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Introduction
Cilia and fl agella are highly conserved microtubule-based or-

ganelles that perform a wide array of crucial motile and sensory 

functions in many types of cells (for review see Davenport and 

Yoder, 2005). Chlamydomonas reinhardtii is a unicellular green 

algae that has been used extensively to study ciliary/fl agellar 

function and assembly. Each C. reinhardtii cell has a pair of 

equal length fl agella whose length is tightly monitored and 

 regulated. When cells are induced to shed their fl agella, they re-

generate fl agella rapidly to the predefl agellation length within 

90 min (Rosenbaum et al., 1969). After amputation of one of the 

two fl agella, the remaining one shortens and waits for the other 

one to regrow to the same length; both then grow out to the pre-

defl agellation length. The most striking example of the active 

regulation of fl agellar length occurs when wild-type (WT) cells 

are mated to mutant cells with abnormally long fl agella. Within 

minutes after cell fusion, the long fl agella shorten to the WT 

length (Barsel et al., 1988). These observations demonstrate the 

existence of a vigorous regulatory mechanism that assesses and 

enforces fl agellar length.

Flagella are dynamic structures that undergo continu-

ous assembly and disassembly, mainly at their distal ends 

(Marshall and Rosenbaum, 2001; Song and Dentler; 2001). The 

steady-state length of fl agella is likely to be the result of equilib-

rium between fl agellar assembly and disassembly. A wealth of 

experi mental evidence indicates that fl agellar assembly and 

maintenance require intrafl agellar transport (IFT), a kinesin/dynein-

based transport system that involves at least two protein com-

plexes of >17 polypeptides (Kozminski et al., 1993; Cole et al., 

1998). IFT particles have been observed to associate with fl agellar 

proteins and preassembled complexes (Qin et al., 2004) and to 

move at defi ned rates up and down the fl agella (Kozminski 

et al., 1993; Iomini et al., 2001; Dentler, 2005). Recent studies 

indicate that IFT is involved in the transport of signaling mole-

cules (Qin et al., 2005; Wang et al., 2006) and in Hedgehog 

signaling in mouse primary cilia (Huangfu et al., 2003). The 

compartmentalization of IFT particles can also be modulated in 

response to fl agellar adhesion during mating in C. reinhardtii 
(Wang et al., 2006).

Because IFT is essential for fl agellar assembly, it is a 

likely target of regulation for controlling the length of fl agella. 

One model for length control proposes that the length of fl agella 

is governed by intrinsic properties of IFT that determine the 

 extent of fl agellar assembly by balancing rates of assembly and 

disassembly (Marshall and Rosenbaum, 2001). Genetic studies 

demonstrate that fl agellar length is regulated by specifi c protein 

products (McVittie, 1972; Barsel et al., 1988; Asleson and 

Lefebvre, 1998). There are four genetic loci (LF1 (long fl agella 1), 

LF2, LF3, and LF4) at which mutations result in abnormally 
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long fl agella, often two to three times the normal length (McVittie, 

1972; Barsel et al., 1988; Asleson and Lefebvre, 1998). The 

lf1 mutant has very long fl agella and regrows fl agella very 

slowly after defl agellation. Five mutant alleles of LF2 have been 

identifi ed, and they cause varying degrees of excessive fl agellar 

length and defective fl agellar regeneration. Four previously de-

scribed lf3 mutant alleles cause the assembly of long fl agella, 

but they can regenerate fl agella normally. Recently, we de-

scribed two new null mutations at LF3 that confer a distinct un-

equal length fl agella phenotype; the two fl agella are different in 

lengths on most mutant cells (Tam et al., 2003). The null mu-

tants also regenerate fl agella very slowly and have prominent 

swellings at the distal ends of their fl agella that are fi lled with 

IFT-like particles. About a dozen lf4 mutants, which are isolated 

after DNA insertional mutagenesis, have very long fl agella but 

can regrow fl agella with WT kinetics after defl agellation. The 

gene products of three of these LF genes have been identifi ed. 

LF1 and LF3 encode novel proteins of unknown function (Tam 

et al., 2003; Nguyen et al., 2005). LF4 encodes a MAPK (Berman 

et al., 2003), providing the fi rst evidence that protein kinase 

pathways are involved in fl agellar length control. Recent studies 

also implicate glycogen synthase kinase 3, an aurora kinase, 

and an NIMA-related kinase in the regulation of fl agellar as-

sembly and disassembly (Pan et al., 2004; Wilson and Lefebvre, 

2004; Bradley and Quarmby, 2005).

Similar mechanisms for regulating the length of cilia/

fl agella may exist in other organisms. For example, in Leishmania, 

the length of fl agella can be shortened or increased by the 

 overexpression or deletion of a MAPK (Bengs et al., 2005). In sea 

urchin blastula, cilia at the apical tuft are two to three times longer 

than cilia present on the rest of the embryo (Burns, 1973). In mam-

mals, motile cilia within the same organ can be different in length 

depending on their location (Clary-Meinesz et al., 1997), and the 

length of primary cilia varies with the diameter of bile ducts 

(Huang et al., 2006). Perturbation of ciliary length has been shown 

to correlate with human diseases such as primary ciliary dyskinesia 

(Niggemann et al., 1992). Recently, it has been shown that 

mice with a particular form of juvenile cystic kidney disease have 

kidneys with abnormally long primary cilia (Smith et al., 2006).

In this study, we cloned LF2 and identifi ed its gene 

 product as a new member of the cyclin-dependent kinase (CDK) 

family. CDKs have attracted intense research interest because 

many of them play essential roles in cell cycle progression 

(Morgan, 1997). In addition, CDK5 performs multiple impor-

tant functions in terminally differentiated neuronal cells (Smith 

and Tsai, 2002). In the present study, we identify a new function 

for this class of kinases in regulating the size and development 

of an organelle. Although a close homologue of LF2p has not 

been identifi ed in other organisms, several CDK-related kinases 

of unknown functions are highly expressed in the testis, in 

which germ cells are differentiating into fl agellated sperm cells 

(Besset et al., 1999; Wohlbold et al., 2006), raising the possibility 

that these kinases may be the counterparts of LF2p in regulating 

fl agellar length in higher organisms. The current study will in-

spire a new direction for exploring additional roles of CDKs in 

nondividing cells.

Figure 1. Flagellar phenotype of the lf2-6 mutant. (A–C) DIC 
images of WT cells with pairs of equal length fl agella �13–
14 μm long (A), an lf2-3 cell with long fl agella �21 μm in 
length (B), and lf2-6 cells with unequal length fl agella and 
stumpy fl agella that have distal swollen tips (C; arrows). (D) 
lf2-6 cells were unable to regrow their fl agella beyond a short 
stump even 5 h after fl agellar amputation. (E and F) In EM thin 
sections, short aggregates of IFT-like particles (arrows) were 
found fi lling the space between the fl agellar membrane and 
microtubules in these distal swellings. Bars (D), 10 μm; (E and F) 
100 nm. (G) A histogram showing the total length of each 
pair of fl agella in 50 lf2-6 cells. The length of the longer fl ag-
ella was stacked on top of that of the shorter fl agella.
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Results
Phenotype of the new lf2-6 allele
C. reinhardtii cells have a pair of equal length fl agella that never 

exceed 16 μm (Fig. 1 A). Cells containing any of the fi ve previ-

ously identifi ed lf2 mutant alleles assemble extra-long fl agella 

up to 30 μm (Fig. 1 B). Using DNA insertional mutagenesis, we 

have identifi ed a new lf2 mutant allele (lf2-6) whose fl agellar 

length defect is very similar to that of the two null mutants of 

LF3 (Tam et al., 2003). Although some lf2-6 cells had fl agella 

longer than 16 μm, most of the cells possessed stumpy or un-

equal length fl agella (Fig. 1 C). The length of both fl agella on 

each cell in a population of lf2-6 cells was measured, and the 

majority of cells had a very short fl agellum (<2 μm) and a lon-

ger fl agellum (Fig. 1 G). Moreover, there was an obvious defect 

in the morphology of the mutant fl agella: instead of having 

a tapered shape, the distal ends of all fl agella, whatever their 

lengths, were swollen (Fig. 1 C, arrows). Examination of these 

fl agella by thin-section EM revealed the accumulation of IFT-

like particles at these distal fl agellar bulbs (Fig. 1, E and F). 

Western blot analysis of fl agella isolated from WT and lf2-6 

cells also revealed the overaccumulation of IFT proteins in the 

mutant fl agella (unpublished data).

WT cells can regenerate their fl agella rapidly and syn-

chronously after they shed or resorb their fl agella, reaching full 

length by 90 min after fl agellar amputation. Several of the lf2 

alleles with a long fl agella phenotype are unable to regrow their 

fl agella after defl agellation, or they regenerate only very slowly 

(Barsel et al., 1988). The lf2-6 mutant showed the most severe 

defect in fl agellar regeneration. All of the cells were unable to 

grow fl agella beyond a short stump of ≤1 μm (Fig. 1 D) even 

hours after fl agellar excision.

LF2 encodes a CDK-related kinase
The tagged lf2-6 mutant enabled us to identify genomic DNA 

clones that rescued the mutant phenotype upon transformation. 

A 7.5-kb XhoI–XhoI fragment containing a predicted CDK 

gene was able to complement the mutant phenotype upon trans-

formation into lf2-6 cells (Fig. 2 A). By combining EST se-

quences with RT-PCR and 5′ rapid amplifi cation of cDNA ends 

(RACE) analysis, we were able to obtain a complete 2,244-bp 

cDNA sequence for LF2 (genomic and cDNA sequences are 

available from GenBank/EMBL/DDBJ under accession nos. 

DQ994241 and DQ994242). When cloned into a C. reinhardtii 
gene expression cassette, the 1.1-kb coding region of this puta-

tive cDNA rescued the lf2-6 mutation by transformation.

The predicted LF2 gene encodes a protein of 354 aa with 

a calculated mass of 37,546. The N-terminal 300 aa include the 

11 subdomains that are characteristic of all serine/threonine kinases 

(Fig. 2 B). BLAST searches indicated that LF2p is most homolo-

gous to members of the CDK family. The percentages of identity/

similarity to rat CDK2, CDK4, CDK5, and CDK7 are 40/58%, 

37/53%, 34/53%, and 39/53%, respectively. LF2p is most similar 

(47% identity and 61% similarity) to rat PNQARLE, a CDK-

 related kinase of unknown function (Fig. 2 B). In addition to the 

overall sequence homology, PNQARLE and LF2p both have 

a C-terminal extension that is absent in many other CDKs.

LF2p contains all of the aa known to be critical for the cata-

lytic activity of CDK kinases, including the glycine-rich loop 

(GXGXXG) for ATP binding in subdomain I and the invariant 

lysine (position 41) for phosphotransfer in subdomain II (Fig. 2 B). 

Figure 2. Structure, ClustalW multiple alignment, and RNA analysis of the 
LF2 gene. (A) Restriction map of the genomic region around the site of in-
sertion in lf2-6. The restriction sites XhoI (X), Smal (S), and NotI (N) are 
shown. (B) C. reinhardtii LF2p is compared with a rat CDK2 and a rat 
PNQALRE (GenBank/EMBL/DDBJ accession no. Q63699 and Q4KM34). 
Identical and similar amino acids are shaded in black and gray, respectively. 
The 11 subdomains characteristic of serine/threonine kinases are 
 delineated. Glycine (black dots) in the GXGXXG motif for ATP binding, the 
invariant lysine (asterisk) conserved in all functional kinases, residues cor-
responding to the cyclin-binding PSTAIRE motif (underlined), and the threo-
nine (double underlined) that has to be phosphorylated for full activation of 
many CDKs are noted. (C and D) 25 μg of total RNA isolated from WT 
(CC-620) and various lf mutant strains at different times after pH-induced 
defl agellation in WT cells was size fractionated on formaldehyde agarose 
gels and transferred to nylon membranes. The blots were hybridized suc-
cessively to a PCR probe spanning nucleotides 602–900 of the LF2 cDNA 
sequence, a genomic DNA probe of PF20 encoding a protein in the 
axonemal central pair, and a DNA probe from CRY1 (encodes ribosomal 
S14 protein) for loading controls.
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In CDK2, phosphorylation of threonine at position 14 and 

tyrosine at position 15 within the glycine-rich loop inhibits 

its activity, whereas phosphorylation of threonine at position 

160 within subdomain VIII activates the kinase (Morgan, 1997). 

LF2p lacks the threonine and tyrosine residues in the glycine-

rich loop but retains the second threonine at position 168 

(Fig. 2 B). Another feature of many CDKs is the α helix 

(subdomain III) containing the PSTAIRE motif required for 

cyclin binding. Cyclins expressed at various phases of the 

cell cycle regulate the level and activity of CDKs (Morgan, 

1997). In LF2p, a unique sequence, PDVVVRE, replaces the 

PSTAIRE motif, indicating that LF2p probably does not in-

teract with cyclins and, therefore, is classified as a CDK-

 related kinase.

RNA analysis of LF2
Expression of the LF2 transcript in WT and various lf mutant 

cells was analyzed on RNA blots with a DNA hybridization 

probe from the predicted LF2 coding region (Fig. 2 C). A 2.4-kb 

RNA was detected in WT cells (CC-620) as well as in long fl a-

gella mutants lf1-1, lf2-2, lf3-2, and lf4. The LF2 transcript was 

not observed in the insertional mutant lf2-6, strongly suggesting 

that lf2-6 is a null mutant. Interestingly, the LF2 transcript level 

was substantially reduced in lf3-5, a null mutant of LF3, and in 

two double lf mutants, lf1-1 lf3-2 and lf2-1 lf3-2, all with un-

equal length fl agella. This observation shows that accumulation 

of the LF2 RNA could be affected by null mutations in LF3 or 

by double mutations of LF1, LF2, or LF3.

During fl agellar regeneration, the transcript levels for fl a-

gellar proteins increase rapidly and transiently (Lefebvre et al., 

1980). We examined the transcript level of LF2 at various times 

after fl agellar amputation in WT cells. In contrast to fl agellar gene 

transcripts such as PF20, whose level increased during fl agellar 

regeneration, the amount of LF2 RNA appeared to decrease 

early during regeneration (Fig. 2 D), suggesting that LF2p is 

unlikely to be a fl agellar protein.

Expression of epitope-tagged LF2p
Attempts to generate antibodies to bacterially expressed LF2 

protein or to synthetic peptides were unsuccessful. Therefore, 

we tagged the cDNA construct with the HA epitope so that 

LF2p could be detected with a commercially available HA 

antibody. The HA-tagged construct rescued the lf2 mutants as 

effi ciently as the untagged version. When total proteins from 

several rescued strains were analyzed on Western blots using 

an HA antibody, a cluster of at least three protein bands mi-

grating at �42 kD was detected only in cells rescued with the 

HA-tagged construct (Fig. 3 A, top and bottom). The amount 

of the higher mol wt isoforms decreased, whereas the level of 

the smallest mol wt isoform increased when cell extracts con-

taining the HA-tagged proteins were incubated at 37°C (Fig. 

3 B, no PPI). However, this size change was inhibited if phos-

phatase inhibitors were included during the preparation of cell 

extracts (Fig. 3 B, +PPI). These results may be explained by 

the presence of phosphatase activity in cell extracts and be-

cause the higher mol wt forms of LF2p are phosphorylated 

forms of LF2p.

The LF2p isoforms were resolved by 2D gel electrophoresis. 

The two higher mol wt forms of LF2p were focused at a lower 

pH (Fig. 3 C), as would be expected if they are phosphorylated 

forms of LF2p. pI values of the isoforms were estimated by 

their positions on the fi rst dimension. On three separate gels, 

estimated pI values between the largest and smallest isoforms 

were within 0.6 of each other, which can be accounted for 

by the possible addition of one to three phosphate groups to 

the protein.

Because LF2 plays a regulatory role in fl agellar assem-

bly, we examined the distribution of LF2p in the cell body 

and in the fl agella. The majority of LF2p was detected in the 

cell bodies, although a very small amount was consistently 

observed in flagella (Fig. 3 D). The presence of LF2p in 

these fl agellar samples could not be explained by the pres-

ence of contaminating cell bodies in these samples because 

very little staining with antibodies to a chloroplast protein, OEE1 

Figure 3. Western blot analysis of HA-tagged LF2 protein. (A) Total pro-
tein from two strains (2C11 and 2A10) rescued with the untagged LF2 
construct and four strains (3C1, 3F1, 3G1, and 3A2) rescued with the HA-
tagged LF2 construct were size fractionated on an SDS-PAGE gel, trans-
ferred to a PVDF fi lter, and detected with an HA antibody (top). A cluster 
of bands migrating at �42 kD were observed only with cells expressing 
the tagged construct. When total cell protein from 3G1 was resolved on a 
longer gel (bottom; 15- and 60-s exposures), at least three isoforms were 
visible (arrows). (B) Soluble proteins were extracted from 3F1 cells by 
freezing/thawing twice in a buffer either with (+PPI) or without phos-
phatase inhibitors (no PPI). Cell extracts were incubated at 37°C for the 
amount of time indicated and analyzed on a Western blot. (C) 2D gel anal-
ysis of LF2p. Arrows point to the three major isoforms of HA-LF2p. (D) Com-
parison of the amount of LF2p in whole cells, cell bodies, fl agella, and 
axonemes. Flagellar or axonemal protein from 106 (1×), 5 × 106 (5×), 
and 3.6 × 107 (36×) cells were compared with 106 whole cells and cell 
body proteins from 106 (1×), 105 (0.1×), and 104 (0.01×) cells. The same 
blot was reacted with an antibody to a chloroplast protein, OEE1, to deter-
mine the amount of cell body contamination in the fl agella preparations.
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(Mayfi eld et al., 1987), was observed with these samples (Fig. 

3 D). The amount of LF2p in fl agella isolated from 3.6 × 107 

cells was about the same as the amount contained in 105 cell 

bodies, indicating that ≤0.3% of LF2p was distributed in fl a-

gella (Fig. 3 D). Some of the fl agellar form of LF2p was de-

tergent insoluble and remained with the axonemal fraction 

after 1% NP-40 extraction. It is noteworthy that there was no 

difference in the relative amount of the different LF2p iso-

forms in fl agella versus cell bodies.

LF2p localization similar to LF3p
Previous studies indicated that the protein products of LF1 and 

LF3 are predominantly localized inside the cell, probably in 

protein complexes (Tam et al., 2003; Nguyen et al., 2005). 

When cells expressing HA-LF2p or HA-LF3p were analyzed in 

parallel by immunofl uorescence, similar punctate staining of 

both proteins was observed inside the cell bodies (Fig. 4 A). No 

fl agellar staining was detectable in either case.

To test whether LF2p may form a complex with the other 

LF proteins, we studied the sedimentation of HA-tagged LF2p 

or LF3p from cell extracts on sucrose density gradients. LF2p 

and LF3p copurifi ed in the same fractions, with the majority of 

the proteins sedimenting in fractions 9–13, around 11S (Fig. 4 B, 

top). Previously, we found that LF1p cosedimented with LF3p 

in the same sucrose density fractions (Tam et al., 2003). In con-

trast, when the sedimentation of LF4p was compared with LF2p 

in another experiment, most of the LF4p sedimented away from 

LF2p in fractions 6–9 (Fig. 4 B, bottom). These results suggest 

that LF2p may be a member of a protein complex involving 

LF1p and LF3p but not LF4p.

Interaction of LF2p with other LF proteins 
in the yeast two-hybrid system
We used a GAL4 yeast two-hybrid system to test for direct 

interactions among LF proteins. A 1.1-kb cDNA of LF1 and 

full-length coding regions of LF2, LF3, and LF4 were cloned 

into yeast vectors, and their interaction was determined by the 

level of β-galactosidase activity (Table I). LF2p interacted spe-

cifi cally with LF3p and LF1p. Interaction between LF1p and 

LF3p was also detected. In contrast, LF4p did not interact with 

any of the three LF proteins.

Nature of genetic lesions 
in lf2 mutant alleles
Five previously identifi ed lf2 alleles differ in the severity of 

their fl agellar length defects and their ability to regenerate fl a-

gella after defl agellation (see description in the following two 

paragraphs; Barsel et al., 1988). We determined the sequences 

of four of the mutant alleles (Fig. 5 A) and correlated the le-

sions with the severity of their mutant phenotype (Fig. 5 B). 

In lf2-1, the 5′ donor site of intron 1 was changed (GT to AT), 

resulting in an abnormal splicing event at a position 26 bp 

downstream. The 26-bp addition to the mature RNA caused 

a shift of the reading frame, thereby introducing incorrect aa 

and a premature translational stop. Therefore, lf2-1 is expected 

to make no protein or, at best, a nonfunctional truncated product 

that includes only two kinase subdomains. Although lf2-1 cells 

have been reported to have long fl agella, our reexamination of 

two available lf2-1 strains revealed that many of these cells had 

unequal length fl agella that have swollen distal tips similar 

to the null mutant phenotype of lf2-6 cells (unpublished data). 

Figure 4. LF2p localized with LF3p. (A) Immunofl uorescence 
studies localized HA-LF2p and HA-LF3p to punctate spots 
inside the cells. Top panels are DIC images, and bottom pan-
els are immunostaining with the HA antibody and an Alexa-
Fluor488 secondary antibody. (B) LF2p comigrated closely 
with LF3p in sucrose density gradients. Cell extracts from 
strains expressing either HA-LF2p or HA-LF3p were mixed and 
loaded on a 5–20% sucrose density gradient for parallel 
analysis. Samples were collected from top to bottom and 
analyzed using SDS-PAGE and Western blots. In the bottom 
panel, the sedimentation of LF4p was compared with that 
of LF2p.
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lf2-1 mutant cells also did not regenerate fl agella after amputation 

(Barsel et al., 1988).

In lf2-2, a nucleotide change at the 3′ acceptor site of 

intron 2 changed the consensus AG to TG. As a result, splicing 

took place 6 bp downstream at the next AG site, removing a 

glycine and a glutamine located in the junction between sub-

domains IV and V of the protein. These two residues are not well 

conserved among different CDKs (Fig. 2 B). lf2-2 has the weakest 

mutant phenotype of all lf2 alleles. Only 4–30% of cells dis-

played long fl agella (16–20 μm), and fl agellar regeneration was 

only slightly delayed in lf2-2 relative to WT (Barsel et al., 1988; 

unpublished data).

In lf2-3, two nucleotide changes were found: one in the 

5′ splice site (GT to AT) and one in the 3′ splice site (AG to AC) 

of intron 1. As a consequence, intron 1 was retained in the ma-

ture RNA, and 39 aa were inserted in subdomain I right after the 

glycine-rich loop. The insertion in lf2-3 is expected to disrupt 

the structure of the protein and to affect its activity. The lf2-3 

mutant strain has a severe phenotype: >50% of cells have ab-

normally long fl agella (Fig. 6 A), and many cells did not regen-

erate fl agella until 2–3 h after defl agellation (Fig. 6 B). In lf2-5, 

a nonsense mutation changing the codon TGG to TGA was 

found. The mutant protein is predicted to contain 233 aa lacking 

the last kinase subdomain XI and the C-terminal tail. The func-

tion of subdomain XI and the C-terminal tail is not known, but 

the lf2-5 truncated protein appears to retain partial function, as 

lf2-5 has a moderate fl agellar length defect and can regenerate 

fl agella with nearly normal kinetics (Barsel et al., 1988).

Mutated LF2p failed to regulate 
fl agellar length
Analysis of lf2 mutants suggests that the catalytic kinase func-

tion of LF2 is important for the regulation of fl agellar length. To 

directly test the role of the kinase activity of LF2p in fl agellar 

length control, we engineered specifi c mutations in the HA-

tagged LF2 gene construct that should affect only the catalytic 

activity but not the overall structure of LF2p. One change con-

verted the invariant lysine at position 41 to an arginine (K41R), 

a change used routinely to create kinase-dead versions of vari-

ous kinases (Snyder et al., 1985; Gibbs and Zoller, 1991). In a 

second construct, we converted the second glycine in the glycine-

rich loop to a valine (G21V), a change that can greatly diminish 

the kinase activity of the mutated enzyme (Hemmer et al., 

1997). The WT construct and the two mutant constructs were 

introduced into the null lf2-6 mutant by transformation to test 

for the effect of the mutations on the function of the protein. 

Although the WT construct could rescue the lf2-6 phenotype 

completely, the mutant constructs could not. Nevertheless, cells 

expressing the mutant constructs were clearly distinguishable 

from lf2-6 because many of the transformed cells assembled 

fl agella (Fig. 6 A). Notably, >50% of cells containing the K41R 

construct and >20% of cells containing the G21V construct 

still possessed fl agella longer than 16 μm (Fig. 6 A). In addi-

tion, although lf2-6 could not regenerate fl agella after de-

fl agellation, cells harboring the mutant gene constructs were 

able to regrow fl agella slowly (Fig. 6 B). It is noteworthy that 

cells transformed with the K41R construct displayed a fl agellar 

length and regeneration phenotype almost identical to that of 

Figure 5. Genetic lesions in four lf2 mutants. (A) Nucleotide changes in 
the different alleles are indicated under the WT genomic sequences. Three 
of the mutations involve intron splice sites. The normal splice sites (arrow-
heads) and alternative splice sites (double arrows) are indicated. The cor-
responding changes in protein sequences are shown in gray. (B) Summary 
of the protein structure and phenotype of the mutants.

Table I. Yeast two-hybrid assay of LF proteins

DNA-binding 
plasmid

DNA-activating 
plasmid

𝛃-galactosidase

Miller units

LF2 LF1 12.5 ± 0.1

LF2 LF3 15.8 ± 3.2

LF2 LF4 1.0 ± 0.1

LF2 SV40 T-antigen 1.5 ± 0.2

LF4 LF1 0.4 ± 0.1

LF4 LF3 0.4 ± 0.0

LF1 LF3 61.1 ± 3.2

The results were obtained from a representative experiment in which two differ-
ent yeast transformants were assayed for each combination of proteins. SV40 
T-antigen was used as a negative control for interaction.
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the lf2-3 mutant (Fig. 6, A and B), in which an insertion was 

predicted to disrupt the kinase function of the protein.

These results clearly demonstrate the importance of the 

kinase activity of LF2p for maintaining proper fl agellar length. 

In contrast, the G21V and K41R constructs were able to support 

fl agellar assembly in the null mutant background. One possible 

explanation for this result is that LF2p supports fl agellar growth 

by a function independent of its kinase activity, such as facili-

tating the assembly of a protein complex. Alternatively, the 

mutated constructs may have residual kinase activity that is suf-

fi cient to support fl agellar assembly but not proper length con-

trol. To distinguish these two possibilities, we combined both 

G21V and K41R mutations in the same LF2 construct to further 

decrease the kinase activity of the protein without affecting the 

LF2 protein in other ways. When transformed into lf2-6 cells, 

the double mutant construct was unable to rescue the null mu-

tant. We conclude from these results that the single mutant 

constructs allow fl agellar assembly because they retain partial 

kinase activity.

The protein products from six K41R and G21V trans-

formant lines were examined by Western blot analysis. In all 

samples, only a single band was observed at the position of the 

fastest migrating isoform of LF2p (K41R transformants are 

shown in Fig. 6 C). The higher mol wt isoforms, which are the pre-

sumed phosphorylated proteins (Fig. 3, B and C), were missing, 

suggesting that LF2p kinase activity may be required directly or 

indirectly to phosphorylate LF2p.

Discussion
LF2 encodes a CDK-related kinase that 
plays multiple roles in fl agellar biogenesis
In this study, we show that the LF2 gene encodes a novel CDK-

related kinase. Analysis of an allelic series of lf2 mutants exhib-

iting different degrees of fl agellar length and fl agellar growth 

phenotypes has provided useful insights into the functions of 

LF2. Three of the mutants that display a long fl agella phenotype—

lf2-2, lf2-3, and lf2-5—contain mutations that are expected to 

produce a hypomorphic effect caused by reduced catalytic ac-

tivity of the protein. The severity of the mutant phenotype in 

these three mutants appears to correlate with the extent of dis-

ruption in the kinase domain of the proteins. On the other hand, 

when LF2p is completely absent, as in the null mutant lf2-6, 

cells exhibit multiple defects: (1) a reduced ability to assemble 

fl agella, as refl ected by the high percentage of stumpy fl agella 

cells in a population; (2) an inability to maintain an equality of 

length between the two fl agella of a cell; (3) an inability to 

regenerate fl agella after defl agellation; and (4) an accumula-

tion of IFT-like particles at the distal ends of fl agella, where fl a-

gellar assembly and disassembly occur. Based on these results, 

we conclude that LF2p plays multiple roles in fl agellar assem-

bly, including support of fl agellar growth, balance of length 

between the two fl agella of a cell, and enforcement of normal 

fl agellar length.

Nine CDK proteins have been annotated in the C. rein-
hardtii genome (Bisova et al., 2005). LF2p, which is annotated as 

CDKI1, appears to have evolved to perform specifi c functions in 

fl agellar assembly. Although no orthologue of LF2p can be iden-

tifi ed in other organisms, it is most similar to the mammalian 

CDK-related kinase PNQALRE in sequence identity and overall 

structural organization. PNQALRE was fi rst proposed to be a 

CDK-activating kinase that phosphorylates other CDKs (Liu 

et al., 2004). However, a more recent study reported that the CDK-

activating activity is caused by the association of PNQALRE 

with CDK7 (Wohlbold et al., 2006). Interestingly, PNQALRE 

mRNA is most abundant in testes (Wohlbold et al., 2006), the site 

of assembly of sperm tail axonemes, raising the possibility that 

PNQALRE may play a similar role to LF2p in ciliogenesis.

Figure 6. Phenotype of K41R- and G21V-rescued cells. (A) Histograms 
showing fl agellar length distribution in populations of lf2-3 and lf2-6 mu-
tant cells and lf2-6 cells rescued with the WT construct or mutant constructs 
(K41R and G21V). (B) Kinetics of fl agellar regeneration in WT cells, lf2-3 
mutant, and strains transformed with the mutant LF2 constructs. Cells 
harboring the K41R construct showed severe retardation in fl agellar regen-
eration similar to lf2-3 cells. (C) Western blot analysis of transformants 
rescued with the WT or K41R construct. Three isoforms of LF2p were de-
tected in WT transformants, but only the fastest migrating form of LF2p 
was observed in K41R transformants as well as in G21V transformants 
(not depicted).
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LF2p kinase activity is required in vivo
Some proteins with conserved kinase domains do not require 

 kinase activity to function (Yoshikawa et al., 2001). We used 

site-directed mutagenesis to test the role of LF2 kinase activity 

in vivo. A change at the second glycine in the highly conserved 

ATP-binding domain or a change in the invariant lysine in sub-

domain II often produces inactive protein kinases. Both mutant 

proteins fail to maintain fl agellar length control, indicating that 

the kinase activity of LF2p is required to enforce fl agellar length. 

Importantly, these mutations do not completely abolish the func-

tion of LF2p because the transformed cells were able to assemble 

fl agella. It is possible that these mutations do not totally elimi-

nate the catalytic activity of LF2p. There is a precedent that 

even mutating the invariant lysine could leave residual catalytic 

activity in some kinases (Robinson et al., 1996), and there is at 

least one example of an active kinase that lacks this conserved 

lysine (Xu et al., 2000). When both G21V and K41R mutations 

were introduced in a single construct to further reduce the kinase 

activity of LF2p, the double mutant construct became completely 

nonfunctional in rescue of the mutant phenotype. Because these 

mutations should only affect the phosphotransfer reaction but 

not the structure of the protein, the kinase activity of LF2p is the 

only activity required to carry out its functions. In addition, it 

appears that a higher level of kinase activity is required for fl a-

gellar length control, whereas a lower level of kinase activity is 

suffi cient to support fl agellar growth. We are developing in vitro 

kinase assays to test the predictions from these experiments.

Most CDKs are phosphorylated by other kinases, and 

a few can phosphorylate themselves (Chao et al., 2007). For 

LF2p, there are at least three isoforms. The higher mol wt forms 

may be phosphorylated proteins, as they could be converted to 

the lowest mol wt form by a phosphatase-like activity in cell ex-

tracts and were focused at a lower pH on 2D gels. Interestingly, 

only the smallest isoform of the protein was detected in strains 

expressing the low activity K41R and G21V constructs, raising 

the possibility that LF2p may autophosphorylate or that there is 

a feedback loop that regulates LF2p phosphorylation.

A protein kinase complex involving 
LF1, LF2, and LF3 proteins
Previous genetic studies indicate that the gene products of LF1, 

LF2, and LF3 may work together to regulate fl agellar assembly 

(Barsel et al., 1988; Tam et al., 2003). Double mutants of lf1 

and any of the hypomorphic alleles of LF2 or LF3 produce a 

synthetic stumpy fl agella or unequal length fl agella phenotype 

(Barsel et al., 1988; Tam et al., 2003). Although the length de-

fect of lf mutants can be complemented rapidly when these cells 

fuse with WT cells to form temporary dikaryons during mating, 

all pairwise crosses of lf1, lf2, and lf3 alleles fail to restore their 

fl agellar length control in dikaryons (Barsel et al., 1988), indi-

cating that some common structure or process is defective in these 

mutants. The resemblance of null or hypomorphic mutants in 

LF2 and LF3 also lends support to the idea that these genes 

work in similar pathways.

During fl agellar regeneration, the level of RNA transcript 

for all three LF genes did not increase but rather decreased tran-

siently during the fi rst 30 min after defl agellation (Tam et al., 2003; 

Nguyen et al., 2005; this study). In addition, the RNA tran-

script of LF2 was diminished in the lf3-null mutant and in dou-

ble mutants of lf1 lf3 and lf2 lf3, and a similar reduction in the 

RNA transcript of LF3 has also been observed in the null mu-

tant of lf2 and in double lf mutants (Tam et al., 2003). These 

almost identical accumulation patterns of LF transcripts suggest 

that the expression of these three genes is coordinated.

At the protein level, the LF1, LF2, and LF3 proteins were 

localized by immunofl uorescence to similar cytoplasmic foci, 

and these proteins also cosedimented on sucrose density gradi-

ents, suggesting that they may form a protein complex. Using 

yeast two-hybrid assays, we demonstrated the specifi c inter-

action of these proteins in vivo. Based on all of these results, we 

propose that LF1, LF2, and LF3 proteins work together as a 

protein complex in the cytoplasm, which we call the length reg-

ulatory complex (LRC) because of its role in regulating fl agellar 

length. We hypothesize that LF2p is the catalytic subunit of the 

LRC, with LF1p and LF3p being the accessory proteins for ac-

tivation or recruitment. Many CDKs are inactive as a monomer 

and require binding to cyclins for activation. All cyclins contain 

a conserved region of 100 aa known as the cyclin box that 

binds the PSTAIRE helix of CDKs (Lees and Harlow, 1993). 

Noncyclin binding partners also exist for CDKs. One class of 

noncyclin regulatory proteins is distinct from cyclins in their 

primary sequence but have a similar tertiary structure to cyclins. 

For example, p35/p25 binds and regulates the activity of CDK5, 

a kinase with important functions in neuronal cells (Tarricone 

et al., 2001). Other noncyclin regulatory proteins that bind CDKs 

have no structural similarity to cyclins: for example, the Ringo/

Speedy proteins that interact with CDK1 and CDK2 (Nebreda, 

2006), PIF-1B and PIF2 that bind to the N-terminal extension of 

the CDK-related kinase PFTAIRE (Rascle et al., 2003), and MAT1, 

a RING fi nger protein that can stabilize and alter the substrate 

specifi city of a CDK7–cyclin H complex (Devault et al., 1995; 

Yankulov and Bentley, 1997). LF1p and LF3p are novel pro-

teins that are distinct from cyclins, and they are likely to be new 

examples of noncyclin binding partners for CDKs.

Does LF4p interact with the LRC?
Previously, our laboratory identifi ed a MAPK, LF4p, as a regu-

lator of fl agellar length (Berman et al., 2003). LF4p, unlike 

LF2p, does not affect fl agellar assembly. Null lf4 mutants can 

assemble fl agella both during the cell cycle and after defl agella-

tion (Asleson and Lefebvre, 1998). In addition, cell fraction-

ation studies show that LF4p is enriched in fl agella (Berman 

et al., 2003), but very little of LF1, LF2, and LF3 proteins are lo-

cated in the fl agella (Tam et al., 2003; Nguyen et al., 2005; this 

study). We do not know how LF4p localizes inside the cell be-

cause antibodies to this protein do not work for immunolocal-

ization, but the cytoplasmic form of the LF4 protein sedimented 

in lighter fractions in sucrose density gradients than the other 

LF proteins. Previously, it was shown that lf4 mutations can 

suppress the lf1 regeneration phenotype in lf1 lf4 double mu-

tants, and lf4 mutations can suppress the stumpy fl agella pheno-

type of lf1-1 lf2-3 double mutants to produce long fl agella 

(Asleson and Lefebvre, 1998). However, we are doubtful that 

LF4p works directly downstream from the LRC because the lf4 
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mutation cannot suppress the null lf2 or lf3 mutant phenotype 

(unpublished data). Our yeast two-hybrid experiments also did 

not show any direct interaction of LF4p with LRC proteins. It is 

more likely that the LF4 kinase pathway and LRC pathway 

work in parallel to regulate fl agellar length, with some cross 

talk between them.

Targets of the LRC
CDKs have diverse roles and many phosphorylation targets 

(Ubersax et al., 2003). The complex phenotypes of lf mutants 

suggest that the LRC may also have multiple targets. One ob-

vious level of regulation is RNA accumulation. We observed a 

decreased level of transcript accumulation for the LF2 and LF3 

genes in the null mutants or double mutants of LF1, LF2, and 

LF3 (Tam et al., 2003; this study). Many CDKs have been 

shown to be part of the transcriptional protein complex, to phos-

phorylate the C-terminal domain of the RNA polymerase large 

subunit, or to be part of RNA splicing complexes (for review see 

Loyer et al., 2005). It will be important to determine whether 

the LRC regulates these cellular functions.

Another possible target for the LRC is the IFT machinery. 

lf mutants, especially the null mutants, show an overaccumula-

tion of IFT particles at the distal ends of their fl agella, the major 

location for fl agellar assembly and disassembly. A similar ab-

normal accumulation of IFT particles at fl agellar tips occurs in 

mutants defective in specifi c IFT components (Pazour et al., 1998; 

Piperno et al., 1998; Hou et al., 2004; Pedersen et al., 2005). 

Moreover, some IFT mutants show unequal length flagella 

(Pazour et al., 1998; Hou et al., 2004), leading to the hypothesis 

that LF1, LF2, and LF3 proteins may regulate IFT (Tam et al., 

2003). Dentler (2005) measured the rate of IFT particle move-

ments on various lf mutant fl agella and did not detect any 

major difference in the kinetics of retrograde or anterograde 

transport in lf mutants. Recently, Pan and Snell (2005) demon-

strated that the cargo-carrying capacity of IFT particles could be 

modifi ed. When fl agella were induced to resorb by chemical 

treatment, a large amount of cargo-free IFT particles entered into 

the shortening fl agella and carried disassembled fl agellar com-

ponents back to the cell. It is possible that the LRC regulates 

qualitative properties of IFT such as cargo loading, the unload-

ing capacity of IFT particles, or the activation/inactivation switch 

between the anterograde/retrograde motors that occurs at the 

distal end of fl agella.

Because the LRC is localized mainly in the cytoplasm, a 

satisfactory model must explain how IFT is modifi ed in the 

cytoplasm to affect its function in fl agella. The identity of the 

LRC as a protein kinase complex suggests that phosphoryla-

tion may be the mechanism. Little is known about how the IFT 

particles are assembled and transported inside the cytoplasm 

before they enter the fl agella. Based on the similarity of do-

main structures between IFT proteins and the protein compo-

nents of intracellular coated vesicles, it has been postulated 

that the IFT machinery may have originated as specialized 

membrane vesicles (Jekely and Arendt, 2006). There are many 

examples of CDKs or CDK-related kinases that phosphorylate 

intracellular membrane components (Lowe et al., 1998; Smith 

and Tsai, 2002; Kano et al., 2004; Palmer et al., 2005). It is not 

diffi cult to envision the use of a specialized protein kinase 

complex, the LRC, to regulate a specialized transport system 

for cilia and fl agella.

Materials and methods
C. reinhardtii strains
WT strain (CC-620), mutant lf2-1 (CC-803 and CC-912), lf2-4 (CC-2288), 
and lf2-5 (CC-2287) were obtained from the Chlamydomonas Genetics 
Center. lf2-2 (cs89) and lf2-3 (185) were laboratory strains that were previ-
ously described (Barsel et al., 1988). lf2-6 is an insertional mutant tagged 
with the nitrate reductase (NIT1) plasmid (Tam and Lefebvre, 1993). An 
arg7 mutant was crossed with lf2-3 or lf2-6 to create double mutant strains 
for transformation.

Cloning of LF2
DNA from lf2-6 was cloned into a λ-bacteriophage vector using the 
Lambda Fix II/XhoI partial fi ll-in vector kit (Stratagene) according to the 
manufacturer’s instructions and was screened with 32P-labeled pUC119 
DNA to identify clones containing genomic sequences fl anking the inte-
grated NIT1 plasmid. A fragment from one of the phage clones was used 
to identify eight clones from a bacterial artifi cial chromosome (BAC) library 
of C. reinhardtii genomic DNA (available from the Clemson University 
Genomics Institute). Crude DNA from BAC clones was prepared by alkaline 
lysis. A fragment from one of the BAC clones was used as a hybridization 
probe to identify a 20-kb genomic clone, λ2-4, from a WT C. reinhardtii 
λ-phage library. To test for the presence of the LF2 gene in these clones, 
BAC or λ-DNA was cotransformed with pArg7.8 (Debuchy et al., 1989) 
into arg7 strains containing lf2-3 or lf2-6 mutations as described previously 
(Tam and Lefebvre, 1993).

The sequence of a 17-kb region around LF2 was determined by 
 sequencing plasmid subclones of λ2-4 using universal sequencing primers 
and gene-specifi c primers (Advanced Genetics Analysis Center, Univer-
sity of Minnesota). The complete cDNA sequence was obtained and veri-
fi ed using three different approaches: RT-PCR and 5′ RACE products, two 
ESTs available from the Chlamydomonas Genome project, and PCR pro-
ducts amplifi ed from a gametic cDNA library (provided by B. Snell, Uni-
versity of Texas Southwestern Medical Center, Dallas, TX). PCR, 5′ RACE, 
RNA analysis, and quantitation were performed as described previously 
(Tam et al., 2003). The genetic lesions in lf2 mutants were determined by 
direct sequencing of genomic PCR and RT-PCR products from the mutant 
alleles. No sequence change could be found in lf2-4 (CC-2288), and it 
no longer displayed any mutant phenotype, suggesting that the mutation 
may have reverted.

Construction of LF2 cDNA constructs
The coding region of LF2 was amplifi ed from a gametic cDNA library with 
a primer with an NdeI site (5′-C C G C A T A T G C C G T C G A C G C T T C A A G G C -3′) 
and a primer with an EcoRI site (5′-G A C T G A A T T C T C A C A C G A G C G G C-
A A T G A C G -3′) using PfuUltra polymerase (Stratagene) and was cloned 
into pPCR2.1 (Invitrogen). A resulting clone was digested with NdeI–EcoRI, 
and the 1.1-kb insert was cloned into a psaD promoter/3′ untranslated re-
gion cassette (Fischer and Rochaix, 2001) to generate the cDNA clone 
psaD-LF2. To add the HA epitope to psaD-LF2, the HA cassette was excised 
from p3XHA (Tam et al., 2003) and cloned into a unique PmlI site 16 aa 
before the translational stop codon. Lysine 41 and glycine 21 were muta-
genized to an arginine and a valine, respectively, according to protocols 
from the QuikChange II XL Site-Directed Mutagenesis kit (Stratagene). All 
clones were sequenced to ensure that no error was introduced during the 
amplifi cation or cloning processes.

Flagellar regeneration, light, and EM microscopy
Cells were induced to shed their fl agella by pH shock and were grown 
under bright light with shaking or stirring. Cells were taken at different times, 
fi xed with an equal volume of 2% glutaraldehyde, and examined with dif-
ferential interference contrast (DIC) microscopy optics using a microscope 
(Diaplan; Leica) with a 100× NA 1.25 objective (Leitz). Images of cells 
were captured using a video camera (CCD 72; Dage-MTI, Inc.) and Image 
1.59 software (Scion). Flagellar length was measured with Image J version 
1.31 software (National Institutes of Health). Thin-section EM of whole cells 
was performed as described previously using a microscope (1200EXII; 
JEOL; Tam et al., 2003). All DIC and EM images were assembled using 
Photoshop CS2 software (Adobe).



JCB • VOLUME 176 • NUMBER 6 • 2007 828

Protein sample preparation, Western blotting, and immunofl uorescence
To determine the distribution of LF2p in fl agella, cells were harvested by 
centrifugation, resuspended in 10 mM Hepes and 5 mM MgSO4, and defl agel-
lated by pH shock. Cell bodies were collected by low speed centrifugation. 
The supernatant fraction containing fl agella was underlaid with 25% sucrose 
and centrifuged to remove the remaining cell bodies. Purifi ed fl agella were 
collected by centrifugation at 23,000 g. Half of the fl agella was further ex-
tracted twice with 1% NP-40 in buffer to prepare axonemes. Protein concen-
tration was determined using the Protein Assay kit (Bio-Rad Laboratories).

Whole-cell or cell body protein samples were prepared by boiling 
5 × 107 cells in 0.5 ml SDS-PAGE buffer (62.5 mM Tris, pH 6.8, 5% 
2-mercaptoethanol, 2% SDS, 10% glycerol, and 0.05% bromophenol blue). 
Flagella were boiled in SDS-PAGE buffer to a fi nal concentration of 2 mg/ml. 
Soluble proteins were extracted from cells by two to three cycles of freezing/
thawing and were analyzed on sucrose density gradients as described 
previously (Tam et al., 2003). Phosphatase inhibitors (50 mM NaF, 25 mM 
β-glycerophosphate, and 1 mM sodium orthovanadate) were added to the 
extraction buffer except when noted otherwise.

All protein samples were size fractionated by SDS-PAGE and trans-
ferred to polyvinylidene difl uoride (PVDF) membranes. Primary antibodies 
used were a rat HA antibody (3F10; 1:1,200; Roche Biochemicals), a 
rabbit anti-OEE1 (1:3,000), and a rabbit antibody to LF4p (Berman et al., 
2003). Secondary antibodies are an anti–rat HRP at 1:8,000 and an 
anti–rabbit HRP at 1:24,000 dilutions (Sigma-Aldrich). Blots were ana-
lyzed sequentially with different antibodies without stripping. ECL reagents 
(GE Healthcare) were used for detection.

Protein samples for 2D gel electrophoresis analysis were prepared 
by freezing and thawing cells in a buffer containing 40 mM Tris, pH 7.5, 
1 mM EDTA, 1 mM sodium orthovanadate, and protease inhibitor (P-8340; 
Sigma-Aldrich). 80 μg (in 5 μl) of the soluble proteins was mixed with 10 μl 
of 8-M urea and 4% Triton X-100 for 1 h at RT, and 120 μl of rehydration 
buffer (8 M urea, 4% CHAPS, 20 mM DTT, 0.2% biolytes 3–10, and 
0.001% bromophenol blue) was then added. Samples were applied to 
7-cm immobilized pH gradient strips, pH 3–10 or 5–8 (Bio-Rad Laboratories), 
and were focused using a Protean IEF cell (Bio-Rad Laboratories) and the 
default slow ramp method with active rehydration for 12 h. The second 
 dimension was run on 8% polyacrylamide gels (10 × 10 cm). Proteins were 
transferred to PVDF membranes and analyzed with the HA antibody.

Immunofl uorescence was performed on methanol-fi xed cells using 
the HA antibody at a 1:400 dilution and an AlexaFluor488 fl uorochrome–
conjugated secondary antibody at a 1:500 dilution (Invitrogen) according 
to procedures described previously (Tam et al., 2003). Images were 
captured on a CCD camera (CoolCam; Cool Camera Co.) and assembled 
using Photoshop CS2 (Adobe).

Yeast two-hybrid assay
The interaction of LF proteins was studied according to procedures detailed 
in the Yeast Protocols Handbook (CLONTECH Laboratories, Inc.). The full-
length coding region of LF2, LF3, and LF4 and a partial LF1 cDNA encoding 
aa 1–330 were cloned into plasmid vectors pGBKT7 (GAL4 DNA-binding 
domain) and pGADT7 (GAL4 activation domain) and tested in the yeast 
strain SFY526. All LF constructs were also tested alone or in combination 
with control plasmids containing murine p53 or SV40 large T-antigen to en-
sure that they did not activate the reporter gene without a specifi c interacting 
partner. Expression of the fusion proteins in transformant yeast strains was 
confi rmed by Western analysis using anti-Myc and -HA antibodies. The inter-
action was quantifi ed by liquid β-galactosidase assay using O-nitrophenyl 
β-D-galactopyranoside as the substrate and was expressed in Miller units.
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