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Immunotherapy in the management of neoplastic disease has recently been a major focus of
scientific attention. Studies in vitro and in animal systems have provided the basis for the first
trials of cellular immunotherapy for neoplasia in humans. Work over the past ten years has
identified several distinct populations of lymphocytes active in lysing neoplastic cells, including
major histocompatibility complex (MHC)-restricted and non-restricted cytotoxic T lymphocytes
(CTL), natural killer (NK) cells, the natural cell-mediated cytotoxicity (NCMC) population,
and the lymphokine-activated killer (LAK) phenomenon. This paper reviews the current
understanding of the distinguishing cell surface phenotypes, recognition structures, mechanisms
of neoplastic target cell lysis, activation requirements, and ontogeny of each of these cell groups.

INTRODUCTION

The role of the immune system in protection against neoplasia is becoming
increasingly well-defined. While known to involve humoral responses, as in reported
host generation of antibodies to malignant melanoma cells [ 1 ], cell-mediated responses
have been the most extensively studied component in this protection. The cytolytic cell
types mediating these responses fall into two broad categories: the specific, inducible
group, which includes MHC-restricted CTLs, and the nonspecific innate group which
includes natural killer (NK) cells, major histocompatibility complex (MHC) non-
restricted cytotoxic T lymphocytes (CTLs), the natural cell-mediated toxicity
(NCMC) population, and the lymphokine-activated killer (LAK) phenomenon.
Action of the inducible cellular response is specific for neoplastic cell surface antigen,
requires priming with induction of immunologic memory, and is mediated by MHC-
restricted CTLs acting via the T-cell receptor (TcR). Action of the innate group is
MHC non-restricted, characterized by a broad rather than a specific recognition
repertoire, and does not participate in generation of immunologic memory. Studies
with these cytolytic cells have provided the basis for the first trials of cellular
immunotherapy for neoplasia in humans, performed over the past year in a multicenter
study under the direction of the National Institutes of Health [2]. Much recent work
on the immunologic response to neoplasia has focused on the cell surface phenotypes,
recognition structures, mechanism of neoplastic cell lysis, activation requirements, and
ontogeny of each of the effector cell groups involved.
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TABLE 1
Partial List of T-Cell Surface Markers

Cluster of Differentiation Previous Murine
(CD) Nomenclature Nomenclature Nomenclature

CD5 TI
CD3 T3, UCHT-1 T3
CD8 T8, Leu2 Lty-2
CD4 T4,Leu3 L3T4
CD16 FcRa FCRa
CD2 T11, Leu5

aFc receptor for immunoglobulin

MHC-RESTRICTED CTLs

These lymphocytes of the T-cell lineage, which appear to see specific tumor antigens
in an MHC-restricted manner [3], have been implicated in host resistance to
neoplasms such as certain sarcomas [1], plasmacytomas, and leukemias [3] and have
been proposed for adoptive immunotherapy [4,5]. Surface markers in human MHC-
restricted classical CTLs include:

Thy-l, Lyt-l, T3, TcR, Qa-2, Qa-5, Lyt-2, or L3T4 Murine
CD2, CD3, CD7, CD8, or CD4 Human

Nomenclature of T-cell surface markers relevant to these molecules is currently in
transition and a partial list of relevant terms is presented in Table 1 for the sake of
clarification.

There are at least three major T-cell subsets: cytotoxic T lymphocytes (CTLs) and
the two regulatory cell types, T helper and T suppressor cells. The suppressor subset
may not employ the TcR and is not relevant to the present discussion, but the CTLs
and T helpers definitely function via the TcR and are the classical mediators of specific
T-cell recognition in both neoplasia and in the other diverse roles of the specific
immune response. The events in this process are mediated by the TcR protein structure
with exquisite binding affinity for its specific antigen in the presence of MHC. This
TcR recognition mechanism is applied throughout the immune system from the
complex regulation of immunoglobulin secretion to the detection and lysis of virally
infected cells.

The T-Cell Receptor (TcR) Complex

The TcR has recently been identified and its genes cloned and sequenced. There are
three rearranging gene families, a, 3, and -y, that can be potentially expressed in T
cells. The a [6], ,B [7], and y [8] genes have all been characterized in the past three
years. These are homologous to immunoglobulin genes in that both TcR and
immunoglobulin gene families have variable (V) regions, constant (C) regions, and
joining regions (D and J regions). Mechanisms of generating TcR diversity have been
shown to include combinatorial joining variety, junctional diversity, and combinatorial
chain association [9]. It is this diversity that confers the ability for specific recognition
of a virtually limitless universe of antigens, including those that arise on neoplastic
tissues. The functional TcR consists of a disulfide-linked heterodimer composed of a
and a gene products. These a and ,B chains are glycoproteins of approximately 43,000
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daltons each and are non-covalently linked to several other molecules [10,11], which
include the CD3 molecule in humans and several possible accessory molecules.
The CD3 molecule is composed of three polypeptides, 6, (, and y, of 21,000, 26,000,

and 25,000 daltons, respectively [12]. CD3 appears to be closely associated with the
TcR in that mutations that prevent the appearance of the a-,3 heterodimer also prevent
the appearance of CD3 [13]. Its major functional role seems to involve activation of the
T cell through transmembrane signalling after the TcR is bound [14]. Brenner and
others have recently isolated 'y gene products as well as a protein structure known as
the 6 chain on the surface of CD3(+), a and fi heterodimer(-) T cells from
immunodeficient patients [15] .
The scope of function of this alternate TcR is currently unknown, but the high level

of y gene expression in immature Stage I thymocytes suggests a role in the ontogeny of
mature T cells, and its recent identification as the recognition structure on a cloned line
of MHC non-restricted CTLs [16] suggests involvement in MHC non-restricted
recognition. The two major accessory molecules of TcR are CD4 and CD8. CD4 is a
62,000 molecular-weight molecule believed to be associated with the TcR on class II
MHC-restricted helper T cells [17]. The major functional role of CD4 appears to be
associated with MHC-restricted "help" and induction of activation of B and other T
cells. The other major accessory molecule, CD8, is a 35,000 molecular-weight
structure associated with class I MHC-restricted recognition and cytotoxic function
[18]. The TcR complex, then, is composed of a clonally distributed heterodimer, CD3,
and various accessory molecules. The exact role that each component plays in T-cell
recognition is becoming increasingly clear.

MHC-restricted CTLs utilize this TcR structure to recognize neoplastic cells. Once
recognized, the neoplastic cell is lysed by the CTL through two possible mechanisms,
pore-forming proteins (PFPs) and toxic soluble mediators. PFPs from CTLs exhibit
remarkable homology to C9 of the complement cascade and are believed to act by
inserting into target cell membrane and forming a large aqueous pore which induces
cell death by destruction of selective permeability. The molecular weight of PFPs is
70,000 daltons, and in the presence of calcium ions they will form pores 160A in
diameter [19]. Toxic soluble mediators include tumor necrosis factor (TNF) [20] and
lymphotoxin (LT) [21]. Although the precise mechanisms of action of these soluble
mediators remain to be determined, a common end-point appears to involve DNA
fragmentation of the target cell [22]. Lytic activity via both mechanisms can be
augmented by the presence of interleukin-2 (IL-2).

Ontogeny of CTLs

What is the ontogeny of this group of cytolytic effectors active against neoplastic
cells? All T cells arise from a common precursor and are thymically dependent for
differentiation [23]. Expression of surface molecules and transcription of TcR genes in
T-cell maturation is shown in Table 2.

MHC-restricted CTLs, then, are T cells that help mediate the specific and inducible
branch of the cellular immune response against neoplasia. They share surface markers,
recognition mechanisms, activation requirements, and ontogeny with classical T cells
and may have future potential in specific immunotherapy of neoplastic disease.

MHC NON-RESTRICTED CTLs

The existence of a population of T cells that recognize their targets in an MHC
non-restricted manner as a distinct set of host effectors against neoplastic disease has
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TABLE 2
T-Cell Ontogeny: Surface Markers and TcR mRNA Expression

Stage I Stage II Stage III

Markers CD1 1 CD1 1, CD1, DC4, or CD8 CD4, CD1 1, CD3, TcR
or

CD8, CD1 1, CD3, TcR
TcR gene ly , , T helper: a, ,
(mRNA expression) CTL: a, ,S, 'y

only recently been appreciated [24,25]. Initial support came from studies in vitro
where cultured T cells were found to exhibit MHC non-restricted NK-like activity
[26]. This finding was later confirmed by work in vivo, where T cells lysing neoplastic
cells in an MHC non-restricted manner were found in circulating peripheral blood
lymphocytes (PBL) [27] and as an element of the LAK phenomenon [28]. These CTLs
have been shown to be active against such neoplasms as melanomas, lymphomas [24],
leukemias [27], and colonic carcinomas [28]. Functionally similar to NK cells, these T
cells generated considerable confusion for several years in the characterization of the
NK phenomenon. Though constituting the vast majority of "NK clones" successfully
grown in culture [29], these T cells were inappropriately termed NK cells, as
subsequent studies showed by revealing that the bulk ofNK activity in vivo is mediated
by cells markedly distinct from the T-cell lineage. These NK-like T cells are now
termed "MHC non-restricted CTLs" and constitute <10 percent of the NK active
cells in vivo [28]. Surface markers of these MHC non-restricted CTLs are similar to
those described for MHC-restricted CTL, including CD3 and, often, CD8. In addition,
these cells also display NKH-1 (also known as Leu-19), a marker present on the
majority of NK cells [28].

Recent work has suggested that this newly characterized group of CTLs may be
further subdivided on the basis of the recognition mechanism. There is evidence for two
subgroups of MHC non-restricted CTLs that employ a CD3-complexed T-cell
receptor structure: one expresses CD8 and appears to use the classical a-fl heterodimer
for antigen recognition [27], and the other is CD3+,CD8(-) and appears to employ
the alternative y-6 or y--y dimer [16]. In both groups, the TcR is utilized without clear
involvement of CD8 or requirement for target cell MHC recognition. Recently there
has been support for recognition via a non-TcR mechanism as well as in certain MHC
non-restricted CTL clones, with the exact nature of such recognition currently
undefined [56]. As in MHC-restricted CTLs, lytic mechanisms used by MHC
non-restricted CTLs include PFPs and soluble mediators [22] and activators of
cytolysis include IL-2 [24]. The ontogeny of MHC non-restricted CTLs has yet to be
studied exhaustively but is presently indistinguishable from that of the majority of T
cells. MHC non-restricted T cells, then, are a distinct population of host effectors
active against a wide variety of neoplastic cells and only recently differentiated in the
literature from NK cells. How these cells become MHC non-restricted and possible
roles for them in immunotherapy of neoplasia is a matter of current investigation.

NATURAL KILLER CELLS

The NK cell is the classical cellular mediator of the innate, nonspecific branch of the
immune system, in that its recognition is MHC non-restricted and includes a broad
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rather than a specific target repertoire independent of the need for prior exposure to
antigen for priming and generation of immunologic memory. Previously characterized
as a phenomenon believed mediated by a vast and heterogeneous variety of cell types,
recent work in molecular biology and cell surface phenotyping has identified the
mediators of the bulk of natural killer activity in vivo as a specific cell type, the NK
cell. In addition to lysing neoplastic cells, NK cells function in host resistance to viral
infection [30], radioresistant rejection of transplanted tissue grafts, immunoregula-
tion, and regulation of normal hematopoietic populations. These other roles for the NK
cell in immunoregulation as well as regulation of hematopoietic cell development have
received increasing support. For example, NK cells secrete a host of lymphokines,
including IL-2, IFN, and BSF-1, and have been shown to modulate immune effectors
in vitro by suppressing dendritic cell function in culture with subsequent suppression of
CTL function [31]. NK cells have also been shown to suppress T-cell response in
autologous mixed lymphocyte culture systems [32]. Regulation of normal populations
has also been suggested, because NK cells can kill immature cells in hematopoietic
populations as a function of their differentiation state [33].

Activity against neoplastic cells is the best studied of all NK functions. Originally
defined as the ability to lyse murine YAC-1 and human K562 in vitro, this activity has
been identified against many other targets, as well as shown to be active in vivo by both
depletion and augmentation studies. In vitro studies have demonstrated NK activity
against a variety of neoplastic lines, with many transformed populations being resistant
[34]. Spontaneous lysis of fresh and cultured tumor cells has been repeatedly
demonstrated by washed/serum-free large granular lymphocytes (LGL) of human
PBL and mouse spleen in four- to eight-hour incubation chromium release assays.
Since the first in vitro studies of NK function in the 1970s, a number of experiments
have supported the role ofNK cells in resistance to neoplasia in vivo. Mice treated with
the anti-NK serum AsGM1 have clearly increased numbers of metastases in experi-
mental tumor systems [35]. A number of investigators have also correlated an
individual animal's NK activity with its susceptibility to experimentally induced
neoplastic cells [36-40]. Human support for this model includes the finding that
patients with decreased NK function found in the Chediak-Higashi syndrome have a
markedly increased evidence of lymphoproliferative disorders. All this evidence points
to a significant role for NK effectors in host defense against neoplasia.

NK Cell Phenotype
Numerous previous studies in the literature have recently led to the definition of a

well-defined series of cell markers that constitute the NK cell phenotype [41,42] and
are listed below.

NK1.l, AsGMl and 2, Ly5, Qa-2, Qa-5, NK2.1, Fc receptor Murine
CD16, CD2, CD7, CDl 1, NKH-1, M1, Leu-7 Human

Cells expressing these molecules have been shown to be, aside from the small
population of MHC non-restricted CTLs, the sole mediators of NK function in vivo.
Like CTLs, NK cells use both PFPs [43] and soluble mediators [44] to lyse neoplastic
cells and can be activated to do this with IL-2 and -y interferon [45].
NK Cell Recognition
How do NK cells recognize their targets? This is one of the currently unanswered

questions in immunology and may hold some of the key insights into what makes a
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neoplastic or virally infected cell identifiable by the immune system. The LGL
population appears to be able spontaneously to "see" a neoplastic or virally infected
cell and lyse it without previous exposure to that cell's surface determinants. Such
"rough-and-ready" capacity for a wide variety of targets implies either a widely
distributed recognition mechanism of remarkably broad specificity on all the 10-15
percent of peripheral blood lymphocytes with the NK phenotype, or it suggests a
myriad of preprogrammed, highly specific mechanisms on many small subgroups of
the LGL population. The evidence is in favor of the former. Very small numbers of
freshly purified NK cells can lyse target cells in effector-target ratios as small as 1:1,
indicating that at least a significant minority of NK cells can exercise the role of the
whole population.

What, then, are possible recognition mechanisms for the NK cell? One possibility
that has been favored in the past is the TcR. Largely secondary to the confusion
resulting from generation of NK clones that are now being recognized as MHC
unrestricted CTLs, the conventional 90,000 molecular-weight heterodimer, consisting
of a and A chain subunits, was considered a viable candidate [29]. Recent studies
indicating that freshly isolated NK cells do not rearrange their TcR a, ,B, and 'y chain
genes and do not express CD3 have effectively ruled out the conventional [28] as well
as the alternative TcR. If not an alternative TcR, the other option allowing specific
recognition of some broadly shared target characteristics involves a theoretical "NK
receptor." This NK receptor would have an extremely broad repertoire, allowing it to
recognize neoplastic, virally infected, and certain immature cell populations. It would
perhaps have limited diversity and be linked to a transmembrane activation mediator
analogous to CD3, such as CD2. No investigation has ever identified such a receptor.
Some have suggested that NK activity is not mediated by specific recognition
structures at all but occurs through entirely nonspecific mechanisms. For example,
total changes in target cell MHC expression or modification of such surface compo-
nents as the glycocalyx, ubiquitin content, or transferrin receptors represents nonspe-
cific quantitative changes in the target cell that could be recognized merely by
something like increased adhesion by NK cells.

Antibody-dependent cell-mediated cytotoxicity may be another possibility in vivo
that has been overlooked. NK cells express FcR for IgG. Specific antibodies to
tumor-associated antigens or viruses bound tightly by these FcR may serve as the
specific recognition structure for NK cells, but definitive proof for this hypothesis is
lacking. The means by which NK cells recognize their targets, then, remains a
mystery. Specific receptors have not been identified, and this question continues to be a
major avenue for future investigation.

Ontogeny ofNK Cells

The ontogeny ofNK cells has been a matter of considerable debate recently, but the
evidence has been steadily accumulating to suggest that these cells constitute a distinct
leukocyte lineage. Early arguments favored the belief that NK cells were merely
immature T cells that never "grew up," largely based on their expression, like Stage II
thymocytes, of CD2 and the fact that athymic animals often exhibited increased levels
of NK activity. Evidence resulting from recent work has failed to support this
possibility. Other cells, such as macrophages, share common T and NK markers like
CD2, and there is a total lack of evidence that NK cells can be induced to differentiate
into T cells. Furthermore, NK cells, unlike Stage I thymocytes, do not rearrange their
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,y chain genes of the TcR [46]. Progenitor studies have also been convincing. W/W'
mice have an intrinsic deficiency of myeloid stem cells while severe combined
immunodeficiency (scid)-diseased mice have a defect in early T- and B-cell differentia-
tion [47]. Yet both mice strains have normal amounts of NK precursors capable of
differentiation into mature NK cells [48].

Other attempts to define ontogeny ofNK cells have proposed that they are members
of the myeloid lineage, primarily based on their expression of FcR and M1. M1,
however, is now known to be the complement receptor for C3b and is found on many
cell types. Also arguing against this possibility is the fact that many antigens found on
NK cells, including CD2, CD1, and Leu-7, are not found in the conventional myeloid
series. At present, the best evidence seems to argue that NK cells may represent a
distinct leukocyte lineage with properties of both lymphoid and myeloid population.
NK cells, then, constitute a distinct class of immunologic effectors active in host

destruction of neoplastic cells. The recognition mechanism they employ in detecting
neoplastic cells is currently a major unanswered question in immunology.

LAK PHENOMENON

Lymphokine-activated killers (LAKs) are unfractionated leukocytes, incubated in
tissue culture with IL-2, which exert potent cytolytic activity against a wide range of
neoplastic cells in vitro [49,50]. Initially hailed as a distinct lineage of immunologic
effector [50] and potent immunotherapy for neoplasia [51], the "LAK" phenomenon
has proved to be neither [52,58,2]. The effectors mediating this phenomenon appear to
be derived over 90 percent from activated NK cells, with the remainder of activity
mediated by activated MHC non-restricted CTLs [41]. One physiologic insight this
phenomenon may provide, however, is an analogy to the expansion in the target
repertoire and lytic activity possible in NK cells exposed to lymphokines released in a
local area of tumor involvement.

NATURAL CELL-MEDIATED CYTOTOXICITY (NCMC) POPULATION

NCMC is a recently identified phenomenon mediated by large granular lympho-
cytes with lytic activity against human sarcomas in vitro [53]. Phenotypically these
cells express HNC-1A3, M1, Leu-11 antigens in humans, with the precise nature of
T-cell surface antigen expression a matter of current study [53,54]. The classical
NCMC neoplastic target in vitro -is the human fibrosarcoma WEHI- 164. The
mechanism of target cell recognition is unclear, but the lytic process has been shown to
be mediated by the soluble mediator tumor necrosis factor (TNF) [55]. Activation
requirements and kinetics of cytotoxicity are markedly different from NK cells in that
IL-3, not IL-2, stimulates cytolysis and that peak target lysis is achieved in the 12- to
18-hour assays, as opposed to four to eight hours for NK cells. The ontogeny of the
NCMC population is currently not well defined, and the overall contribution of this set
of host effectors in defense neoplasia remains to be studied.

SUMMARY

Characteristics of the cytolytic cells active against neoplasia, then, have been
identified in such a manner as to allow their distinct categorization (summarized in
Table 3). Much more work in this area is needed to understand the recognition
processes used, and to allow manipulation of the immune response to neoplastic cells.
Initial trials of cellular immunotherapy of neoplasia in humans have been plagued by
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CYTOTOXIC RESPONSE TO NEOPLASIA 417

variable tumor response rates and toxic side effects of lymphokine therapy with a
"leaky capillary" syndrome leading to massive anasarca [52], but the trials have
yielded some encouraging results [2,51]. The success of future efforts will depend on
elucidation of the fundamental properties of the cellular immune response against
neoplasia through characterization of molecular mechanisms, development of appro-
priate animal test systems, and further appropriate trials in humans.
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