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Augmented reality (AR) devices, as smart glasses, enable users to see both the real world and virtual 
images simultaneously, contributing to an immersive experience in interactions and visualization. 
Recently, to reduce the size and weight of smart glasses, waveguides incorporating holographic 
optical elements in the form of advanced grating structures have been utilized to provide light-
weight solutions instead of bulky helmet-type headsets. However current waveguide displays often 
have limited display resolution, efficiency and field-of-view, with complex multi-step fabrication 
processes of lower yield. In addition, current AR displays often have vergence-accommodation 
conflict in the augmented and virtual images, resulting in focusing-visual fatigue and eye strain. Here 
we report metasurface optical elements designed and experimentally implemented as a platform 
solution to overcome these limitations. Through careful dispersion control in the excited propagation 
and diffraction modes, we design and implement our high-resolution full-color prototype, via the 
combination of analytical–numerical simulations, nanofabrication and device measurements. With the 
metasurface control of the light propagation, our prototype device achieves a 1080-pixel resolution, 
a field-of-view more than 40°, an overall input–output efficiency more than 1%, and addresses the 
vergence-accommodation conflict through our focal-free implementation. Furthermore, our AR 
waveguide is achieved in a single metasurface-waveguide layer, aiding the scalability and process yield 
control.

Augmented reality (AR) and mixed/merged reality (MR) devices enable the user to see both the real world 
and virtual images simultaneously, leading to considerable interest as next-generation mobile wearable devices 
beyond the smartphone1–6. Benchmarked by the iconic Google Glass, there have been many multifunctional 
displays including recent efforts by Microsoft Hololens and Magic Leap. A key element in the smart glasses is the 
optical waveguide that delivers virtual images from the display source to the eye, augmenting our vision through 
the transparent optical glasses. For compactness, recent optical elements have utilized holographic and diffractive 
optical elements (HOEs and DOEs) instead of bulky free-space optics headsets such as birdbath designs using 
bulk lenses and mirrors. These HOEs and DOEs have recently been implemented in various diffraction grating 
structures such as Bragg, volume, surface relief and blazed gratings7–28.

AR devices with HOEs and DOEs serve as next-generation display technology, with improving display reso-
lution, lower time-delay in images, and cost scalability29,30. While the AR display and sensing efforts benefited 
from the smart phone technology developments, most HOE and DOE-based AR devices still have physical per-
formance limitations—such as insufficient display resolution, small field-of-view, low input–output efficiencies, 
and manufacturing yield-scalability31,32—hindering their wide-spread adoption. Furthermore, the vergence-
accommodation conflict (VAC) is a common and important challenge for head-mount displays (HMDs)33–37. Our 
eyes use multiple depth cues to conceive the depth of an image, consisting of an accommodation depth (wherein 
our eyes adjust the lenses foci to acquire a clear image) and a vergence depth (based on the angle between our 
eyes to perceive a distance). For real-world images, the accommodation and vergence distances are the same. For 
AR display images, however, the virtual image comes from the display plane and not at the depth of the image. 
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Hence, the binocular disparity to setup the image’s virtual focal distance (vergence distance) does not match the 
virtual image source’s actual position (accommodation distance). In trying to match the accommodation power 
to the vergence distance, this results in blurred images, fatigue and nausea in our AR-MR imaging perception, 
especially for long-term display usage. Maxwellian-view displays, by projecting transmissive displays directly 
on the retina, can alleviate this conflict by reducing the dependence on the eye lens accommodation38–41 but are 
often bulky free-space optical elements and with small field-of-view.

Metasurfaces can overcome the physical limitations of HOEs and DOEs, including our implementation of 
focal-free metalenses to overcome the vergence-accommodation conflict while preserving a large field-of-view. 
Conventional HOEs and DOEs utilize periodic grating structures for multiple beam diffraction, fine-tuned for 
red-blue-green wavelengths simultaneously. To achieve multiple focal positions, multiple HOE/DOE waveguides 
are implemented simultaneously, a complexity that can result in lower display quality from unwanted diffrac-
tions and multi-step fabrication processing. Metasurfaces, with spatially-configured arrays of subwavelength-
scale optical scatters, are an alternative platform for direct wavefront shaping42–50. The unique versatility and 
multi-functionality of the metasurface platform have thus led to advances in flat-optics devices, all-dielectric 
platforms, polarization-spatial conversion, quantum photonics, metalenses51–67, and AR visors68–70. Utilizing the 
building blocks within the metasurface array, metasurface geometrical parameters—such as the size, shape and 
orientation—can control the reflected and transmitted wavefront from first-principles71–94. The subwavelength 
orientation also reduces the generation of spurious diffraction orders versus those observed in HOEs and DOEs, 
resulting in a higher waveguide input–output efficiency and suppression of unwanted effects such as virtual focal 
points, halos, and ghost images95–107.

Here we describe our metasurface waveguide for high resolution, field-of-view (FoV), and output efficiency, 
while preserving a focal-free operation. Our metasurface optical elements (MOEs) are implemented for full-
color operation, with the careful dispersion control in the excited propagation and diffraction modes, through 
analytical–numerical modeling, rigorous nanofabrication, and measurement. Each pixel in the input and output 
MOEs is carefully optimized for the collective high resolution and output efficiencies, while realizing a focal-free 
Maxwellian-view display system to overcome the vergence-accommodation conflict. Implemented in a CMOS-
compatible cleanroom and foundry service, our MOE waveguide simultaneously preserves a large FoV across 
the full-color gamut, in our multi-period single-layer demonstration.

Results
Figure 1 shows the key architecture and approach of our MOE AR display waveguide, with the AA’ cross-section 
(Fig. 1a) and top-view (Fig. 1b) highlights in the display beam propagation. First, we note that, by incorporat-
ing careful design of each pixel for the MOEs, the RGB spectrum is guided through the eye lens to the retina, 
enabling a close to Maxwellian-view operation, for focal-free display to address the vergence-accommodation 
conflict. Second, our designed MOE display has an FoV determined only by our metasurface grating structure, 
achieving ≈ 55° currently or higher, even with normal-index glass. Third, as shown in Fig. 1a, the In-MOE is at a 
slant angle on the glass waveguide to direct the wave propagation towards the Out-MOE. Without the slant angle, 

Figure 1.   (a, b) Overview of our metasurface AR/MR waveguide glass architecture with cross-section and top 
views of the ray propagation, respectively with the cross-section area shown as AA′ in the top view. (c) Single 
glass waveguide compared with conventional multi-glass waveguide for each color and each focal plane. (d) 
Efficiency comparison for virtual image.
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the diffraction would be in both positive and negative directions (of the MOE surface normal), leading to a lower 
(approximately half) efficiency. Together with rigorous coupled-wave analysis to minimize undesired diffraction 
modes, we are able to maximize the efficiencies of the desired modes towards the output, surpassing efficiencies 
more than 1%. This aids the embedding of augmented information and virtual images with real-world images, 
especially with outdoor light, as shown in Fig. 1d example. We also note that prior HOE-DOE AR waveguides, 
with multi-layer multi-glass waveguides, have spurious diffraction modes and hence efficiencies sizably lower 
than 1%, necessitating indoor operation or shielding outdoor light by 80%. Fourth, as shown in Fig. 1a, c, our 
MOE waveguide utilizes only a single glass layer for the whole RGB spectrum, reducing unwanted diffraction 
and with higher efficiency. Our single-layer implementation also brings compactness and lightweight operation, 
while simplifying the MOE fabrication and yield.

We first start by defining the FoV bounds from conventional total internal reflection of a waveguide25,108–110, 
without a metasurface. As illustrated in Fig. 2a–d, for a ± 10° input, the ray-traced output would be ∓ 10°; one 
can obtain an increased output FoV with larger input angles. However, the waveguide total internal reflection 
requirement bounds the input positive angles to less than 13.3°. This limits the FoV to less than or ≈ 26.7°, for a 
glass waveguide of 1.46 refractive index. For one of the higher-index glasses at 1.6 refractive index as shown in 
Fig. 2e, the FoV can be increased to 34.9° but rapidly faces an asymptotic limit. By controlling the wave propaga-
tion through multi-period metasurfaces, Fig. 2f shows the increased of the FoV to ≈ 55° for a normal-index glass 
at 1.46 refractive index. This illustration is for 646 nm, supplementing the 520 nm overview shown in Fig. 1a. 
Through rigorous coupled-wave analysis (RCWA)111–114, simple modal method (SMM)115–120, and finite-difference 
time-domain (FDTD)121, we optimize our MOE at each position for each wavelength. With the distance from 
the out-MOE to the eyebox set by design and a desired FoV fixed, we fine-tune our MOE grating periods for the 
desired input–output angle at each pixel, for each wavelength. We note that our MOE implementation is mostly 
bounded by nanofabrication lithography resolution.

Figure 3 next shows the subsequent MOE efficiency computation and optimization for different propagation 
x-positions along the metasurface y-center, mapped for a range of SiNx refractive indices, fill factors and SiNx 

Figure 2.   Reconstructed total internal reflection and input–output propagation of the conventional optical 
element waveguide. The chief ray angle is illustrated. (a) Overall input–output ray propagation. (b–d) 
Comparisons of 10°, 0°, and − 10° propagation (e) Designed FoVs for different waveguide glass refractive 
indices, versus angle in waveguide. The dashed vertical lines show the total internal reflection bounds for the 
two corresponding refractive indices. (f) Ray tracing of MOE for 646 nm showing FoV of 55°.
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film heights. Our MOE incorporates a pixel-by-pixel phase control by introducing phase changes within a length 
of the wavelength. The abrupt phase shifts enable freedom in controlling the wavefront, with the propagation of 
light being governed by Fermat’s principle63. We observe that the efficiency is higher on the right side (positive-
x) of each MOE and go up to even 50% total input–output efficiencies. This can be explained in Fig. 1a, where 
the input–output beams on the out-MOE is shown, for our slanted input MOE design. In a slanted input and via 
the Littrow mounting effect, the output positive–negative diffraction lobes have unequal efficiencies, with the 
αP (positive diffraction lobe) having lower diffraction efficiencies than the αN (negative diffraction lobe, more 
than the surface normal and 90°, in the reverted beam direction). These 2D maps are for a center wavelength of 
520 nm and the y-center; other wavelengths and y-positions simply have an offset in the efficiency map or with 
perturbed efficiencies.

In optimizing for the high-quality images for AR devices, we observe two features in these 2D map plots—
the average efficiency and the dark low-efficiency crossing lines. The efficiency fluctuations, including the dark 
crossing lines, can be understood when comparing the grating to the simple case of a slab waveguide, where a 
wave excites discrete modes in the gratings113. The diffraction properties and efficiency are mainly determined by 
the modes within the grating region. These modes propagate through the grating region with different effective 
indices and couple out at the grating-substrate interface108. The behavior of these modes results in the fluctuations 
and also cause the sharp dips in the efficiency maps of Fig. 3. To choose an implementation for a desired overall 
design (FoV, full color, and glass refractive index prototype), parameters which result in high average efficiencies 
and lowest number of dark crossing lines must be accounted for. Higher refractive indexes have generally higher 

Figure 3.   Numerical design map optimization of the metasurface waveguide glass, showing the metasurface 
optical waveguide display diffraction efficiencies for input/output MOE in the waveguide propagation direction 
for different positions in the waveguide x, fill factor (FF), and height parameters. Rigorous coupled-wave 
analysis (RCWA) numerical simulation is used in each design point of the 2D maps. (a) The height is fixed at 
0.35 nm. Color scale bar denotes total intensity input–output propagation efficiencies in percentage. (b) Top 
panel for a fill factor (FF) of 0.4 and bottom panel for a fill factor of 0.5, with varying waveguide heights. The 
same color scale bar is used. In this implementation, optimal regions for the waveguide heights, fill factors 
and refractive indices of the metasurface are denoted. (c) Fill factor 0.46 and SiNx refractive index of 2.14 (at 
wavelength 521 nm) with wavelengths of 447 nm, 521 nm, and 644 nm for blue, green, and red, respectively and 
the combined average.
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average efficiency trends, but the number of dark lines almost doubles when the refractive index increases from 
2.0 to 2.3. The fill factor and height shift the position of the dark crossing lines and have optimal conditions for 
highest average efficiencies—represented as bright islands, where the brightest pixels are located. The change in 
optimal height of the MOE based on the wavelength (color) and the combined average efficiency map is shown 
in Fig. 3c. Similar trends in the map and an increase in optimal height with wavelength can be observed. Based 
on these modelled mapping results, the SiNx refractive index of 2.14, a MOE height of 0.35 μm and a fill factor 
of 0.46 are chosen as the best conditions, avoiding most of the dark crossing lines in our display implementa-
tion. With each of the input/output MOE having a maximum simulated efficiency close to 50% and a diffraction 
efficiency division between the three colors (one third efficiency at each input/output), the theoretical efficiency 
is calculated to be close to 2.8%.

Incorporating our AR waveguide design implementations, we fabricated the nanostructured metasurface 
optical elements in a silicon foundry process, with nitride film deposition, deep-ultraviolet lithography and MOE 
nanopatterning. Figure 4 summarizes our fabricated MOE wafer, with Fig. 4b illustrating the cross-section scan-
ning electron micrograph (SEM) of our grating structures, and Fig. 4c illustrating the top-view zoom-in (SEM) 
of our optimized full-color MOEs. We note that the fabrication dimensions and specifications meet our designs. 
After each step in the fabrication, the MOE feature critical dimensions are carefully examined to confirm the 
design fidelity of each metasurface region to achieve the AR waveguide.

Figure 5 shows several experimental setups built specifically for the AR waveguide display characterization. 
First, Fig. 5a–c are the distortion calibration of the In-MOE and the focal length calibration of the Out-MOE, 
across the red–green–blue spectrum. The distortion calibration122,123 of the In-MOE is achieved by measuring 
the relative distances among nine laser spots at the Out-MOE. The small In-MOE distortion has little effect on 
the mono-MOE and the color-MOE. Based on the calibrated distortion, we modified the MOE and reduced the 
small distortions to the negligible levels by promoting the distortion calibration setup and optimizing the analysis 
software for the distortion calibration. The focal length calibration is achieved by tracking the nine laser spots out 
of the Out-MOE, which determines the focal spot astigmatism of the MOE, making it a key parameter for the 
design of our MOE. Figure 5d is the instrumentation for FoV124–127 and input–output efficiency characterization. 
After guiding the collimated laser beam into the In-MOE, we can obtain the FoV by scanning the beam size near 
the focal plane of the Out-MOE. The input–output efficiency is obtained by measuring the input–output power. 
Via changing the input beam size and position on the In-MOE, we can obtain the whole efficiency map of the 
MOE, which helps to improve the uniformity of the MOE. Figure 5e shows the setup we built for the modula-
tion transfer function (MTF) characterization based on a point source mapping123. A focused laser beam passes 
through the In-MOE, the Out-MOE and an eye-equivalent lens, with imaging on a CMOS camera.

By Fourier analysis of the measured images, Fig. 6 shows the quantified MTF of our MOE waveguide. MTF 
specifies how the relative contrast of different spatial frequencies is handled by the system of our MOE display6. 
Here we select a Sony laser projector (MP-CL1, update rate per image of 60 Hz, resolution of 1920 × 720, and 
projects 43,200 lines/s) for the compact optical engine. In this setup we remove limitations from the optical 
engine on the MTF caused by limited capability to balance all aberrations using off-the-shelf lenses. These aber-
rations include spherical aberration, chromatic aberration, astigmatism, field curvature, and distortion. The 
contrast sensitivity of the human eye depends on several conditions such as the luminance, the viewing angle 

Figure 4.   Nanofabricated metasurface wafer and optical elements. (a) Wafer-scale nanofabrication of the 
metasurfaces. (b) Cross-section scanning electron micrograph (SEM) of the engineered grating ridges on the 
glass wafer. Scale bar: 1 μm. (c) Top-view SEM of the optimized full-color metasurface elements. Scale bar: 
5 μm.
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Figure 5.   Measurement setups of the metasurface waveguide field-of-view, input–output efficiency, and 
modulation transfer function. (a–c) Calibration of the fx and fy focal lengths and in-coupling distortion, across 
the red–green–blue spectrum. Note, for panel (c) the blue laser input shows up as violet in this figure because of 
the color camera capture. (d) Setup for the field-of-view and input–output efficiency characterization. (e) Point 
source setup for the modulation transfer function characterization.

Figure 6.   Measured modulation transfer function of metasurface waveguide prototypes: (a) Mono-MOE (red 
spectrum) and color-MOE (across the red–green–blue spectrum). (b) Mono-MOE (red spectrum) is compared 
across four positions in the MOE (MOE is symmetric with mirror plane at center in y direction). The target 
contrast is 0.4 at 27 lps/mm which is the full high-definition 1080-pixels for displays. For a contrast at 0.4, a 
1064 × 1064 pixel display (≈ 29.0 lps/mm) for the red mono-MOE and a 520 × 520 pixel display (≈ 13.0 lps/mm, 
mainly limited by green) for the color-MOE are experimentally observed.
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of the object, and the surrounding illumination128–130. Based on our model, we aggregate these conditions and 
assume the contrast sensitivity of the human eye is above 0.4131 when the resolution of image is below 1080 pixels 
(full resolution). In addition, the average diameter of human retina is 24 mm132 and its effective diameter within 
the FoV of our MOE is 20 mm. Therefore, we set the MOE display contrast target at 0.4, with a desired spatial 
frequency up to 27 lps/mm [1080pixels ÷ 2(pixels/lps) ÷ 20 mm].

Illuminated by a focused red laser, the measured MTF of the mono-MOE is depicted as a grey plot in Fig. 6a. 
For a contrast at 0.4, a 1064 × 1064 pixel display (≈ 29.0 lps/mm) of the red mono-MOE is experimentally 
observed. It is closely above our target resolution 1080 × 1080. For a contrast at 0.4 and our color-MOE, the 
display shows an experimental 520 × 520 pixel resolution. This is from the ≈ 13.0 lps/mm, mainly bounded 
by the green segments of our MOE; the red and blue segments are higher resolution at ≈ 17.0 and ≈ 15.3 lps/
mm respectively in this proof-of-principle demonstration. This green-segment resolution of the color-MOE 
can be improved via optimization of fabrication to increase input–output efficiency. The complex color-MOE 
fabrication has a lower resolution currently compared to the mono-MOE because of beam overlap between the 
red–green–blue segments and the resulting reduced intensity contrast. In Fig. 6b, we show the comparison of 
the red mono-MOE across four different positions; center, left, bottom and corner. For a contrast at 0.4, the red 
mono-MOE shows the highest at the center and bottom of ≈ 29.0 and ≈ 30.4 lps/mm, respectively. The left edge 
and corner show slight degradation of resolution with ≈ 25.5 and ≈ 23.9 lps/mm, respectively, due to less input/
output efficiency at those points. Consequently, the resolution of the edge and corner can also be increased 
similarly to the color-MOE. We also note that although the MTF of our system shown here is free of aberrations 
from lenses, the actual optical engine setup consisting of off-the-shelf lenses is currently mainly bounded by 
the slight mismatch between our optical engine and MOE caused by unbalanced aberrations. To overcome this 
limitation, later we will use customized lenses to optimize the optical engine to our MOE.

Discussion
With the MTF determined and as proof-of-principle, we build up a test measurement system consisting of the 
optical engine, the MOEs (either the green mono-MOE or color-MOE prototypes), an eye-equivalent lens, and 
a retina-equivalent white screen as shown in Fig. 7. An example input image at 1080 × 720 pixels is illustrated in 
Fig. 7a. For the green mono-MOE, only the green laser in our laser beam scanning projector is turned on and 
therefore only the green channel of the original input image (Fig. 7a) is projected through the whole system on 
the retina-equivalent white screen. This is depicted in Fig. 7b, for the metasurface display demonstration. We 
note that the boundary edges of the green image are not captured, and this is due to the cylinder lens pair size in 
our metasurface demonstration. For the color-MOE, all lasers (red, green and blue) in the laser beam scanning 
projector are turned on and therefore all RGB channels of the original input image are projected through our 

Figure 7.   Experimental proof-of-principle observations of our metasurface waveguide display. (a) Original 
input image, from the International Committee for Display Metrology (ICDM) test pattern, sourced from 
VESA flat-panel display measurement (FPDM) standard. (b) Green mono-MOE smart glass output green image 
with only green laser input. (c) Color-MOE smart glass output image with red, green and blue laser input. (d) 
Optical engine and optical lens coupling interface—metasurface demonstration, with projected image at the 
retina-equivalent white screen location. Note that the camera photographs (b–d) and documents printouts are 
displayed in lower resolution than actual viewing in live-operation. The modulation transfer function (Fig. 6) is 
the more rigorous demonstration of the metasurface glass waveguide display performance.
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metasurface waveguide demonstration. This is illustrated in Fig. 7c, as a proof-of-principle. The image is reddish 
as the red segments of the color-MOE currently have higher efficiency than the green and blue segments. This 
can be re-balanced by optimizing the RGB efficiency of our color-MOE. To show the capability of our MOE on 
real world application, Fig. 8 illustrates the augmented reality image captured on a CMOS camera. The image was 
observed on a red mono-MOE prototype with the Sony laser projector for the optical engine. We also note that 
main cause of the image degradation is from the mismatch between the optical engine and MOEs, introducing 
spherical and chromatic aberrations, astigmatism, field curvature and distortion. This formation of the multi-
pixel displays across the input MOE, output MOE, waveguide, optical engine, and imaging sub-system, however, 
paves the platform of nanostructured metasurfaces towards potential AR displays.

Table 1 summarizes and compares the performance of our prototype with prototypical AR/MR waveguide 
displays29,133–138. These prior approaches use HOE-DOE and waveguides, typically consisting of in-coupling, 
intermediate, and out-coupling stages. They have, however, low output efficiencies (<< 1%) since their multiple 
diffraction elements and waveguides generate more undesired diffraction light, while our display architecture 
can be achieved with one waveguide and two MOEs. The prior DOEs also typically have smaller horizontal 
FoVs, below 40°. The prior multi-layer grating structures are also more challenging for scaling up the fabrication. 
The current limitation of our single-layer two MOE implementation is a smaller eyebox, resulting in cutting of 
the virtual image with eye movement from the center position. However, mechanical or optical methods for 
eyebox increase are currently widely researched and more advanced concepts on the metasurfaces including 
eye-tracking139, increasing view-points140 can potentially overcome this. We also note the prior implementations 
are single-focal or dual focal—with the user only observing the virtual object clearly when focusing their eyes to 
the plane. In other words, the user cannot see virtual objects at infinity if they are looking a close-by object. In 
contrast, our MOE architecture is by design focal-free and the image projected onto the retina, alleviating the 
vergence-accommodation conflict and enables the virtual object to be clearly seen whenever the user is focusing 
from near to infinity. Enabled by numerical design-optimization and foundry-based nanofabrication, we dem-
onstrate experimental proof-of-principle operation of metasurface optical elements towards AR/MR waveguide 

Figure 8.   Display results from our metasurface waveguide display. (a–d) Inset shows the original images 
displayed. Observed images captured via a CMOS camera. The superimposed image of panel (a) is from the 
International Committee for Display Metrology (ICDM) test pattern, sourced from VESA flat-panel display 
measurement (FPDM) standards.
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displays. Our metasurfaces has enabled FoV greater than 40°, input–output efficiencies greater than 1% and is 
based on a focal-free implementation, in support of augmented display technologies.

Methods
Device fabrication.  First a 350-nm Si-rich SiNx layer is deposited on 500 μm thick fused silica wafers using 
low-pressure chemical vapor deposition (LPCVD, Tystar Titan II) with a gas mixture of SiH2Cl2 and NH3. The 
resulting silicon nitride layer was patterned via lithography at Broadcom Inc, by an optimized ASML PAS5500-
1150 scanner capable of 90 nm resolution with 280 nm of positive resist and 40 nm of bottom anti-reflective 
coating or at UCSB Nanofab with a 248 nm DUV ASML 5500 stepper using a positive resist of UV210 and top 
anti-reflective coating DUV42P-6 with thicknesses of 230 nm and 60 nm, respectively. Subsequently the SiNx 
layer is etched down at UCLA Nanolab using dry reactive ion etching via ULVAC NLD 570 fluorine etching 
machine using a photoresist etch mask. The etch parameters were 38 sccm Argon, 4 sccm oxygen, and 38 sccm 
CHF3, 700 W ICP power, and 100 W RIE power at a pressure of 3 mTorr. The Si3N4 etch was able to achieve a 
3:1 aspect ratio with 150 nm feature sizes and a side wall angel of 86 degrees with a mask selectivity of 1.8:1. and 
diced. Each input–output MOE is then bonded to the glass waveguide for testing. Separate input–output MOEs 
are examined via SEM (Hitachi S4700) for sidewall and dimensional characterization.

Received: 24 July 2021; Accepted: 20 January 2022
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