.6 143592.4 143163 143037.7
  BIC 142882.7 143624.6 143195.2 143069.8
Type      
K’ara 25596 A 43.25±0.18 39.22±0.09 40.43±0.11 41.09±0.13
  B 0.77±0.00 58.34±0.51 26.16±0.45 0.37±0.00
  k 0.01±0.00 0.02±0.00 0.01±0 0.01±0.00
  R2adj 0.7466748 0.7275633 0.7388373 0.7421447
  AIC 158679 159545.6 159039 158892.6
  BIC 158711.6 159578.2 159071.6 158925.2
Ch’accu 17736 A 40.47±0.21 36.84±0.1 37.95±0.13 38.55±0.15
  B 0.76±0.00 56.09±0.65 23.93±0.57 0.36±0.00
  k 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00
  R2adj 0.7210768 0.7016264 0.7129922 0.7163556
  AIC 109570.4 110107.3 109796.6 109706
  BIC 109601.6 110138.4 109827.7 109737.1

A.W. Canaza-Cayo et al.                                                                                                                                                                                                                      



Veterinary and Animal Science 28 (2025) 100447

4

The deviance information criterion (DIC) was used to assess the 
performance of the Bayesian models as described by Spiegelhalter et al. 
(2002). It is calculated as:DIC = D(θ̂)+ 2pD, where D(θ̂) is the deviance 
at the posterior mean of the parameters, and pD is the effective number 
of parameters. Lower DIC values indicate a better fit with fewer pa-
rameters. According to Iqbal et al. (2019a) small DIC values differences 
between models require additional analysis. Therefore, the next crite-
rion was used to assess the significance of DIC differences: a difference of 
less than 3 is considered not significant, while a difference of 3 or more is 
considered significant (Spiegelhalter et al., 2002).

For the frequentist models, model fit was assessed using the adjusted 

coefficient of determination 
(

R2
adj = 1 −

(
(1− R2)(n− 1)

n− k− 1

))

, the Akaike 

Information Criterion (AIC = − 2logL+ 2k), and the Bayesian Infor-
mation Criterion (BIC = − 2logL+ klog(n)), where R2 is the coefficient 
of determination, L is the likelihood of the model, n is the sample size, 

and k is the number of parameters. Higher R2
adj values indicate a better 

model fit, while lower AIC and BIC values suggest a more parsimonious 
model with better predictive performance.

The convergence diagnostics from Geweke and Raftery-Lewis were 
used to assess the Markov Chain Monte Carlo (MCMC) algorithms 
(Metropolis-Hastings). Models with lower DICs values are preferred. 
Bayesian posterior distribution analysis was performed using PROC 
MCMC in SAS, version 9.4, software (SAS Institute Inc., 2013). The 
Metropolis-Hastings algorithm, a type of MCMC method, was used to 
sample from the posterior distributions of the model parameters. This 
algorithm generates a sequence of samples by proposing new parameter 
values based on a proposal distribution and accepting or rejecting these 
values according to an acceptance probability that ensures convergence 
to the target posterior distribution. Finally, the Shapiro-Wilk, Durbin--
Watson and Breusch-Pagan tests were performed to assess the normality, 
independence and homoscedasticity of residuals. These tests were per-
formed on the residuals obtained from the mean model to evaluate 
whether the assumptions of the nonlinear models were met.

3. Results and discussion

3.1. Residual analysis and descriptive statistics

The results of the Shapiro-Wilk (p = 0.8285), Durbin-Watson (p =
0.3823) and Breusch-Pagan (p = 0.0671) tests suggested that the re-
siduals meet the assumptions of normality, independence, and hetero-
scedasticity, so the results obtained from the analysis of the studied 
models are valid. Descriptive statistics of llama weights according to sex 
and animal type are presented in Table 2. It is noted that llamas of both 
sexes exhibited similar average weights, ranging from 5 to 63.5 kg. It can 
also be observed that the average weight of K’ara llamas was higher than 
that of Ch’accu llamas, ranging from 5 to 63.5 kg and from 5 to 57 kg, 
respectively. It is also noted that the weight for 25 % of the data from 
llamas of both sexes did not exceed 21.5 kg, and 75 % of the data did not 
exceed 36.5 kg. The availability of such information is essential to 
achieving the best fitting weight-age relationship of one-year-old llamas.

3.2. Growth model estimates and comparison by using frequentist 
approach

The estimates of growth curve parameters, their standard errors and 
goodness of fit statistics obtained from the frequentist approach for 
Brody, Logistic, Gompertz and von Bertalanffy models in llamas from 
birth to one year of age for both sexes and type of animal are presented 
in Table 3. For all data, and both sex and llama types, Brody model 
shows the best fit to the data due to the highest R2adj as well as the 
lowest AIC and BIC values for estimated growth curve parameters in 
one-year-old llamas, followed by von Bertalanffy, Gompertz and Logistic 
models. The estimation of parameter A, representing the asymptotic 

Table 4 
Pairwise DIC differences comparing four growth curve models for llama body 
weight according to sex and animal type.

Model DIC Comparison Difference Significance

All data    
Brody 269361.6 - - 
Logistic 270729.7 Logistic - Bordy 1368.1 *
Gompertz 269932.9 Gompertz - Bordy 571.3 *
von 

Bertalanffy
269702 von Bertalanffy - 

Bordy
340.4 *

Male    
Brody 126436.4 - - 
Logistic 129745.7 Logistic - Bordy 3309.3 *
Gompertz 126696.6 Gompertz - Bordy 260.2 *
von 

Bertalanffy
126590.7 von Bertalanffy - 

Bordy
154.3 *

Female    
Brody 142858.6 - - 
Logistic 146192 Logistic - Bordy 3333.4 *
Gompertz 143170.8 Gompertz - Bordy 312.2 *
von 

Bertalanffy
143045.6 von Bertalanffy - 

Bordy
187.0 *

K’ara type    
Brody 158685.8 - - 
Logistic 162461.6 Logistic - Bordy 3775.8 *
Gompertz 159045.3 Gompertz - Bordy 359.5 *
von 

Bertalanffy
160298.6 von Bertalanffy - 

Bordy
1612.8 *

Ch’accu    
Brody 109579.1 - - 
Logistic 112736.9 Logistic - Bordy 3157.8 *
Gompertz 111420.6 Gompertz - Bordy 1841.5 *
von 

Bertalanffy
110812.2 von Bertalanffy - 

Bordy
1233.1 *

*, Significant; DIC, Deviance Information Criteria; Lowest values of DIC are in 
bold.

Table 5 
Posterior estimates of growth curve parameters under four models in llamas through the Bayesian approach for all data.

Model Parameter Median Mean SD 95 % Credible Interval (BCI)

Lower (2.5 %) Upper (97.5 %)

Brody A 42.033 42.034 0.140 41.764 42.309
 B 0.769 0.769 0.002 0.766 0.773
 k 0.007 0.007 0.000 0.007 0.007
Logistic A 38.224 38.225 0.074 38.084 38.374
 B 2.370 2.370 0.017 2.339 2.405
 k 0.015 0.015 0.000 0.015 0.015
Gompertz A 39.381 39.383 0.092 39.209 39.570
 B 1.317 1.317 0.006 1.305 1.328
 k 0.011 0.011 0.000 0.011 0.011
von Bertalanffy A 40.008 40.009 0.104 39.806 40.214
 B 0.365 0.365 0.001 0.362 0.367
 k 0.010 0.010 0.000 0.009 0.010
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Table 6 
Posterior estimates of growth curve parameters under four models in llamas through the Bayesian approach by sex.

Model Parameter Median Mean SD 95 % Credible Interval (BCI)

Lower (2.5 %) Upper (97.5 %)

Brody      
Sex      
Male A 41.170 41.176 0.189 40.812 41.556
 B 0.765 0.765 0.002 0.760 0.770
 k 0.007 0.007 0.000 0.007 0.007
Female A 42.652 42.653 0.199 42.242 43.020
 B 0.773 0.773 0.002 0.769 0.777
 k 0.007 0.007 0.000 0.006 0.007
Logistic      
Sex      
Male A 49.367 49.365 0.008 49.347 49.377
 B 2.379 2.377 0.006 2.365 2.385
 k 0.007 0.007 0.000 0.007 0.008
Female A 49.848 49.847 0.012 49.826 49.869
 B 2.428 2.429 0.012 2.410 2.451
 k 0.008 0.008 0.000 0.008 0.008
Gompertz      
Sex      
Male A 38.771 38.770 0.126 38.524 39.013
 B 1.304 1.304 0.008 1.289 1.320
 k 0.011 0.011 0.000 0.011 0.011
Female A 39.867 39.869 0.130 39.611 40.116
 B 1.328 1.328 0.008 1.312 1.345
 k 0.011 0.011 0.000 0.011 0.011
von Bertalanffy      
Sex      
Male A 39.348 39.349 0.137 39.095 39.630
 B 0.362 0.362 0.002 0.358 0.365
 k 0.010 0.010 0.000 0.010 0.010
Female A 40.520 40.521 0.147 40.250 40.816
 B 0.367 0.367 0.002 0.364 0.371
 k 0.009 0.009 0.000 0.009 0.010

Table 7 
Posterior estimates of growth curve parameters under four models in llamas through the Bayesian approach by type of llama.

Model Parameter Median Mean SD 95 % Credible Interval (BCI)

Lower (2.5 %) Upper (97.5 %)

Brody      
Type      
K’ara A 43.099 43.097 0.181 42.758 43.457
 B 0.773 0.773 0.002 0.769 0.777
 k 0.007 0.007 0.000 0.007 0.007
Ch’accu A 40.276 40.274 0.211 39.873 40.687
 B 0.764 0.764 0.003 0.758 0.769
 k 0.007 0.007 0.000 0.007 0.007
Logistic      
Type      
K’ara A 49.029 49.030 0.008 49.017 49.043
 B 2.469 2.468 0.015 2.442 2.490
 k 0.008 0.008 0.000 0.008 0.008
Ch’accu A 51.901 51.902 0.005 51.891 51.910
 B 2.578 2.578 0.007 2.565 2.589
 k 0.007 0.007 0.000 0.007 0.007
Gompertz      
Type      
K’ara A 40.373 40.375 0.116 40.155 40.611
 B 1.329 1.329 0.007 1.315 1.343
 k 0.011 0.011 0.000 0.011 0.011
Ch’accu A 49.904 49.904 0.006 49.894 49.916
 B 1.323 1.323 0.005 1.312 1.333
 k 0.005 0.005 0.000 0.005 0.005
von Bertalanffy      
Type      
K’ara A 49.336 49.336 0.004 49.329 49.347
 B 0.367 0.367 0.001 0.364 0.369
 k 0.006 0.006 0.000 0.006 0.006
Ch’accu A 48.052 48.054 0.005 48.048 48.064
 B 0.363 0.363 0.002 0.360 0.366
 k 0.005 0.005 0.000 0.005 0.005
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mature weight of the adult animal, was highest for the Brody (42.12 kg), 
followed by Von Bertalanffy (40.06 kg), but lowest in Gompertz (39.42 
kg) and Logistic (38.25 kg) models for all data. Parameter estimate for B, 
referred to as the integrated constant, is associated with the proportion 
of the asymptotic mature weight to be gained after birth for an animal, 
but without any biological interpretation. The values were highest for 
Logistic and Gompertz models (57.47 and 25.29) and lowest for Brody 
and von Bertalanffy models (0.77 and 0.36). Parameter estimate for k, 
associated with the maturity index of growth rate relative to the mature 
weight of an animal. A high maturity rate indicates early maturation in 
animals, and conversely, a low maturity rate suggests slower matura-
tion. These values were similar for Brody, von Bertalanffy and Gompertz 
models (0.01 kg) and slightly higher in the Logistic model (0.02 kg), 
indicting that llamas reach maturity later in life. These findings have 
practical implications for optimizing feeding strategies, health in-
terventions, and breeding schedules, ultimately improving farm effi-
ciency and animal welfare.

Table 3 also presents the estimated growth curve parameters for both 
sexes and animal types (K’ara and Ch’accu) from birth to one year of 
age. For the four models studied, female llamas showed the highest 
estimated mature weights (A) than those of males. These results were 
highest for the Brody model (41.34 kg for males and 42.84 kg for fe-
males), followed by the von Bertalanffy model (39.44 kg for males and 
40.62 kg for females). The lowest estimated mature weights were ob-
tained from the Gompertz model (38.84 kg for males and 39.95 kg for 
females), followed by the logistic model (37.75 kg for males and 38.71 
kg for females). The maturity rate estimates (k) were similar for both 
sexes across all models, except in the logistic model, where males 
showed a slight increase over females.

The K’ara llamas reached higher estimated mature weights than the 
Ch’accu llamas in all four models studied. For both animal types, the 
Brody model showed the highest mature weights (43.25 kg for K’ara and 
40.47 kg for Ch’accu), followed by the von Bertalanffy model (41.09 kg 
for K’ara and 38.55 kg for Ch’accu). However, the lowest estimated 
mature weights were shown by the Gompertz model (40.43 kg for K’ara 
and 37.95 kg for Ch’accu) and the logistic model (39.32 kg for K’ara and 
36.84 kg for Ch’accu). The maturity rate estimates (k) were similar for 
both animal types across all models, except in the logistic model, where 
K’ara llamas showed a slight increase over Ch’accu llamas. Similar re-
sults were reported for both sexes and animal types in the llama data, 
where the Brody model outperformed the others. Maquera (2023) noted 
that K’ara llamas had higher estimated mature weights than Ch’accu 
llamas and attributed this difference to their genetic potential for 
growth, slightly faster growth rates. These findings align with Cana-
za-Cayo et al. (2015), who reported that K’ara llamas have a greater 
genetic potential for growth and are more responsive to nutritional 
improvements compared to Ch’accu llamas.

The Brody and von Bertalanffy models better described the growth of 
K’ara and Ch’accu llamas under natural feeding conditions. The overall 
evaluation of the growth models studied in this research suggests that 
the Brody model provides the best fit for the body weight data of one 
year old llamas due to its ability to accurately capture the growth pat-
terns of llamas, and their flexibility in describing both early and late 
growth phases makes it particularly suitable for llamas, which exhibit a 
prolonged growth period compared to other livestock species.

3.3. Comparison models using the Bayesian approach

Table 4 displays the Deviance Information Criterion (DIC) values as 
well as the pairwise DIC differences comparing four growth curve 
models. The DIC is a measure used in Bayesian analysis to assess the 
quality of a model and a lower DIC value indicates a better model. 
Among the four models, the Brody growth model produced the lowest 
DIC value for all data, as well as for both sex and type of animal. The 
second-best fitting model was the Von Bertalanffy model, followed by 
the Gompertz and Logistic models for all four cases (all, male, female, 
K’ara and Ch’accu data). Large differences between the DIC values of the 
Brody model (Table 4) and those of other models across all data, sexes, 
and animal types indicate that the Brody model provides a significantly 
better fit than the remaining models. These findings further confirmed 
that, out of the four nonlinear growth models, the Brody growth model 
provided the best fit. Therefore, both the frequentist and Bayesian ap-
proaches identified the same model, namely the Brody model, as the best 
growth model to fit the weight-age data compared to the other candidate 
nonlinear models for one year old llamas of both sex and type of animal. 
However, the Gompertz and Logistic models do not appear to be suitable 
for describing the weight-age relationship of llamas.

3.4. Growth model estimates using the Bayesian approach

Table 5 displays the growth curve parameters, median, mean, stan-
dard deviation as well as the 95 % Bayesian credible intervals for each 
growth curve model fitted using a Bayesian approach to the weight of 
llamas for all data. In all four models, the estimated parameters fall 
within the 95 % Bayesian credible intervals, indicating precise esti-
mates. For instance, in the Brody model, A ranged from 41.764 to 
42.309 kg and k from 0.007 to 0.007 kg/day, while in the Gompertz 
model, A ranged from 39.209 to 39.570 kg and k from 0.011 to 0.011 
kg/day. These narrow intervals suggest high confidence in the estimates, 
enhancing model reliability and predictive accuracy. The estimation of 
asymptotic mature weight of the adult animal (parameter A), was 
highest for the Brody (42.03 kg) and Von Bertalanffy (40.01 kg) models. 
In contrast, the Gompertz (39.38 kg) and Logistic (38.23 kg) models 
yielded lower estimates for all data. Similar results were obtained using 
the frequentist approach for all data (Table 3), where the Brody model 
also outperformed the other models. Under this approach, parameter A 
was estimated to be 42.12, 40.06, 39.42 and 38.25 kg for the Brody, Von 
Bertalanffy, Gompertz, and Logistic models, respectively. Therefore, 
both frequentist and Bayesian methods produced nearly identical 
parameter estimates, indicating that both approaches can provide 
consistent results when analyzing large datasets. Although the differ-
ences between the methods were minimal, the Bayesian approach offers 
the additional advantages of model flexibility, which allows us to cap-
ture complex relationships in our data; incorporation of prior knowl-
edge, particularly useful given the limited data available in some aspects 
of our study; and robust uncertainty estimation, which provides a more 
comprehensive understanding of the variability in our results (Gelman 
et al., 2013). These advantages make the Bayesian approach particularly 
valuable in situations with more complex models.

From Table 6, females showed a higher estimated mature weight 
than males in all the models analyzed. Similar trends were reported by 
Canaza-Cayo et al. (2015), who found higher asymptotic weights in fe-
males (47.64 kg) than in males (45.47 kg), as well as by Maquera (2023), 
who also observed a slight superiority in male body weight compared to 
females. However, in Kivircik sheep populations, Ozturk et al. (2023)
reported that male lambs had a higher asymptotic weight (44.19 kg) 
compared to female lambs (35.24 kg), as estimated by the Gompertz 
model. Similarly, Kheirabadi (2024) found that male Zandi lambs 
reached a higher asymptotic weight (35.49 kg) than females (31.87 kg) 
using the Logistic model. Both studies attributed these differences to 
sexual dimorphism, which results in heavier adult weights for male 
lambs, despite females often exhibiting a higher rate of maturity. These 

Table 8 
Diagnostics by the Geweke and Raftery–Lewis test for the growth curve pa-
rameters A, B, and k based on all data.

Parameter Geweke (Pr > |z|) Raftery–Lewis

A 0.9593 1.9746
B 0.7451 1.9413
k 0.9106 2.0299
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Fig. 1. Convergence diagnostics plots (trace plot, autocorrelation and posterior density plots) for the Brody growth model parameters.
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differences reported by those authors compared to our results may be 
attributed to variations in feeding practices or genetic differences within 
the studied population. Furthermore, it is possible that females have 
been selectively bred for traits favoring higher body weight, such as 
increased reproductive capacity.

The highest estimated mature weights for llamas of both sexes were 
observed in the Logistic model (49.37 kg for males and 49.85 kg for 
females), followed by the Brody model (41.18 kg for males and 42.65 kg 
for females). Meanwhile, lower mature weight estimates were observed 

in the von Bertalanffy (39.35 kg for males and 40.52 kg for females) and 
Gompertz models (38.77 kg for males and 39.87 kg for females). How-
ever, in both sexes, low DIC values were observed in the Brody model, 
followed by the von Bertalanffy model, while higher DIC values were 
observed in the Gompertz and Logistic models. These results suggest that 
the model providing the best fit for the growth data of llamas was the 
Brody model. The estimates of the maturity rate (k) were similar across 
both sexes in all models. However, for both sexes, lower values were 
observed in the Brody model (0.007), while higher values were reported 

Fig. 2. Observed and fitted body weight (kg) using the Brody function for all data using the Bayesian approach in llamas.

Fig. 3. Observed and fitted body weight (kg) using the Brody function for male (a) and female (b) llamas using the Bayesian approach.

Fig. 4. Observed and fitted body weight (kg) using the Brody function for K’ara (a) and Ch’accu (b) llamas using the Bayesian approach.
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in the Gompertz model (0.011). Similarly, Ozturk et al. (2023), using the 
Gompertz model (selected as the best-fitting model), found that the k 
values were similar for both male and female Kivircik lambs (0.01), 
indicating no significant differences in the rate of maturity between 
sexes. In contrast, Kheirabadi (2024), using the Logistic model (selected 
as the best-fitting model), reported that female Zandi lambs exhibited a 
slightly higher rate of maturity (k = 0.028) compared to males (k =
0.027). These variations in k values across studies may reflect differ-
ences in breed characteristics, management practices, or environmental 
conditions.

According to Table 7, the Logistic model provided the highest esti-
mated mature weights, with 49.03 kg for K’ara llamas and 51.90 kg for 
Ch’accu llamas. The lowest mature weights estimates were obtained 
from the Brody model, with 43.10 kg for K’ara llamas and 40.27 kg for 
Ch’accu llamas. However, in both animal types, low DIC values were 
observed in the Brody model while higher DIC values were observed in 
the Logistic model, indicating that the Brody model best fit the llama 
data for both animal types.

The convergence diagnostics for Brody growth model are displayed 
in Table 8. The Geweke diagnostic indicated adequate convergence of 
the MCMC chains for all parameters of the Brody growth model, with p- 
values (Pr > |z|) above 0.05, suggesting no significant differences be-
tween the initial and final segments of the chains. Meanwhile, the 
Raftery-Lewis diagnostic, revealed a small correlation between samples 
(which is less than 5), suggesting that the chains were effectively sam-
pling the posterior distribution with minimal autocorrelation. Together, 
these findings confirm the proper convergence of the MCMC chains and 
the reliability of the parameter estimates. The majority of the plots for 
all models demonstrated satisfactory convergence of the Markov chains. 
Since the Brody model provided the best fit compared to the other 
models analyzed, the convergence diagnostic plot based on the weight- 
age relationship of llamas for all data is shown in Fig. 1. This plot il-
lustrates that the Markov chains meet the convergence diagnostics 
presented in Table 8 for global data of the Brody model.

The Bayesian Brody growth curve for both sexes and animal types are 
shown in Figs. 2, 3 and 4. The growth curves in all cases were accurate in 
predicting the observed body weights of the llamas, based on the results 
of the frequentist approach (Table 3) and the Bayesian approach 
(Tables 5 and 6), where the goodness-of-fit measures for the Brody 
model were superior to those of the other models studied. Additionally, 
slight differences in growth curves between sexes and animal types were 
observed in the middle and final stages. Overestimation occurred at the 
middle stage (8-9 months) and underestimation at the final stage (11-12 
months) for all, male and K’ara data. For females, overestimation was 
observed at the middle stage (7-9, 12 months), and underestimation at 
the final stage (11 months). For Ch’accu data, overestimation occurred 
at the middle stage (8-10 months), and underestimation at the final stage 
(11 months). The higher body weights of female llamas may be attrib-
uted to hormonal and physiological differences compared to male 
llamas. Significant sex differences in Kh’ara and Th’ampulli llamas from 
Bolivia were reported by Wuzinger et al. (2005). However, no sex dif-
ferences were reported by Maquera (2023), working with K’ara and 
Ch’accu llamas.

According to the authors’ best understanding, this is the first time 
that results on the modeling of the growth curve in llamas using the 
Bayesian approach have been reported, which makes a detailed com-
parison difficult. However, studies on growth curves using the fre-
quentist approach have been reported in the literature very few studies 
on llamas (Canaza-Cayo et al., 2015; Maquera, 2023). In most of these 
studies, the Brody model has been found to be the best nonlinear model 
for fitting the weight-age relationship in llamas.

This study has any limitations that should be acknowledged. The 
data used were collected between 1998 and 2017, which may not fully 
reflect current growth patterns or management practices. The Bayesian 
approach relied on non-informative priors, which, while robust, may not 
fully incorporate prior knowledge or expert information that could 

enhance parameter estimation. Future research should address these 
limitations to refine the models further.

4. Conclusion

The Bayesian approach was compared to the usual frequentist 
analysis in models of the weight-age relationship in the first year of 
peruvian llamas from both sexes. Usual nonlinear growth models such as 
Brody, Von Bertalanffy, Gompertz, and Logistic, were fitted. The esti-
mates of the median, mean, standard deviation, and credible intervals 
were obtained from the posterior distributions of the parameters using 
non-informative priors. This research highlights the Brody model as the 
best-fitting growth model for Peruvian llamas, providing a reliable tool 
for accurately describing the weight-age relationship. These findings can 
assist breeders and farmers in optimizing feeding strategies, selecting 
animals with desirable growth traits, and improving farm management. 
Although both Bayesian and frequentist methods produced similar 
parameter estimates, the Bayesian approach offers distinct advantages, 
such as its ability to incorporate uncertainty through credible intervals, 
flexibility in modeling complex relationships, and the potential to 
integrate prior knowledge in future studies. These features make 
Bayesian methods a robust framework for modeling complex growth 
patterns, supporting the development of more advanced models for 
sustainable livestock production.
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