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ABSTRACT Enzymes required for sulfur metabolism have been suggested to gain efficiency by restricted diffusion (i.e.,
channeling) of an intermediate APS2– between active sites. This article describes modeling of the whole channeling process by
numerical solution of the Smoluchowski diffusion equation, as well as by coarse-grained Brownian dynamics. The results suggest
that electrostatics plays an essential role in the APS2– channeling. Furthermore, with coarse-grained Brownian dynamics, the
substrate channeling process has been studied with reactions in multiple active sites. Our simulations provide a bridge for
numerical modeling with Brownian dynamics to simulate the complicated reaction and diffusion and raise important questions
relating to the electrostatically mediated substrate channeling in vitro, in situ, and in vivo.

INTRODUCTION

Channeling is a process by which a reaction intermediate (I)

from the active site of one enzyme (E1) is transported directly

to the active site of a second enzyme (E2) rather than being

dissociated into the bulk phase. Channeling of this kind can

theoretically occur within multifunctional enzymes, tightly as-

sociated multienzyme complexes, or transient enzyme com-

plexes (1,2). Substrate channeling has many advantages over

the free diffusion of reaction intermediates through the bulk

solvent:

Isolating intermediates from competing reactions (3).

Circumventing unfavorable equilibria and kinetics im-

posed by bulk phase metabolite concentrations (4).

Protecting unstable intermediates (5).

Conserving the scarce solvation capacity of the cell (6).

Enhancing catalysis by avoiding unfavorable energetics

of desolvating substrates (7).

Reducing lag transients (times to reach steady-state re-

sponse to a change in substrate concentration upstream

in a coupled reaction path) (8).

Providing new means of metabolic regulation by mod-

ulation of enzyme associations, and increased sensitiv-

ities to regulatory signals (9).

Numerous examples of substrate channeling have been

reported, including DNA replication, RNA synthesis, purine

and pyrimidine biosynthesis, protein biosynthesis, amino-

acid metabolism, lipid metabolism, glycolysis, and the tri-

carboxylic acid cycle, etc. (10–13). Up to now, two different

mechanisms of channeling of the reaction intermediate have

been proposed:

1. Tunneling of reaction intermediates within the protein

matrix, such as NH3 transferring in Escherichia coli
carbamoyl-phosphate synthetase (13).

2. Electrostatic channeling of reaction intermediates across

the protein surface, such as H2folate2– transfer in Leish-
mania major dihydrofolate reductase-thymidylate synthase

(DHFR-TS) (14).

Considering the significance of substrate channeling and

the uncertainties of the experimental studies, computational

study of the channeling process should be helpful. In prin-

ciple, computational studies can provide detailed information

and insights to complement experimental studies. However,

this goal can only be attained when appropriate computa-

tional approaches are employed and the system studied is a

good mimic of the multifunctional enzyme system. Previ-

ously Brownian dynamics has been successfully applied on

several other channeling proteins by Elcock et al., such

as channeling of the �2e charged intermediate across the

molecular surface of the DHFR-TS complexes (15), and

oxaloacetate channeling from the active site of the malate

dehydrogenase to the active site of the citrate synthase (3,16).

Recently, several molecular dynamics studies on ammonia

channeling in the protein matrix have been reported, re-

vealing an open-gate mechanism proposed by Amaro and
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Luthey-Schulten (17) and roles of key residues in bacterial

glucosamine-6-phosphate synthase by Floquet et al. (18).

Sulfate-activating complexes (SACs), essential to life for

metabolic assimilation of sulfur, have been suggested to

utilize channeling. Homo sapiens (type I), Mycobacterium
tuberculosis (type II), and Rhodobacter sphaeroides (type

III) represent three typical SACs (19,20). As shown in Fig. 1,

there are four active sites in the type III SAC dimer (only two

have been labeled in color). The intermediate APS2– is syn-

thesized in the active site of ATP sulfurylase (labeled in

yellow), which transfers the adenylyl moiety of ATP from

pyrophosphate to sulfate to form adenosine 59-phosphosulfate

(APS) (reaction 1). The second active site, labeled in red,

phosphorylates APS at the 39-hydroxyl of the ribose ring to

produce 39-phosphoadenosine 59-phosphosulfate (PAPS)

(reaction 2). Between the two active sites, there is a 75-Å-

long channel that interconnects active-site pairs:

ATP
4�

1 SO
2�
4 ���!kcat=Km

APS
2�

1 P2O
4�
7 ; (1)

ATP
4�

1 APS
2� ���!k9cat=K9m

ADP
3�

1 PAPS
4�

1 H
1
: (2)

The intermediate APS2– synthesized by the active site of ATP

sulfurylase has two possible pathways: one is to diffuse into

the solvent and be reduced by APS reductase; the other is to

diffuse into the APS kinase active site and be phosphorylated.

The channeling titration assays have demonstrated that the

channeling efficiency of the type III complex is quite high

and larger than 95% (19,20).

In this work, we apply our SMOL program to solve the

steady-state and time-dependent Smoluchowski equation for

the APS channeling process (21). The release and phospho-

rylation of APS2– have been coupled by specifying reactive

boundaries for the APS2– channeling. By modifying the

charge on the APS2– ion, we have found that electrostatic

steering is essential for this substrate channeling case. Nearly

99% of APS2– is delivered to the active site of the APS kinase

via channeling, while .30% of APS2– leaks into the solvent

if the APS intermediate is neutral. Furthermore, we have

directly observed the APS steady-state distribution with the

numerical calculations, as well as the APS dynamics along

the channel via the coarse-grained Brownian dynamics. Our

simulation results corroborated the experimental result and

show that the channeling in the type III SAC is via an elec-

trostatic highway crossing the enzyme surface to connect

different catalytic centers. The combined continuum simu-

lation and Brownian dynamics provide clear prototypes for

modeling complicated reaction-diffusion systems.

MATERIALS AND METHODS

The structure of the type III SAC dimer used here was homology-modeled

with the SWISS-MODEL program, as described previously (20). The

structural models reveal a 75 Å-long channel that interconnects active-site

pairs in the complex and that opens and closes in response to occupancy of

those sites. The T-state, which corresponds to the open state, has been studied

in this article.

Electrostatic potential calculations

The electrostatic potentials in the diffusion domain were obtained by solving

the Poisson-Boltzmann equation. APBS 0.5.1 is used to calculate the po-

tentials, which correspond to the potential input W(r) in the time-dependent

Smoluchowski equation (22–24). The partial charges and radii of each atom

in the sulfate activating complex have been assigned using the AMBER99

force field, and the dielectric constant is set as 4.0 inside the protein and 78.0

for the solvent. The solvent probe radius is set as 1.4 Å, and the ion exclusion

layer is set as 2.0 Å. Since the reaction mixture in the experiment contains

SAC (19 nM), ATP (2.0 mM), SO2�
4 (6.0 mM), and MgCl2 (4.0 mM), the

ionic strength has been set at 0.040 M in our simulations. The concentrations

of ATP, SO2�
4 ; and MgCl2 are far higher than that of the SAC, and the

concentration of the released APS2– should be relatively low, therefore, the

ionic strength is approximately constant (20). As in several previous studies

(21,25,26), the diffusion boundary has been set at 20 times the radius of the

biomolecule. The electrostatic potential on the boundary is approximated as

zero. A series of nested potential grids is constructed in a multiresolution

format where higher resolution meshes provide potential values near the

molecular surface while coarser meshes are used away from the molecule.

The dimensions of the finest grid are given by the psize.py utility in the APBS

software package, and the coarsest grid dimensions are set to cover the whole

problem domain plus two grid spacings (to allow gradient calculation) in

each dimension. The setup for the rest of the grid hierarchy is calculated

using a geometric sequence for grid spacing. For the SAC, the finest grid has

dimensions of 125.0 Å 3 107.3 Å 3 110.3 Å with 225, 193, and 193 grid

points in each direction, respectively. This corresponds to a 0.56 Å 3 0.56 Å 3

0.57 Å grid spacing setup.

Adaptive finite element mesh generation

The adaptive tetrahedral meshes were obtained and refined from the inflated

van der Waals-based accessibility data for the complex dimer using the

GAMer software (http://www./fetk.org/gamer) (27). GAMer, recently de-

veloped by Yu et al. (27), is an excellent adaptive finite element mesh tool,

FIGURE 1 Two active sites in the type III SAC dimer and boundary

information. The values J and D represent the SAC domain and whole

spherical domain, respectively. The value V ¼ D � J represents the

diffusion domain. The active site of ATP sulfurylase is in yellow and that of

APS kinase is in red. The values Gb and Gr represent the reflective Neumann

boundary, while the two active sites Gas and Gap are reactive Robin

boundaries.
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which can generate very fine meshes near the active sites, and then label them

as active. For this complex, there are two types of active sites:

1. The active site of ATP sulfurylase, in which APS2– is generated.

2. The active site of APS kinase, in which APS2– is phosphorylated.

Reactive Robin boundaries were defined on these active sites (21,25,

26,28).

The region between the biomolecule and a slightly larger sphere centered

about the molecular center-of-mass was discretized initially by adaptive

tetrahedral meshes. Very fine triangular elements were generated near the

active site gorge, and coarser elements everywhere else. The mesh was then

extended to the entire diffusion domain and the inside of the biomolecule

with spatial adaptivity in that the mesh element size increases with increasing

distance from the biomolecule.

The diffusion of APS2– was modeled as that of a sphere with an exclusion

radius of 8.0 Å and the diffusion coefficient of 1.5 3 103 Å2/ms, which is

similar to the diffusion coefficient of ATP4– in cytoplasm (29).

The Smoluchowski equation with
reaction-determined boundaries

To study the APS2– channeling, we have simulated the SAC dimer with the

time-dependent SMOL solver (http://mccammon.ucsd.edu/smol) (30). The

time-dependent Smoluchowski equation has the form of a continuity equation,

�= � ðaðR~; tÞ=uðR~; tÞÞ1 @pðR~; tÞ
@t

¼ 0 in V;

n̂ � aðR~; tÞ=pðR~; tÞ ¼ k1 for R~ 2 Gas;

pðR~; tÞ ¼ 0:0 for R~ 2 Gap;

n̂ � =pðR~; tÞ ¼ 0 for R~ 2 Gr;

(3)

where aðR~; tÞ ¼ DðR~Þe�bWðR~Þ and uðR~; tÞ ¼ ebWðR~ÞpðR~; tÞ:
Here n̂ is the normal vector of the boundary and k1 is the kinetic coefficient

for the active site of the ATP sulfurylase Gas, while Gap and Gr represent the

active sites of the APS kinase and nonreactive molecular surface. The value

pðR~; tÞ is the distribution function of the ensemble of Brownian particles,

DðR~Þ is the diffusion coefficient, b¼ 1/kBT is the inverse Boltzmann energy,

kB is the Boltzmann constant, T is the temperature, and WðR~Þ is the potential

of mean force for a diffusing particle due to solvent-mediated interactions

with the target molecule. For simplicity, DðR~Þ can be assumed to be constant

at 1.5 3 103 Å2/ms.

According to Table 1, for the APS synthesis in the active site of ATP

sulfurylase, kcat/Km(ATP) ; 104 M�1 s�1. The reaction is not diffusion-

controlled. The concentration of the SACs is far lower than that of ATP or

SO2�
4 ; and the latter concentrations are substantially greater than the corre-

sponding Km values; therefore, the synthesis of APS2– can be modeled as a

zero-order reaction.

Similarly to how we have simulated reactions in the neuromuscular

junction (21), we can define the APS2– current out of the active site as

Ið½APS�; tÞ :¼
Z

Gas

n̂ � aðR~; tÞ=pðR~; tÞdS: (4)

Here Gas denotes the surface of the active site of ATP sulfurylase. The

quantity jðR~; tÞ ¼ n̂ � aðR~; tÞ=pðR~; tÞ can be interpreted as the flux of APS

molecules that are synthesized by the enzyme.

Finally, the reactive boundary in the active site of ATP sulfurylase can be

depicted as

@½APS�
@t

¼ kcat½SAC�tot

1 1 Km=½S�
� Ið½APS�; tÞ: (5)

Because [SO2�
4 ] . [ATP], Km(ATP) ¼ 0.150 mM (Table 1), and [S] ¼ 2.0

mM, then

Km

½S� ¼
0:150

2:0
¼ 0:075:

When the steady state is achieved, ðd½APS�=dtÞ ¼ 0; i.e.,

n̂ � aðR~; tÞ=pðR~; tÞ ¼ k9act;APSkcat½SAC�
tot
¼ k1: (6)

Here k9act,APS is defined as the APS reaction coefficient, which can be

determined by trial-and-error sampling.

For the phosphorylation reaction in APS kinase active site, the kcat/

Km(APS) reaches nearly 109 M�1 min�1. Therefore, the reactive boundary

can be described as the reactive Dirichlet, i.e., [APS] ¼ 0.0.

Coarse-grained Brownian dynamics simulations

The Brownian dynamics simulation algorithm, together with a coarse-

grained model (CGBD), was used to study the motions of the APS molecules

in a discrete representation; this is complementary to the continuum repre-

sentation. The CGBD simulation method is described in several publications

(31,32). In this model, the amino acids are represented by one bead placed at

the Ca of each residue (33). Each amino acid is assigned an effective radius

(34), and 61e charge is assigned to a charged residue. For APS2–, each

adenine, ribose, and phosphosulfate group is represented by one bead, and

�1e is assigned to the latter two beads. An effective radius of each bead is

assigned based on the size of each functional group, which is 3.0 Å, 2.5 Å,

and 2.5 Å for adenine, ribose, and phosphosulfate groups, respectively. Since

the system has �22e net charge, we randomly distributed 22 Na1 ions

around the protein. The protein is held rigid, and the motion of each bead of

APS is simulated with the BD algorithm of Ermak and McCammon (35) and

Shen et al. (36). Although the slower protein fluctuations might play the role

in the channeling process, the effect of conformational changes of the protein

was not taken into account in this study (37,38). The diffusion coefficient

used in the algorithm to move a bead was computed by the Stokes-Einstein

equation, and the viscosity of water was set to 1 cp (T ¼ 293 K).

In our coarse-grained model, the beads of APS are linked by virtual bonds

and a bond angle; Coulombic and van der Waals interactions are applied

for intermolecular interactions (31–33). A Lennard-Jones type functional

form is used for van der Waals interactions, Uvdw ¼ 0:5½ððri1rjÞ=ðrijÞÞ8 �
1:5ððri1rjÞ=ðrijÞÞ6�; where ri and rj are the effective radii of beads i and j,

respectively. The Coulombic interaction is approximated by Uelec ¼
ðqiqj=eijrijÞ; and a distance-dependent dielectric coefficient (eij ¼ 4rij) is

employed to avoid unrealistic in vacuo Coulombic interactions (39,40). APS2–

was placed in the first active site and a brief BD run was performed to allow

APS2– to move around the active site. The collected snapshots were used to

initiate multiple BD runs to study binding pathways of APS2– as it approached

the active site of APS kinase. The simulations used a 50 fs time step, and were

run for 3–5 ms. A simulation may be terminated if APS2– reacts at the APS

kinase site. The modeled APS2– is flexible during the simulation, but their

conformations do not vary significantly. As a result, we computed a distance

between the central bead of APS2– and the center-of-mass of its bound state in

TABLE 1 Type III sulfate-activating complex

initial-rate parameters

ATP sulfurylase

Km(mM) for ATP 150(30)

Km(mM) for SO4 1000(70)

kcat(min�1) 80(2)

APS kinase

Km(mM) for ATP 24(0.7)

Km(mM) for APS 0.3(0.01)

kcat(min�1) 260(4)
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the crystal structure to determine whether APS2– is close to the APS kinase site.

If the distance is ,10 Å, then the APS2– reacts at the APS kinase site. It is also

assumed that APS2– will not diffuse back to the protein and will be reduced by

APS reductase in the solvent when it moves .50 Å away from the center-of-

mass of the protein, thus a simulation may be stopped based on this criterion.

RESULTS AND DISCUSSIONS

Electrostatic steering in channeling

Before the channeling process simulation, the two reactive

boundaries on the molecular surface of the SAC dimer need

to be set up. Following Song et al. (25) and Tara et al. (41),

each active site of ATP sulfurylase and APS kinase was based

on multiple spheres placed on some atoms of the bound

APS2–. For the active site of ATP sulfurylase, three spheres,

which are centered at N7 atom of the purine ring, C39 of the

ribose and the sulfur atom with 6, 8, and 6 Å radii, are placed

on the APS2– ligands in the crystal structure of the complex,

respectively. For each active site of APS kinase, two spheres

were centered at N1 atom of the purine ring and phosphorus

atom with 8 Å and 9 Å radii, respectively. The actual reactive

surface is then simply that portion of the new molecular

surface due to the intersection of added spheres with mole-

cule (Fig. 2).

The channeling process was first investigated with our

steady-state Smoluchowski Solver (21). We have found that

electrostatic steering is critical for channeling in the SAC

dimer. Fig. 3 plots the calculated channeling efficiency (de-

fined as the percentage of APS2– that reaches the APS kinase

active site via channeling rather than escaping into bulk so-

lution) as a function of net charge of the APS2– intermediate.

At the experimental ionic strength (;40 mM), channeling

efficiency is nearly 100% for the intermediate charge of�2e.

Importantly, the channeling efficiency decreases to,60% for

an uncharged intermediate. Our simulations suggest there-

fore that the high channeling efficiency observed experi-

mentally does not result simply from the proximity of the

two active sites: electrostatic effects appear necessary to ac-

count for efficient transfer (2,3,15,16). Our coarse-grained

Brownian dynamics studies further demonstrated this fact. In

our simulations, .90% of intermediates arrive at the APS

kinase active site via channeling for �2e charged intermedi-

ates. There is still ;50% channeling even for the neutral case.

Comparing with the APS concentration distribution for

different intermediate charges (Fig. 4), the average APS

concentration in the solvent is nearly 400 times higher for the

neutral APS0 than that for APS2–. This fact indicates that

electrostatic effects can constrain the APS2– ions in the

channel, which plays an essential role in efficient diffusion of

APS between the two active sites.

FIGURE 2 The active sites of ATP sulfurylase and APS

kinase in the SAC dimer: (a) ATP sulfurylase; and (b) APS

kinase.

FIGURE 3 Dependence of channeling efficiency on the intermediate

charge at 40 mM ionic strength.
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Furthermore, the time-dependent SMOL solver has been

implemented to observe the channeling process along the

simulation time (21). The influx of APS2– in one active site of

the APS kinase is shown in Fig. 5. It takes ;1 ms for the

whole system to reach the steady state, while the mean dif-

fusion time for an APS2– diffusion through the tunnel is

;200 ns. The average concentration spilling out of the active

site of ATP sulfurylase gradually increases to ;10�9 nM to

reach the steady state. Moreover, comparing with APS0, the

influx of APS2– is three orders-of-magnitude higher, which

substantially indicates the electrostatic steering during the

channeling process.

Intermediate concentration distribution along
the channel

To clearly depict the detailed intermediate distribution during

the APS2– channeling, the channel is divided evenly into 80

sections, 1 Å in length, along the line through the centers of

the active sites of ATP sulfurylase and APS kinase (Fig. 6).

The distribution probability of ions in each section for 78

independent CGBD simulations with different random seeds

is plotted as shown in Fig. 7. The active site of the ATP

sulfurylase is at zero distance. Three prominent peaks be-

tween the two active sites are observed in the histogram. The

first peak is ;10 Å away from the center of the active site of

the ATP sulfurylase, while the other two peaks are ;22 and

30 Å away. Between 35 Å and 45 Å axial distance, very few

APS2– ions are observed. Direct observation from the CGBD

trajectories indicates that APS2– ions do not smoothly flow

into the APS kinase active site, but are absorbed abruptly. For

example, during a 2 ms simulation, APS2– ions spent ;0.5 ms

near the axial distance ;30 Å, but they only spent ,0.1 ms

near the axial distance 40 Å. Furthermore, Fig. 8 draws the

distribution of the center of APS2– ion every 50 time steps. It

must be noticed that most of the APS2– ions during the

channeling are accumulated in the areas around several

a-helices, in which positively charged residues such as Lys1

and Arg1 are dominant. This observation also is consistent

with the electrostatic potential distribution on the solvent-

accessible surface (Fig. 9). The distribution of APS2– along

the channel reflects the positive electrostatic potential. This

fact strongly supports the idea that APS2– is transferred by

electrostatically steered channeling. After the synthesis of

APS2– in the ATP sulfurylase active center, APS2– diffuses

into the channel due to the positive electrostatic potential at

;10 Å axial distance. The APS2– can accumulate between

;20 and 35 Å axial distance and then moves abruptly

through a somewhat less attractive region into the APS kinase

active site. If the APS molecule is neutral, the APS0 dis-

tribution in the channel is quite different (Fig. 10). There

are more APS0 molecules leaking into the solvent near the

active site of ATP sulfurylase and very few entering into the

active site of APS kinase.

The phosphorylation reaction in the APS kinase active

site is nearly diffusion-controlled, while the synthesis of

APS2– is slower and essentially zero-order due to the rela-

tively high concentrations of ATP4– and SO2�
4 :Therefore, the

FIGURE 4 The intermediate concentration distribution

in the solvent around SAC. Blue indicates extremely low

concentration; cyan represents the medium low concentra-

tion and red the high concentration.

FIGURE 5 The influx of APS2– and APS0 in one active site of the APS

kinase along the simulation time: (a) APS2– and (b) APS0.
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concentration of APS2– in the channel should not be negli-

gible. By solving the time-dependent Smoluchowski equa-

tion, the distribution probability of APS2– is also plotted for

different simulation times (Fig. 11). Similarly with our

CGBD results, two relatively prominent peaks are observed

between 20 and 35 Å axial distance. The first peak corre-

sponding to the CGBD simulation is not differentiated be-

cause continuum modeling describes the cumulative effect of

APS2– channeling, while CGBD only describes the pathway

of one single APS2–. Interestingly, the relative height of the

peaks between the two active sites is similar for both the

continuum modeling and CGBD simulations. It is worth

noting that our coarse-grained model does not have explicit

water molecules, so the model may not accurately represent

the desolvation penalty. For systems that have tightly bound

waters, our current model may need modifications to capture

the solvent effects more accurately.

We also studied the neutral APS0 in CGBD simulations; as

in the continuum modeling, the distribution of APS has

substantial changes from that of APS2– (Fig. 12). There are

more APS0 molecules diffusing toward the solvent rather

than the channel. For those in the channel, very few can enter

the APS kinase active site. Therefore, no APS peak is shown

corresponding to the APS kinase active site.

FIGURE 6 Eighty-one planes divide the channel into 80 sections through

the active center of ATP sulfurylase to the active center of APS kinase. The

average width of the channel is ;26 Å (20).

FIGURE 7 A dwell histogram indicates the region of the channel where

APS2– ions preferentially reside. The channel is divided into 80 sections, and

the average probability in each slice is counted during 78 independent

CGBD simulations of 2 ms. The standard deviation is represented with the

line.

FIGURE 8 The APS2– distribution in the channel in one of CGBD

simulations. The blue represents one monomer and the green the other

monomer. The yellow represents where the center of APS2– resides in 2 ms

simulation. The cyan and white spheres represent Lys1 and Arg1, respec-

tively.

FIGURE 9 The electrostatic potential on the surface of the SAC complex.

The red and blue represent the negative and positive potentials larger than

1 kT/e, respectively.
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CONCLUSION

In this study we have elucidated the channeling behavior of

the intermediate APS2– in the type III SAC complex using

both the continuum modeling and coarse-grained Brownian

dynamics approaches, thus gaining insight into the chan-

neling mechanism at the continuous and discrete levels.

First, by solving the steady-state Smoluchowski equation,

the channeling efficiency is observed to substantially depend

on the net charge of the intermediate. Increasing the net

charge causes weakened interaction between the APS2– and

SAC complex and as a consequence, reduces APS channel-

ing efficiency (Fig. 3). The simulations suggest that there is

only ;50% transferring through channeling for the neutral

intermediate, while nearly 99% for the APS2–. This result

is consistent with the previous experimental studies, which

show 395% channeling in the type III complex (20).

Moreover, the APS2– and APS0 influx of the APS kinase

active site has been compared by solving the time-dependent

Smoluchowski equation. This indicates that the influx of

APS0 is three orders-of-magnitude lower than that of APS2–

(Fig. 5).

Second, we have explored the detailed channeling profile

with the CGBD. The results are consistent with our contin-

uum simulations. Furthermore, the CGBD results imply that

the positively charged residues along the channel might play

an important role in guiding the APS2– into the active center

of the APS kinase. The distribution of APS2– is relatively

more averaged in the channel than the distribution of APS0. It

must be noted that the APS0 can seldom enter the active site

of the APS kinase, which indicates that the positive residues

such as Lys1 and Arg1 around the APS kinase active site are

essential for the phosphorylation reaction (Eq. 2). In addition,

it must be noted that there are at least 14 residues carrying

positive charges around the active pocket of the APS kinase

(Fig. 8 or 10). Any mutation to the neutral residues might

affect the APS2– channeling efficiency.

By comparing with the previous computational studies on

the DHFR-TS (16), we have observed a similar phenomenon

in this type III SAC complex. Our theoretical studies dem-

onstrate that the APS2– may be channeled across the ‘‘elec-

trostatic highway’’ between the two active sites of the ATP

sulfurylase and APS kinase in the type III SAC complex (42).

The electrostatic interaction between the intermediate and the

SAC not only restricts the intermediate to the channel, but

decreases the channeling barrier. Furthermore, the electro-

static interaction guiding the intermediate into the APS

kinase active site perhaps enhances the catalytic efficiency of

the phosphorylation of APS2–. In addition, this study did not

FIGURE 11 The APS2– axial distribution during the channeling process

simulated with the SMOL solver. In each section, only the APS2– ions within

15 Å from the axis were counted. When t ¼ 0, 10, 50, 500, and 3000 ns,

there are 39,497, 72,695, 75,611, 77,031, and 77,178 APS2– ions released

from one ATP sulfurylase active site.

FIGURE 10 The APS0 distribution in the channel in one of CGBD simula-

tions. The blue represents one monomer and the green the other monomer. The

yellow represents where the center of APS2– resides in 2 ms simulation. The

cyan and white spheres represent Lys1 and Arg1, respectively.

FIGURE 12 A dwell histogram indicates the region of the channel where

the neutral ligands preferentially reside. The channel is divided into 80 sec-

tions, and the average probability in each slice is counted during 69 inde-

pendent CGBD simulations of 2 ms. The standard deviation is represented

with the line.
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include the slower protein fluctuations, although, according

to the experiment in Sun and Leyh (20), ‘‘open’’ and

‘‘closed’’ states exist. Our future work will try to clarify the

relationship between the protein conformations and the ki-

netics of the APS intermediate (43,44).
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