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Abstract

Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical
heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of
developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of
relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors,
have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to
other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data,
such data is often not available compared to the more widely available gene expression data. In this study, we have
developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.
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Introduction

Glioblastoma Multiforme (GBM) is a deadly brain tumor with

few effective therapies. Identification of the underlying pathogenic

mechanisms involved in the initiation and progression of this

tumor is critical for developing more effective treatments. Recent

studies have demonstrated the profound genetic and molecular

heterogeneity of GBMs. This molecular heterogeneity complicates

the identification of the core elements within the cellular signaling

network of any given GBM thereby limiting out ability to offer

targeted therapies for a specific tumor.

Recent developments in genomic technology (microarray, next

generation sequencing etc.) have enabled a large number of GBMs

to be genetically characterized at unprecedented levels of detail.

Although such studies have revealed the heterogeneity between

GBMs, they have also allowed the identification of subgroups of

tumors that are more closely related than others. A number of

recent studies using supervised and unsupervised analyses have

been published stratifying GBMs into similar subgroups based on

mRNA expression profiles [1,2,3,4].

Our understanding of the epigenome has improved substantially

in the last decade. In particular, epigenetic biomarkers such as

DNA methylation and their effects on tumor biology have been

analyzed in a number of GBM studies [5]. With the recent

development of high-resolution microarray platforms, it is now

possible to measure the level of methylation across an entire

genome. Two such platforms are the Illumina Infinium 27 k and

450 k platforms. These platforms report the methylation ratio

based on methylated and unmethylated probe intensities. The

main difference between these platforms is the number of

methylation sites included. These platforms have been shown to

have high concordance with each other and with bisulfite-

sequencing [6,7,8].

The ability to acquire whole genome-wide DNA methylation

data has opened up the possibility for its use as an alternative

classification methodology, as demonstrated recently in GBM [9].

In this study, the authors describe two clearly separated clusters,

defined as G-CIMP positive and G-CIMP negative, with the G-

CIMP positive group comprising less than 10% of all GBM

samples. As a group, patients with G-CIMP positive GBMs tended

to be younger, have fewer genomic alterations and show better

survival than G-CIMP negative patients. A predominant genetic

feature of G-CIMP positive GBMs is the frequent mutation of

IDH1, which is rarely found in G-CIMP negative GBMs.

Recently, IDH1 mutations have been associated with the altered

methylation profiles in G-CIMP positive gliomas [10].

Secondary to the fact that the G-CIMP status of GBMs

identifies a group of patients with genetically distinct tumors with

very different clinical outcomes, there is an increasing need to

identify such tumors clinically. Unfortunately few clinical or even

research laboratories generate whole genome methylation data on

tumor specimens making the identification of G-CIMP tumors

impossible. By contrast, an increasingly larger number of

laboratories are generating mRNA expression data from their

clinical tumor specimens. In this study, we demonstrate how a

computational algorithm we have devised allows one to identify
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the G-CIMP phenotype of any given GBM at nearly 100%

accuracy using only mRNA expression data.

Materials and Methods

Samples
We used public TCGA (http://cancergenome.nih.gov/) and

REMBRANDT (http://caintegrator-info.nci.nih.gov/rembrandt)

data repositories as our primary source of samples. For

methylation-based validation, we used twenty-one GBMs and

one non-tumor brain sample. Twenty-one GBM samples were

obtained from the prospective NCI-sponsored Glioma Molecular

Diagnostic Initiative (GMDI), which were provided as snap frozen

sections. Pathological diagnosis of these samples was determined

by the local institutional neuropathologist and centrally reviewed

by two NIH neuropathologists who were blinded to the original

diagnosis. Only tumors that met the criteria of having a consensus

pathological diagnosis from the NIH neuropathologists were

utilized for our analyses. The one non-tumor sample was obtained

from a medically indicated therapeutic temporal lobe resection

from an NIH patient with refractory epilepsy.

Methylation Experiment
We isolated DNA from cell pellets and fresh frozen tumor tissue

using the QIAmp DNA micro kit (Qiagen). One microgram of the

DNA was bisulfite converted and processed on Human Methyl-

ation450 BeadChips (Illumina) using the Infinium HD Methyla-

tion Assay as described previously [11]. We interrogated 485,000

individual CpG sites per sample at single-nucleotide resolution.

Image data were extracted and analyzed using the GenomeStudio

v2010.3 methylation module (Illumina).

Data Sets
TCGA methylation data set. We used level-2 methylation

data from Illumina Infinium 27 k and 450 k platforms. For the

27 k methylation data we filtered 23,487/27,578 sites with no

missing values on non-sex chromosomes. Similarly there were

486,412 methylation sites with no missing values retained in 450 k

methylation data. We found 22,270 of these methylation sites to be

shared between 27 k and 450 k platforms.

Methylation data sets from both platforms based on common

methylation sites were then filtered to 1509 sites which had a

standard deviation of 0.2 or greater as in [9]. There were 368

samples and 1509 methylation sites in our final TCGA methyl-

ation data set.

TCGA expression data set. We imported 413 Affymetrix

U133A samples (raw data) using RMA from the TCGA portal

(RMA background correction, quantile normalization, median

polish). There were 403 GBM and 10 normal brain samples in this

data set. We performed unsupervised clustering based on 1670

probe sets (std. dev..1) to check if any GBM samples cluster with

normal samples due to possible normal tissue contamination.

Three samples clustered with normal brain samples and were

excluded from data set (Figure S1).

NOB expression data set. We used gene expression data for

201 GBM and 31 normal brain samples in the NOB database.

Most of these samples have been publicized in REMBRANDT

public repository previously [12]. These samples were generated

using Affymetrix U133 plus 2.0-microarray platform using the 1-

cycle protocol. We normalized the data using RMA (RMA

background correction, quantile normalization, median polish).

We performed unsupervised clustering on 2178/54,675 high

variation (standard deviation.1) probe sets. We detected 27 GBM

samples, which clustered with normal samples. These samples

were excluded due to likely normal brain contamination (Figure

S2).

NOB methylation data set. Raw methylation data imported

using GenomeStudio Software (include ref version). Methylation

sites, which have detection p-value less than 0.05 for all samples,

have been retained.

Batch Removal
We used a mixed model ANOVA based algorithm by Partek

6.6beta (PartekTM software (Partek Inc., St. Charles, MI)) to

remove the batch effects between TCGA and NOB gene

expression data sets. To measure the efficiency of batch effect

removal, we used gene expression data for normal brain samples.

We assumed that normal brain samples in both data sets would

cluster together in a combined data set if the batch effect removal

were successful.

There were two variables within the ANOVA model that were

used for batch removal. These variables are sample origin (TCGA

or NOB) and tissue origin (GBM or normal). We first showed that

normal brain samples from two different data sources cluster

together after batch effect removal; from this we concluded that

the batch effect removal was successful. We then excluded non-

tumor samples from both data sets and applied batch effect

removal on sample origin to obtain final data set.

Hierarchical Clustering (HC) and Principle Component
Analysis (PCA)

We used Partek Software (6.6 beta,Partek Inc., St. Charles, MI)

to perform HC and PCA. Average linkage and Euclidean distance

were used for all HCs. Expression data was standardized by

sample columns prior to performing the HC, although this was not

done for the methylation data. PCAs were performed using

correlation dispersion matrix and normalized eigenvector scaling.

G-CIMP Prediction Based on Expression Data
We generated five prediction models, which differ only by the

use of the top number of differentially expressed probe sets (10, 25,

50, 100 and 200). All models used nearest neighbor algorithm,

which classifies unknown samples based on the closest known

sample. Euclidean distance was used as the distance measure. We

used the Partek implementation of this algorithm. Probe sets

included in these five models are provided as supplementary files

(Table S1, S2, S3, S4, S5).

Results

Unsupervised Clustering of TCGA Samples Based on
Methylation Data

We obtained TCGA methylation data for 368 GBM samples

and performed unsupervised clustering to identify G-CIMP status

of these samples as described in [9] (see Materials and Methods).

We applied partition clustering with different number of clusters

(2–5) and obtained the best performance (Davies-Boudin Score) by

clustering into two groups (Figure S3).

We labeled the larger cluster (338 samples) as G-CIMP negative

and the smaller cluster (30 samples) as G-CIMP positive (Figure 1).

TCGA recently released a Data Freeze package, which includes

the G-CIMP calls (TCGA Analysis Working Group Data Release

Package, 9/3/2011, https://wiki.nci.nih.gov/display/TCGAM/

Datasets+GBM). 365 of the 368 samples we analyzed had an

existing G-CIMP classification in the TCGA package. Out of the

365 samples, only four samples were found to have contradicting

labels, i.e. they are labeled as G-CIMP positive in TCGA and as

G-CIMP Prediction for GBM Using Expression Data
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G-CIMP negative in our list (Table 1). According to our

unsupervised analysis, these samples are clearly clustered with

G-CIMP negative samples (Figure S4). Thus, we decided to keep

these samples in our subsequent analyses.

Prediction of G-CIMP Calls of TCGA Samples from
Expression Data

There are many samples in the TCGA repository where mRNA

expression data is available but more comprehensive genome-wide

methylation data (27 k or 450 k) is not available. We hypothesized

that the G-CIMP calls of these GBM samples could be predicted

based on gene expression data. To test this hypothesis, we used the

gene expression data set for samples with available G-CIMP calls

(based on methylation) as the training data. After training five

prediction models, we predicted the G-CIMP status of the subset

of TCGA samples that had available expression data but not

methylation data. The difference between these five models was

the use of either the top 10, 25, 50, 100 or 200 differentially

expressed probe sets between the G-CIMP positive and negative

groups, respectively.

We obtained expression profiles of 403 GBMs and ten normal

brain samples using the Affymetrix U133A platform from the

TCGA data repository. We performed a principal component

analysis and observed that three of the GBM samples cluster with

normal brain samples (Figure S5). These samples were eliminated

in our analysis due to possible contamination with normal brain

tissue.

The G-CIMP status of 218 out of 400 GBM samples was

available from methylation-based classifications (last section).

Before predicting the G-CIMP status of the remaining samples,

we used samples with available G-CIMP data to measure the

prediction performance on expression data by applying a method

called two-fold cross validation. Briefly, we divided the sample set with

known G-CIMP status into two groups and labeled one of these

groups as the training set and the other group as the test set. We

developed a prediction model based on the expression data of the

training set and applied this model on the test set (see Materials

and Methods). Then, we compared the real labels with predic-

tions. We repeated this operation by changing the training and test

sets. We obtained 100% prediction accuracy rate in the cross-

validation (Table S6).

Figure 1. PCA plot for TCGA samples based on methylation data (Blue: G-CIMP positive, red: G-CIMP negative samples). 1509
methylation sites (std. dev. .0.2) have been shown.
doi:10.1371/journal.pone.0047839.g001

Table 1. Comparison of TCGA G-CIMP labels and our G-CIMP calls.

TCGA G-CIMP positive TCGA G-CIMP negative TCGA UNKNOWN

Predicted G-CIMP positive 30 0 0

Predcited G-CIMP negative 4 331 3

doi:10.1371/journal.pone.0047839.t001

G-CIMP Prediction for GBM Using Expression Data
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After validating the performance of our prediction algorithm,

we used it to predict the G-CIMP status of the subset of TCGA

samples that did not have methylation data. Following our

prediction, there were 30 G-CIMP positive and 370 G-CIMP

negative samples in the TCGA expression data set.

Prediction of G-CIMP Calls Using an Alternate Data Set
(REMBRANDT)

In order to evaluate the robustness of our prediction algorithm,

we obtained gene expression profiles of 174 GBM samples in the

NOB/REMBRANDT database after contamination filtering (see

Materials and Methods). We combined the NOB expression data

set and the TCGA expression data set using 22,277 common

probe sets. We observed a significant batch effect between TCGA

and NOB gene expression data sets (Figure S6, Figure S7). This

result is expected because the TCGA data set is based on the

Affymetrix U133A platform using the IVT labeling protocol, while

the NOB data set is based on the Affymetrix U133 Plus 2.0

platform and 1-cycle target labeling protocol (www.affymetrix.

com). We removed this batch effect by using an ANOVA based

batch effect removal algorithm (see Materials and Methods).

After batch effect removal, the separation between TCGA and

NOB samples diminished and normal brain samples from both

data sets clustered together which shows the adequacy of the batch

effect removal (Figure S6, Figure S7 versus Figure S8, Figure 2).

We constructed our training and test sets as follows (Figure 3):

we imported and normalized CEL files using RMA for each data

set independently (400 TCGA samples and 174 NOB samples)

and selected only the common 22,227 probe sets. We repeated the

batch effect removal step between TCGA and NOB data sets

without including the normal brain samples. We assumed that the

batch effect removal would be more successful without normal

samples as the data sets become more homogeneous without

normal samples. We assigned the TCGA data as the training set

and the NOB data as the test set.

We then built five different prediction models based on the

training set (i.e., TCGA dataset) using the top 10, 25, 50, 100, and

200 differentially expressed probe sets between G-CIMP positive

and negative samples. We repeated the two-fold cross-validation

within the TCGA expression data set. The two-fold cross-

validation in the previous section would not suffice since (i) earlier

cross-validation was within only 218 GBM samples, and (ii) the

gene expression data set had been manipulated substantially with

the batch effect removal. The cross-validation results achieved

99.75% accuracy for all models.

We applied all five models on NOB samples to predict their G-

CIMP status. Five models agreed on 10 samples as G-CIMP

positive and 159 samples as G-CIMP negative. There was no

consensus for the remaining five samples, which were labeled as

Non-Consistent (NC).

Clinical Validation
It has been previously demonstrated that there are significant

age and survival differences between patients with G-CIMP

positive and G-CIMP negative GBMs [9]. In our analysis, the

median age for TCGA G-CIMP positive GBMs was 36 compared

to the median age for TCGA G-CIMP negative GBMs that was

59 (t-test p-value ,1.628e-15). Similarly, the median age for the

predicted NOB G-CIMP positive GBMs was 38 compared to

56 years for the median age of G-CIMP negative GBMs (t-test p-

value ,2.1968e-05) (Figure 4).

Figure 2. PCA plot of TCGA and NOB samples after batch effect removal. As expected, normal brain samples are clustered together, and
TCGA and NOB samples are not separated. We used high variation 1482 probe sets (std. dev. .1) in combined data set.
doi:10.1371/journal.pone.0047839.g002

G-CIMP Prediction for GBM Using Expression Data
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The calculated median survival for TCGA G-CIMP positive

GBMs in our analysis was 840.5 days whereas the median survival

for TCGA G-CIMP negative GBMs was 327 days (Wilcoxon-

Gehan p-value ,1.10279e-05). Consistent with these data, the

calculated median survival for the predicted G-CIMP positive

NOB samples was 1121 days whereas median survival for

predicted G-CIMP negative NOB samples was 470 days

(Wilcoxon-Gehan p-value ,0.0103) (Figure 5). These results show

that, as expected, predicted NOB G-CIMP positive patients were

younger and survived significantly longer than predicted NOB G-

CIMP negative patients. Moreover, the median age and survival of

NOB G-CIMP positive/negative and TCGA G-CIMP positive/

negative samples are very similar, respectively.

Validation of G-CIMP Prediction by Methylation Assay
We used the Illumina Human Methylation 450 K platform to

generate methylation data on a subset of the NOB samples to

validate our predictions. We selected nine G-CIMP positive

samples, seven G-CIMP negative samples, all five NC samples,

and one normal brain sample for the methylation assays (see

Materials and Methods).

We combined our methylation data set with the TCGA

methylation data set methylation data from four normal brain

samples provided by USC Epigenome Center (http://epigenome.

usc.edu). In this combined data set, 1438 out of 1509 methylation

sites passed through our detection filter.

First, we checked if there was a batch effect since the data sets

came from different groups (i.e., NOB vs. TCGA). We observed

that normal samples clustered tightly in the combined data set

suggesting that the batch effect between data sets was minimal

(Figure 6). After demonstrating the lack of a significant batch effect

in the combined data set, we compared expression-based G-CIMP

labels to methylation-based G-CIMP labels. We observed that in

general, predicted G-CIMP positive samples clustered with TCGA

G-CIMP positive samples and predicted G-CIMP negative

samples clustered with TCGA G-CIMP negative samples based

on methylation data (Figure 6). We then classified our methylation

samples into G-CIMP subtypes using the TCGA samples as the

training set, using nearest neighbor algorithm, Euclidean distance

and all 1438 methylation sites. We found 100% accuracy in a two-

fold cross validation of TCGA GBM samples. We found only one

mis-prediction in our samples; one G-CIMP negative sample (on

methylation data) had been predicted as G-CIMP positive (on

expression data).

We noticed that the mis-predicted sample and a majority of the

NC samples fell between the two G-CIMP methylation clusters

(Figure 6). In the original TCGA methylation data set, the two G-

CIMP clusters were clearly separated with no samples showing an

intermediate methylation profile. This made us suspicious about

these samples that fell between the G-CIMP positive and G-CIMP

negative clusters. We reevaluated twelve NOB samples based on

clinical reports (Figure 7). Six of these twelve samples were

ambiguous (5 NC and one mis-predicted) and remaining six were

non–ambiguous. Five of the six non-ambiguous samples were

GBMs and remaining one was Anaplastic Astrocytoma. On the

other hand, all six ambiguous samples were discovered not to be

GBMs. Thus, the difficulty in classifying some of the samples was

determined to be related to poor sample labeling. Thus, our

prediction algorithm was found to have 100% accuracy for

correctly labeled GBM samples.

Of interest, we observed many NCs when we tried to classify

non-tumor samples into G-CIMP subtypes. Thus, it appears that

our classification system has difficulty in characterizing non-GBM

pathology. This probably reflects the fact that G-CIMP biology is

unique to GBMs and cannot be applied to other tumor types and/

or normal tissue.

Methylation Status and Biological Interpretation of the
Genes in the Prediction Models

In order to evaluate the methylation status and perform

functional enrichment analysis for the genes in our prediction

models we first analyzed the genes in prediction models in terms of

methylation difference between G-CIMP positive and G-CIMP

negative subtypes. Next, we analyzed the genes in the prediction

Figure 3. Data processing flowchart for predicting G-CIMP calls of NOB samples from TCGA gene expression data.
doi:10.1371/journal.pone.0047839.g003

G-CIMP Prediction for GBM Using Expression Data
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models in terms of methylation-expression correlation. Finally, we

uploaded the genes in our prediction models to Ingenuity Pathway

Analysis (IPA) to inquire whether these genes show enrichment for

specific biological processes.

Our prediction models used probe sets, which represent mRNA

expression. By contrast, methylation data is based on the

methylation ratio of a site on a given gene. We combined these

two data types at the gene level. We converted the probe sets to

gene names and generated six categories based on the existence of

genes in our prediction models as follows. If a gene is included in

our first prediction model with ten probe sets, it is assigned in the

first category, which is denoted by top10. If it is not in the first

prediction model but in the second prediction model, which has

twenty-five probe sets, it is in the second category, which is

denoted by top11–25. Similarly, we created three more categories

denoted by top26–50, top51–100 and top101–200. If a gene is not

included in any of the five prediction models we used, it is assigned

to the last category, which is denoted by not-in-lists.

After defining the categories, we compared the methylation

status for the genes in each category. First, we calculated the

median methylation for each methylation site, for G-CIMP

positive group and G-CIMP negative group. Accordingly, we

used the Beta-values in TCGA methylation data set we had

created (Beta values roughly represent the ratio between methyl-

ated and unmethylated probe intensities.). Then, we measured the

absolute median methylation difference by subtracting these

numbers and taking the absolute value. Next, we compared the

genes in six categories in terms of absolute median methylation

difference. We observed that genes we used in prediction models

indicated higher methylation difference compared to genes that

are not included (Figure S9).

We next compared the methylation-expression correlations

among the six categories by computing the methylation-expression

Pearson correlation for each methylation site using Beta-values

and TCGA Level-3 expression data (Agilent Platform). When we

compare the methylation-expression correlations for the genes in

the six categories, we observed a strong negative correlation for the

genes in our prediction models (Figure S10). These results

demonstrate that selected genes have clear methylation differences

and these differences are reflected on gene expression.

We next used IPA to assess the functional enrichment for the

genes in our prediction models. We identified the genes that are

included in the prediction model with 200 probe sets and uploaded

these genes to IPA along with the gene names and expression fold

changes between G-CIMP positive and G-CIMP negative samples

using TCGA expression data set. IPA reported only one significant

function in its functional enrichment module, that being an

increase in ‘proliferation of cells’ associated genes in G-CIMP

negative GBMs. This result is consistent with the poor survival rate

of G-CIMP negative GBM patients. In the transcription factor

activity module, IPA identified KDM5B (lysine (K)-specific

demethylase 5B) as the most significantly altered transcription

factor. According to IPA report, KDM5B is activated in G-CIMP

positive samples. It is interesting to observe a demethylase with

increased activity in G-CIMP subtype considering the altered

methylation profile in this subtype [10].

Figure 4. Box-Whisker plot of age of NOB and TCGA G-CIMP positive and G-CIMP negative samples. Limits of box and whiskers plot are
10%, 25%, 50%, 75% and 90%.
doi:10.1371/journal.pone.0047839.g004

G-CIMP Prediction for GBM Using Expression Data
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Importance of Proper Subtyping
Although the literature is replete with studies finding correla-

tions between patient clinical outcome (e.g. survival) and specific

genotypes (e.g. gene expression, chromosomal number variations),

the majority of such studies have treated GBM as a homogeneous

disease. This approach might have led to false interpretations if

different genomic subtypes of GBM have different clinical

outcomes. For instance, it is possible that some of these

‘‘survival-specific’’ genes in GBM could be enriched for in G-

CIMP tumors. Similarly, a disproportionate number of patients

with G-CIMP positive or negative tumors could influence the

outcome of a clinical trial and be falsely interpreted as a

therapeutic effect.

To measure the effect of G-CIMP status on survival, we ran a

Cox-regression for all genes with and without the G-CIMP

samples. We found 200 and 3 survival-correlated probe sets in

TCGA (n = 391) and the NOB data (n = 134), respectively with a

FDR,0.05 (Benjamini-Hochberg step-up multiple test correction

[13]). We could not find any survival-correlated probe sets in both

data sets after removing G-CIMP positive samples. This suggests

that all survival-related genes we identified were related to their

disproportional representation in the G-CIMP tumors and the

overall improved survival of this group of patients.

Using less stringent criteria (p,0.05) to measure the G-CIMP

effect on survival, we found by a Cox-regression analysis 3258

probe sets related to survival for all samples with survival

information (n = 391) in the TCGA data set. By contrast, there

were only 986 probe sets related to survival when G-CIMP

positive samples were excluded (n = 361, 489 probe sets are shared

between two lists). Similarly, using NOB data we found 2377

probe sets related to survival for all samples (n = 134) but only

1142 probe sets for G-CIMP negative samples (n = 123, 937 probe

sets are shared between two lists).

These results show that more than 84% of the survival-related

probes sets in the initial TCGA dataset are changed when G-

CIMP positive samples are removed (60% in the NOB dataset).

Moreover the number of survival-related probe sets identified is

reduced by 70% after removing G-CIMP samples in the TCGA

data set and by 52% in the NOB data set. Although reducing the

sample size will lower the statistical power to identify survival

related probe sets, the less than 8% reduction in sample size is

unlikely to be responsible for the large decrease in survival related

probe sets when we look only at G-CIMP negative tumors. In

order to roughly measure the affect of sample size on the number

of survival related probe sets, we randomly deleted ,10% (36/

361) of G-CIMP negative samples and repeated the analyses. In

the new data set, 39% of probe sets have been changed (381 out of

986 probe sets) and the number of probe sets has been reduced by

only 10% (986 to 881 probe sets).

Discussion

In this study, we have established a method to classify GBM

samples into G-CIMP subtypes based on gene expression data. As

expected, we have observed a high concordance between the

TCGA G-CIMP groups and predicted NOB G-CIMP groups in

Figure 5. Kaplan-Meier survival plot for NOB G-CIMP+ (n = 7), NOB G-CIMP2 (n = 123), TCGA G-CIMP+ (n = 30) and TCGA G-CIMP2
(n = 361) samples.
doi:10.1371/journal.pone.0047839.g005

G-CIMP Prediction for GBM Using Expression Data
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terms of age and survival. We have also validated the methylation

differences between NOB G-CIMP positive and negative samples

by performing in vitro methylation assays. These results demon-

strate that the G-CIMP subtypes are distinct and can be

reproducibly validated on a totally independent data set. An

alternative approach to identify G-CIMP positive GBMs would be

to check for IDH1 mutations. However, a small but significant

subset of G-CIMP positive GBMs (5/23 in [9]) do not carry this

mutation thus reducing the accuracy of such an approach.

We used the TCGA Affymetrix U133A data set as training data

because the NOB expression data was based on the Affymetrix

U133PLUS2.0 platform which uses a similar technology to

U133A. TCGA has expression data on multiple platforms such

as the Agilent 244 K G4502A and Affymetrix Human Exon 1.0

platforms. Investigators interested in adopting our method for G-

CIMP classification and have expression data from any of the

array platforms used by TCGA can simply apply our methods by

using the corresponding TCGA data set as training data.

Since multidimensional clustering algorithms are able to

produce subclasses even on random data, it is important to

validate clusters on an external dataset. There are well-known

differences between microarray data produced in different settings

(lab, platform, protocol) [14]. These batch effects can limit the

reproducibility of observed subtypes in external data sets unless the

differences across the subtypes are large enough. This limitation

holds for other biological results besides subtypes. Although

independent validation takes time, without such validation one is

likely to report a number of false positives. Accordingly, recent

reports [15,16] have shown limited reproducibility among multiple

microarray studies. A recent study explored the possible causes for

the lack of consensus in attempting to derive expression-based

subtypes of GBM [17].

Batch effects can be removed via two general mechanisms. One

of these involves running identical specimens (also called batch

controls) on both data sets. Both data sets could then be scaled to

make these identical specimens equivalent on the combined data

set. Another method involves combining data sets based on a

representation assumption. If two data sets are large enough, then

sampling the same population allows one to assume they represent the

same entity. In this case, we can apply batch effect removal

algorithms that scale the data sets and make them statistically

comparable. However, if data sets are not large enough or they are

not derived from identical populations, then the representation

assumption fails and the results will be flawed. In this instance, a

GBM data set may not be combined with a general brain tumor

data set although one population is the subset of the other.

Similarly we cannot combine two GBM data sets that contain

tumors from patients with disproportionate distributions of age or

sex unless we show that there is no molecular difference between

these different clinical groups.

In this vein, the establishment of gene classifiers is also based on

the assumption that the original data on which the classifiers were

developed and the new data on which the classifiers are to be used,

represent the same entity. If data sets are not large enough or they

represent different populations this operation would be flawed and

might lead to false interpretations. For example, if a gene

signature, which separates different subsets of GBM is applied to

a general brain tumor data set, results are likely to be unreliable.

We saw this in our analysis where our G-CIMP classifiers gave us

indeterminate results when we used them to attempt to classify

non-GBM gliomas and normal brain tissue.

Figure 6. PCA plot of TCGA and NOB samples in combined methylation data set. This data set includes 394 samples and 1438 methylation
sites.
doi:10.1371/journal.pone.0047839.g006
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One issue that would potentially negatively affect the accuracy

of our analysis concerns the origin of the tumor samples. The

TCGA samples are generally selected from untreated primary

GBMs while the NOB tumor samples are mostly previously

treated and recurrent GBMs. Interestingly, our analyses demon-

strate that this difference did not affect our ability to identify the

G-CIMP subtypes. In fact, the similarity between TCGA and

NOB data in terms of age and survival profiles of the derived G-

CIMP positive and G-CIMP negative groups were excellent.

Unlike the situation with gene expression data, we did not

observe any separation or batch effect between the two un-

normalized methylation data sets but rather found that the non-

tumor samples from both data sets clustered tightly. This positive

outcome suggests that Infinium methylation data sets from

different labs are comparable without data manipulation. This is

a major advantage that will allow increasing statistical power for

future analyses by creating larger data sets by combining multiple

smaller data sets.

Identifying and assigning patient-specific tumors to stable

genetic sub-types in heterogeneous diseases like GBM will be an

important step towards personalized medicine. Alternative ther-

apeutic regimes can be developed for different subtypes, and

should target subtype specific vulnerabilities. Establishing the

stability and reproducibility (universality) of these subtypes is a

critical step in achieving this goal. Our study demonstrates that G-

CIMP methylation subtypes are stable enough to be independently

validated through gene expression array data despite strong batch

effects. Moreover we demonstrate that the prognostic significance

of the G-CIMP subtype is very consistent, even when evaluated

across two totally independent large cohorts of patients. This result

suggests that identification of the G-CIMP will have significant

clinical relevance for clinical trial design stratification, patient

prognosis and potentially treatment in the future.
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