
June 2018 | Volume 9 | Article 3241

Review
published: 26 June 2018

doi: 10.3389/fendo.2018.00324

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Derek LeRoith,  

Icahn School of Medicine  
at Mount Sinai,  

United States

Reviewed by: 
Yukihiro Fujita,  

Asahikawa Medical University,  
Japan  

Burkhard Göke,  
Medical School Hamburg,  

Germany

*Correspondence:
Adrian Vella  

vella.adrian@mayo.edu

Specialty section: 
This article was submitted  

to Diabetes,  
a section of the journal  

Frontiers in Endocrinology

Received: 19 April 2018
Accepted: 31 May 2018

Published: 26 June 2018

Citation: 
Ma J and Vella A (2018) What Has 
Bariatric Surgery Taught Us About 

the Role of the Upper Gastrointestinal 
Tract in the Regulation of 

Postprandial Glucose Metabolism? 
Front. Endocrinol. 9:324.  

doi: 10.3389/fendo.2018.00324

what Has Bariatric Surgery Taught 
Us About the Role of the Upper 
Gastrointestinal Tract in the 
Regulation of Postprandial  
Glucose Metabolism?
Jing Ma1,2 and Adrian Vella2*

1 Division of Endocrinology and Metabolism, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, 
Shanghai, China, 2 Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, NY, 
United States

The interaction between the upper gastrointestinal tract and the endocrine system is 
important in the regulation of metabolism and of weight. The gastrointestinal tract has a 
heterogeneous cellular content and comprises a variety of cells that elaborate paracrine 
and endocrine mediators that collectively form the entero-endocrine system. The advent 
of therapy that utilizes these pathways as well as the association of bariatric surgery with 
diabetes remission has (re-)kindled interest in the role of the gastrointestinal tract in glu-
cose homeostasis. In this review, we will use the changes wrought by bariatric surgery to 
provide insights into the various gut–pancreas interactions that maintain weight, regulate 
satiety, and limit glucose excursions after meal ingestion.

Keywords: incretin hormones, bariatric surgery, gastric emptying, gastric accommodation, insulin secretion, 
insulin action, vagus nerve

BACKGROUND

In the United States, the prevalence of obesity is rapidly increasing with 65% of adults and 17% 
of adolescents and children classified as being overweight or obese (1). Obesity is associated with 
multiple diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and osteoarthritis, as well 
as being associated with an increased frequency of the risk factors for cardiovascular disease (2). 
Approximately 9% of national health-care costs have been attributed to excess weight (3). Because 
of the evidence that weight reduction ameliorates or corrects the comorbidities of obesity, the US 
Preventive Services Task Force has recommended that body mass index (BMI) is routinely assessed 
and weight management recommended for obese patients (4).

Behavioral intervention with lifestyle and dietary modification usually achieves modest weight 
loss (4). While generally safe, most regain the weight lost within 5  years. Pharmacotherapy for 
obesity is considered for patients who have failed efforts at lifestyle modification and who have a 
BMI ≥ 30 kg/m2 or a BMI ≥ 27kg/m2 in the presence of comorbidities such as diabetes (5). However, 
there have been significant concerns about the long-term safety of such medications and many of the 
currently available medications have limited efficacy (6).

Bariatric surgery, sometimes referred to as metabolic surgery, is usually considered for 
patients who have a BMI ≥ 40 kg/m2 or a BMI ≥ 35 kg/m2 associated with comorbidities such 
as type 2 diabetes (5). Restrictive surgeries such as adjustable gastric banding (AGB) and sleeve 
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FiGURe 1 | Schematic representation of upper gastrointestinal tract and hyperglycemia.
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gastrectomy (SG) limit the capacitance of the stomach. Roux-
en-Y gastric bypass (RYGB) is the most commonly performed 
bypass procedure and produces gastric restriction together with 
selective malabsorption. RYGB involves creation of a gastric 
pouch by separating the stomach across the fundus. Drainage 
of this 10–30 ml pouch is achieved by a gastrojejunostomy. The 
distal end of the jejunum is anastomosed ~150 cm below the 
gastrojejunostomy effectively bypassing the distal stomach, 
duodenum, and proximal jejunum. Duodenal switch (DS) 
is a variation of biliopancreatic diversion and involves a SG 
with division of the duodenum below the pylorus. The distal 
ileum is anastomosed to the short stump of the duodenum 
producing a ~100  cm channel for nutrient absorption. The 
other end of the duodenum is closed and the remaining small 
bowel connected onto the enteral limb 75–100  cm from the 
ileocecal valve (2).

Observational and prospective studies have suggested that 
bariatric surgery is the most effective intervention for weight 
loss producing an average weight loss of 30–35% that is main-
tained in ~60% of patients at 5 years (7). This has led to a dra-
matic increase in the number of procedures performed annually 
from 13,365 in 1998 (8) to 216,000 in 2016 according to the 
data released by American Society for Metabolic and Bariatric 
Surgery (9). In a meta-analysis of 136 studies of bariatric sur-
gery, which included a total of 22,094 patients, Buchwald et al. 
reported that within studies examining type 2 diabetes after 
bariatric surgery, 1,417 of 1,846 (76%) patients experienced 

complete resolution. When categorized by operative procedure, 
there were clear differences in efficacy. Diabetes resolved in 
98.9% of patients undergoing biliopancreatic diversion or DS. 
In contrast, the rate was 83.7% for RYGB and 47.9% for AGB 
(10). A retrospective review of 257 patients who underwent 
the long-limb modification of RYGB (400–500 cm Roux limb 
length) at our institution reported resolution of type 2 diabetes 
in 94% of patients (11). Recent prospective, randomized con-
trolled trials have, however, reported lower remission rates for 
diabetes with RYGB, although it remains superior to medical 
therapy (12–14). Setting aside the superiority of one procedure 
over the other in terms of inducing diabetes remission [which 
is likely related to residual β-cell function at the time of the 
procedure (15, 16) as well as the magnitude of weight loss (17)], 
obvious differences between procedures can be used to explore 
the role of the gastrointestinal tract in metabolism. RYGB is 
sometimes complicated by the occurrence of hyperinsulinemic 
hypoglycemia (18). Its incidence is uncertain although it has 
been suggested that excessive glucagon-like peptide-1 (GLP-1) 
secretion after RYGB (19) may be the cause of this phenomenon, 
but this is unlikely (20). The condition has been the subject of an 
extensive review recently (21) (Figure 1).

The anatomic differences among bariatric procedures result in 
differences in enteroendocrine secretion (Table 1): postprandial 
GLP-1 concentrations are lower after SG compared to RYGB in 
the comparative studies undertaken in humans (22–26). On the 
other hand, a liquid meal, especially after gastric restriction, may 
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TABle 1 | Efficacy of different bariatric surgeries.

Mechanism SG RYGB AGB DS

Weight loss  ↓ ↓ ↓ ↓
Amelioration of diabetes 71.6% 83.7% 47.9% 98.9%
Adverse effects Band slippage, stoma obstruction, 

intractable postoperative vomiting
Dumping syndrome, dyspepsia, 
abdominal pain

Band erosion, leakage from 
the balloon

Gastrointestinal leaks and 
constipation

Plasma ghrelin ↓ ↓ ↓ ↓
Plasma GLP-1 ↑ ↑ ↑ ↑
Plasma GIP ↑ ↑ ↔ N/A
Plasma CCK ↑ ↑ ↔ ↑

Increase, ↑; decrease, ↓; no change, ↔; NA, no available evidence; SG, sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; AGB, adjustable gastric banding; DS, duodenal 
switch; GLP-1, glucagon-like peptide-1; GIP, gastric inhibitory polypeptide; CCK, cholecystokinin.

FiGURe 2 | Upper intestinal adaptions after bariatric surgery.
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not recreate conditions present after a solid meal (27). Indeed, 
liquid emptying especially after restrictive gastric surgery is 
dependent on fasting gastric volume (28, 29). SG removes the 
capacitance function of the stomach and decreases ghrelin con-
centrations to a greater extent than does RYGB (24, 25, 30). This 
is more apparent when acyl-ghrelin is measured (22, 31, 32).  
Whether these differences can explain metabolic outcomes will 
be explored in detail below (Figure 2).

CAlORiC ReSTRiCTiON—CHANGeS  
iN GASTRiC vOlUMe, COMPliANCe, 
AND ACCOMMODATiON

Restrictive procedures reduce gastric volume—indeed, the 
postoperative period of any form of bariatric surgery is charac-
terized by a significant degree of caloric restriction (33). Fasting 
blood glucose and insulin resistance improves within 6 days of 
gastric bypass and occurs before any weight loss (34). This had 
been observed previously with very low-calorie diets outside of 
bariatric surgery (35), suggesting that caloric restriction at least 
partially, explains the acute improvement in glucose control 
after bariatric surgery (14, 36, 37). Six weeks of caloric restric-
tion (700–900  kcal/day) decreases fasting and postprandial 

glycemia by lowering fasting endogenous glucose production 
and improving β-cell function (38). Jackness et al. showed that 
very low caloric restriction (500  kcal/day) produced a similar 
improvement in β-cell function as those who underwent post-
RYGB (39). Indeed, caloric restriction after RYGB outweighs 
the effect of GLP-1 on glucose metabolism [as studied by the 
use of a competitive antagonist of GLP-1 at its receptor (40)]. 
Of course outside of the mechanical restrictions induced by 
bariatric surgery, there are difficulties with long-term compliance 
with regimens of caloric restriction. However, in an open-label, 
cluster-randomized trial 24% patients achieved weight losses 
of 15 kg or more in 12 months, and 86% experienced diabetes 
remission (41).

Multiple factors influence satiation including stomach 
capacitance and emptying. The stomach increases in volume in 
anticipation of food ingestion (42). In the normal stomach, this 
volume expansion is not associated with an increase in gastric 
wall stiffness (or increased intraluminal pressure) suggesting 
a change in the mechanical properties of the stomach wall 
(increased compliance) to accommodate the capacitive function 
of the stomach (43). This function is primarily fulfilled by the 
proximal stomach, which serves as a food reservoir, while the 
distal stomach triturates food to a size that can pass the pylorus. 
The physical nature, particle size, fat, and caloric content of food 
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alter emptying rate (27). Although nutrient and non-caloric 
liquids empty rapidly, solids are initially retained in the stomach 
while antral contractions propel particles toward the closed 
pylorus. Food particles are emptied once they are ~2  mm in 
diameter (27). Restrictive procedures eliminate the function of 
the proximal stomach displacing food to the distal stomach and 
accelerating emptying. It is uncertain if restriction of accommo-
dation alone alters gastric emptying (44). In SG, a functioning 
pylorus is retained and gastric volume is usually larger than the 
pouch created after RYGB. Post-RYGB it has been assumed that 
there is little neuromuscular control on gastric emptying since 
the pylorus is bypassed [although this may not be correct (45)]. 
Surgical vagotomy (which occurs in RYGB when the gastric 
pouch is created) alters gastric accommodation but may not 
change emptying (46) and typically does not have durable effects 
on weight (47).

Gastric emptying plays an important role in determining the 
magnitude of change in glucose concentrations after nutrient 
ingestion (48). Indeed, variation in the rate of gastric empty-
ing alters peak insulin response after 75 g oral glucose, in both 
healthy subjects and patients with type 2 diabetes (49, 50). Fasting 
gastric volume affects the rate of emptying of a liquid challenge 
(51). Interventions that delay gastric emptying have the potential 
to regulate glycemia in patients with diabetes. Accelerating nutri-
ent flow to the small intestine with erythromycin increases the 
postprandial glycemic response (52), whereas slowing gastric 
emptying with Xenin-25, a 25-amino acid neurotensin-related 
peptide, reduces postprandial blood glucose (53). Although it is 
important to match the rate of gastric emptying and the onset and 
offset of insulin action, significantly lower insulin requirements 
are observed in patients with type 1 diabetes with gastroparesis 
than those without, during the first hour of the postprandial 
period (54). Delaying gastric emptying is also a mechanism of 
action of some antidiabetic medications, such as GLP-1 analogs 
and pramlintide (55, 56).

Gut hormones can modulate food intake over and above that 
caused by mechanical restriction after bariatric surgery (22). 
Ghrelin increases food intake after esophagectomy or gastrec-
tomy (57, 58). Neuronal GLP-1R mediates the anorectic effects 
of GLP-1 (59). Inhibition of GLP-1 action with Exendin-9,39 
after RYGB accelerates gastric emptying (45). Taken together, 
these observations suggest that factors other than anatomy con-
tribute to the upper gastrointestinal response to food ingestion. 
The attraction of certain foods decreases after RYGB (60) and 
appetite may be altered by enteroendocrine secretion (61, 62).  
A potential mechanism is via GLP-1, which alters gastrointestinal 
transit, gastric accommodation (45, 46, 63), and has direct effects 
on hypothalamic nuclei outside of the blood–brain barrier (64). 
GLP-1 and GLP-1 receptor agonists decrease food intake and 
cause weight loss (65, 66). GLP-1 also modulates taste sensitiv-
ity in rodents (67–70). The peripheral concentrations of GLP-1 
observed in the early postprandial period in subjects post-RYGB, 
exceed concentrations observed after infusion at 0.75 pmol/kg/
min, and are similar to those observed after infusion at 1.5 pmol/
kg/min—both infusion rates that alter gastrointestinal function 
(71). It is, therefore, reasonable to consider that the postprandial 
rise in GLP-1 might affect feeding behavior after RYGB, and to 

a lesser extent SG, where the increase in GLP-1 is less marked 
(22–26). The elevated postprandial concentrations of GLP-1 
observed after RYGB are unlikely to be the cause of diabetes 
remission after bariatric surgery. We (45) and others (72) have 
shown that inhibition of GLP-1 actions in the postprandial 
period has limited effects on glucose concentrations in people 
after RYGB. This is in agreement with data from mice deficient 
in the GLP-1 receptor that lost the same amount of weight as 
wild-type mice (73). This is also the case after SG in humans (74) 
and in mice deficient in the GLP-1 receptor (75). On the other 
hand, SG decreases acyl-ghrelin concentrations, presumably 
due to excision of a large part of the ghrelin-secreting stomach, 
which should decrease appetite (22, 31, 32). Fasting after SG is 
not associated with a rise in (low) ghrelin concentrations, in 
contrast to RYGB (22, 24, 25, 30–32).

In an effort to circumvent the costs and complications associ-
ated with bariatric surgery, various attempts have been made to 
develop endoscopically placed devices that might cause weight 
loss. One such device is a synthetic sleeve placed post-pylorus 
under endoscopic control. The rationale underlying such a device 
is to ensure that nutrients are prevented from coming in contact 
with the absorptive surfaces of the proximal small bowel (76). 
Unfortunately, such a device is prone to migration, bleeding, and 
bolus obstruction. A placebo-controlled study utilizing the device  
as treatment for type 2 diabetes was terminated prematurely 
because of a ~3% incidence of hepatic abscess in subjects using 
the device (77). Other devices such as intra-gastric balloons to 
induce early satiety are under study.

GHReliN

Ghrelin is a 28-amino acid peptide and is the only orexigenic 
hormone recognized in humans. It is secreted from the gastric 
mucosa and hypothalamus in both rodents and humans. There  
are two forms of circulating ghrelin, unacylated and acylated 
ghrelin (AG) (78). In the fasting state, AG is elevated (~110 pM) 
and decreases (~70 pM) in response to food ingestion. Patients 
with Prader–Willi syndrome—a syndrome characterized by 
excessive feeding behavior—have high concentrations of circu-
lating ghrelin (79). Fasting and postprandial acyl-ghrelin levels 
are decreased following SG, compared to Roux-en-Y gastric 
bypass (RYGB), which may play a role in weight loss (26). SG 
involves removal of the gastric fundus—the primary source of 
ghrelin synthesis and secretion. Exogenous ghrelin administra-
tion increases energy intake in both rodents (80) and humans 
(81). Infusion of ghrelin in patients after esophagectomy (58) 
or gastrectomy (57) increases caloric intake and appetite. 
Although the contribution of ghrelin to normal physiology 
is unclear, it has been demonstrated that ghrelin can directly 
inhibit insulin secretion (82). Pharmacologic concentrations of 
ghrelin or ghrelin receptor agonists accelerate gastric empty-
ing, suppress insulin secretion, and increase glucagon secretion 
(83). In a randomized controlled phase Ib clinical trial, ghrelin 
accelerated gastric emptying and improved gastrointestinal 
symptoms in patients with type 2 diabetes (84). Ghrelin recep-
tor agonists are being developed as potential therapies for 
gastroparesis (85).
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iNCReTiN HORMONeS

The incretin effect is a phenomenon first observed several decades 
ago when intravenous glucose produced lower insulin concen-
trations, despite higher glucose concentrations than observed 
after ingestion of an equivalent amount of glucose (86). This 
observation has subsequently been confirmed with isoglycemic 
infusion studies (87). The subsequent discovery of glucagon-like 
immunoreactivity in the gut led to the realization that pro-
glucagon is synthesized in enteroendocrine cells intercalated 
between enterocytes and distributed throughout the intestine. 
GLP-1 and gastric inhibitory polypeptide (GIP) are two incretin 
hormones, which stimulate postprandial insulin secretion (88). 
GLP-1 is released from L-cells, most densely located in the distal 
small intestine and colon, although they are also located more 
proximally in the duodenum and jejunum (89). There is some 
evidence in rodent models of paracrine GLP-1 secretion within 
pancreatic islets (90). GIP is secreted from K cells (which reside 
mainly in the duodenum and upper jejunum) in response to 
nutrient ingestion. The early secretion of GLP-1 might involve 
an indirect neural or hormonal mechanism (91). The later 
secretion of GLP-1 is dependent on direct contact of nutrients 
in the small intestine with L-cells (92). Targeted delivery of 
lauric acid in enteric-coated pellets to the ileum and colon can 
stimulate substantial endogenous GLP-1 release and attenuate 
postprandial glycemia (93). To stimulate its receptor, GLP-1 
requires the presence of 2 N-terminal amino acids, which are 
cleaved by the enzyme, dipeptidyl peptidase-4 (DPP-4), render-
ing the truncated form (GLP-1-9,36) inactive. Because of the 
widespread distribution of DPP-4, the active form of GLP-1 has 
a short half-life in the circulation (94). GLP-1 receptor agonists 
that are not substrates of DPP-4 and DPP-4 inhibitors are 
approved for the treatment of type 2 diabetes. They lower fast-
ing and postprandial glucose concentrations (66). In addition to 
stimulating insulin secretion, pharmacologic concentrations of 
GLP-1 (and GLP-1 receptor agonists) inhibit gastric emptying, 
and suppress glucagon secretion. Moreover, GLP-1 and GLP-1 
receptor agonists increase satiety, leading to a reduction in  
weight (95).

Although GIP secretion is preserved, the insulinotropic 
effect of GIP is diminished in type 2 diabetes. Unlike GLP-1, 
GIP stimulates glucagon secretion during hypoglycemia  
(96, 97) and has no effect on gastric emptying. Circulating 
concentrations of GIP are related to BMI (98), which suggests 
a role of GIP in energy metabolism. In mice, high GIP concen-
trations promote obesity and insulin resistance (99). However, 
recent study shows that there is a synergistic effect of GIP and 
GLP-1 co-agonists in weight lowering (100) and glycemic 
improvement in patients with type 2 diabetes than mono-
agonist (101). Addition of a dual GIP/GLP-1 receptor agonist 
(NNC0090-2746) to metformin improved glycemic control 
with accompanying reductions in body weight and circulating 
cholesterol (102). The molecular mechanism underneath the 
metabolic improvements is not known. The effects of GIP on 
glucose metabolism are an area of ongoing investigation, which 
will hopefully be accelerated by the development of a specific 
GIP receptor antagonist (103).

CHOleCYSTOKiNiN (CCK)

Cholecystokinin is secreted from the I-cells by exposure to nutri-
ents in the duodenum and upper jejunum. Fat is a strong stimulus 
for CCK secretion, followed by protein, whereas carbo hydrate is a 
weaker stimulus of CCK secretion. CCK concentrations increase 
from fivefold to tenfold after ingestion of a mixed meal and inhibit 
gastric emptying through activation of CCK-1 receptors (104). 
Physiological concentrations of CCK delay entry of glucose into 
the duodenum, reducing postprandial glucose excursions (105). 
In rats, CCK decreased hepatic glucose production to maintain 
glucose homeostasis by inhibiting CCK-A receptors and trig-
gering a gut–brain–liver neuronal axis (106). In humans, CCK 
dose-dependently presents early satiety and reduces the energy 
intake at a buffet style meal, which was attenuated by the CCK-1 
antagonist, loxiglumide (107). However, the long-term effects of 
CCK administration in humans and its role in obesity therapy 
are not clear.

ROle OF THe vAGUS—vAGAl 
BlOCKADe/vAGOTOMY

The gastrointestinal tract is innervated by the parasympathetic 
and sympathetic divisions of the autonomic nervous system. The 
parasympathetic innervation originates from the dorsal motor 
nucleus of the vagus (DMV) in the medulla (108), while the 
sympathetic supply derives from the prevertebral ganglia (109). 
Gastric motility is partially controlled by the vagus nerve, a mixed 
motor, and sensory nerve. The sensory axons of the vagus receive 
afferent inputs from gastrointestinal receptors and then project 
to the nucleus of the solitary tract (110). Nucleus of the solitary 
tract (NTS) neurons activate vagal motor neurons in the nucleus 
ambiguus and the dorsomedial nucleus to regulate the smooth 
muscle contractions in the stomach and duodenum, with these 
neural loops being known as vagovagal reflexes (111). Bilateral 
truncal vagotomy (112), aiming for treating of peptic ulcer sur-
gery, and electrical vagal blockade (113) results in delayed gastric 
emptying, and weight loss—at least in the short term. The gastric 
vagal branches are often damaged during bariatric surgery (114). 
It remains controversial whether vagal innervation of the portal 
hepatis contributes to the beneficial effects of RYGB on food 
intake, energy expenditure, and body weight (115). Electrical 
vagal blockade does not seem to have significant effects on glu-
cose metabolism (116).

Obese subjects exhibit decreased heart rate variability likely 
due to an imbalance of sympathetic and parasympathetic activity 
(117). Overactivity of the sympathetic nervous system is more 
significant in obese subjects with type 2 diabetes than in those 
subjects without diabetes (118). Weight reduction following RYGB 
and AGB in severely obese patients is associated with an increase 
in heart rate variability (119). The underlying mechanism(s) 
remain unknown but the improvement in autonomic function 
does not appear to be related to improved insulin action (120).  
It has been posited that these changes in autonomic function could 
arise from crosstalk between the gastrointestinal tract and the 
central nervous system (121) generated by a neuro-inflammatory 
reflex (122) arising from the gut microflora.

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


6

Ma and Vella The Gut and Glucose Metabolism

Frontiers in Endocrinology | www.frontiersin.org June 2018 | Volume 9 | Article 324

THe TASTe SiGNAliNG SYSTeM

It is increasingly recognized that bariatric surgery may alter food 
preference and taste, in particular, the perception of sweet taste. 
This likely contributes to the reduction in energy intake after 
surgery (123). Both SG and RYGB result in a reduction of the 
frequency of food craving and the hedonic component of taste 
perception (124). Subjects experience a decreased desire to 
consume sweet and fatty flavors after RYGB (60) and SG (125).

The sweet taste signaling system includes heterodimeric G 
protein-coupled receptors, composed of the taste receptors (TRs), 
T1R2 + T1R3 heterodimers, which are activated by the binding 
of sweet compounds such as monosaccharides and disaccharides 
(126). These receptors are G-protein coupled (gustducin), and 
activation increases phospholipase C-β2 activity, which ultimately 
results in the release of Ca2+ from intracellular stores and the 
opening of a transient receptor potential ion channel TRPM5. 
The resulting membrane depolarization activates gustatory affer-
ents (127). Sweet TRs are found in the tongue, gastrointestinal 
tract, pancreas, adipose tissue, brain, and bone (128). Expression 
of T1R2 + T1R3 also occurs in the entero-endocrine L cells (129), 
suggesting that the sweet sensing system in the gut is involved in 
incretin secretion. T1R3 knockout mice exhibit impaired GLP-1 
secretion and glucose intolerance (130). Intragastric infusion of 
nutrients with lactisole, a T1R2/T1R3 blocker, attenuates GLP-1 
and peptide YY secretion in humans (131, 132). The expression 
of sweet taste receptors and downstream molecule transcripts are 
disordered in models of type 2 diabetes (133). T1R2 expression 
is reciprocally regulated by luminal glucose in health, but not 
in patients with type 2 diabetes; during acute hyperglycemia, 
T1R2 transcript levels decrease in response to duodenal glucose 
infusion in healthy subjects, but increase in subjects with type 2 
diabetes (134).

In addition to changes in oral taste sensitivity, the expression 
of T1R2 and T1R3 is decreased in the small intestine of rats after 
bariatric surgery; this occurs in parallel with elevation of GLP-1 
(135). Functional magnetic resonance imaging or positron emis-
sion tomography demonstrates a decrease in neural activity in 
the brain reward areas in response to high-calorie foods (136).

PeRMeABiliTY AND GlUCOSe 
TRANSPORT

The proximal small intestine initiates carbohydrate absorption 
after digestion. Glucose absorption is mediated by the sodium 
glucose co-transporter-1 (SGLT1) across the apical cell mem-
brane and partially by the glucose transporter 2 (GLUT-2) at 
high glucose concentrations (137). The small intestine has a 
maximal capacity of glucose absorption of about 0.5 g/min (or 
2 kcal/min) per 30 cm (138). The absorptive rate depends on the 
exposure rate of glucose, region, and length of the small intestine, 
and the expression of glucose transporters (139). The inhibition 
of motility and blood flow in the small intestine also attenuates 
glucose absorption (140). Plasma concentration of 3-O-methyl-
glucose, a glucose analog that is not metabolized, is normally 
used to measure the absorption rate of glucose. Physiologically, 

enhanced glucose absorption in the proximal gut would increase 
blood glucose concentrations; acute hyperglycemia itself appears  
to enhance glucose absorption (141). Rodent models of diabetes 
exhibit small intestinal hyperplasia and increased absorption of 
glucose from intestinal mucosa (142). It is unclear to what extent 
inhibition of SGLT-1 can alter glucose absorption in a way that is 
relevant to postprandial glycemic control in diabetes.

Active glucose transport and intestinal permeability are 
increased in obesity and diabetes. For a given caloric intake, 
this could alter the nutrient load entering the portal circulation 
(143–146). Changes in intestinal thickness and transcription of 
SGLT-1 and GLUT-2 occur after RYGB (147, 148). Foregut exclu-
sion decreases glucose absorption in rodents (149). However, it is 
currently not known, and if so, the extent to which RYGB and SG 
alter the rate of active intestinal glucose absorption or the rate of 
passive intestinal permeability.

Intestinal integrity provides a physical barrier to luminal 
bacteria, toxins, and antigens from the external environment. 
In health, it allows the passage of water and nutrients. Increased 
paracellular permeability, following disruption of the intestinal 
tight junctions enables bacteria to leak out of the intestinal 
lumen into the blood stream (150). Factors that influence per-
meability include the gut microbiome and fatty acids (whether 
ingested directly or as products of bacterial fermentation) (151).  
Bile acids could alter gut permeability through the G-protein-
coupled bile acid receptor (TGR5), a cell surface receptor, 
which occurs at a high level expression in the human placenta 
and spleen and is also found in multiple tissues such as the 
lung, liver, adipocytes, and the gastrointestinal tract (152). A 
systematic review of 14 studies suggests that that fasting and 
postprandial lipopolysaccharide (LPS) are increased in patients 
with diabetes (153). LPS is the core component of the outer 
membrane of Gram-negative bacteria. Metabolic endotoxemia 
is defined by a twofold to threefold increase in plasma LPS 
concentration (154). Rosiglitazone is the most effective in the 
lowering the LPS in patients with type 2 diabetes, but the extent 
to which this contributes to the glucose-lowering effects of this 
compound are unknown (155).

Bile ACiD MeTABOliSM

Bile acids are synthesized in hepatocytes via cytochrome P450-
mediated oxidation of cholesterol and then secreted into the 
intestinal lumen through the biliary system. 95% of intestinal bile 
acids are reabsorbed in the distal gut and transported back to the  
liver by the enterohepatic circulation (156, 157). CCK induces 
production of bile, contraction of the gall bladder, and relaxa-
tion of the sphincter of Oddi, to deliver bile into the duodenum 
(158). Bile acids promote digestion and absorption of lipids in 
the gastrointestinal tract as well as participate in the regulation 
of glucose and energy homeostasis (159), acting through two 
specific receptors, the farnesoid X receptor (FXR) and TGR5.

FXR is expressed in the liver and the intestine in humans 
and is a member of the nuclear receptor super-family. It can be 
activated by both primary and secondary conjugated bile acids 
(160, 161). Similar to other nuclear receptors, FXR translocates 
to the cell nucleus and subsequently induces expression of 
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the small heterodimer partner (SHP). SHP is involved in bile 
acids synthesis by downregulating the gene transcription of 
cholesterol 7 alpha-hydroxylase (CYP7A1), a rate-limiting 
enzyme in bile acid synthesis. The activation of TGR5 triggers 
the production of intracellular cAMP and secondary active 
the mitogen activated protein kinase signaling pathway to 
perform different functions in various organs. For instance, 
TGR5 is expressed in rodent and human pancreatic islets and 
regulates insulin secretion (162). TGR5 in enteroendocrine L 
cells stimulates secretion of GLP-1 (163). In addition, TGR5 may 
regulate energy homeostasis through activating deiodinases to 
convert the prohormone thyroxine (T4) into the active hormone  
triiodothyronine (T3) (164, 165).

Circulating bile acids’ concentrations after meal ingestion are 
decreased in obese subjects compared to lean controls (166). This 
difference is no longer significant after bariatric surgery (167, 168).  
The effects of SG on body weight and glucose tolerance are attenu-
ated in the absence of FXR (169) and in TGR5 knock-out mice 
(170). In a diet-induced obesity mouse model, diversion of bile 
flow to the ileum produces similar metabolic benefits to RYGB 
(171), while the ability of RYGB to decrease body weight and 
improve glucose tolerance is substantially reduced in the absence 
of FXR. Bile acids may stimulate insulin secretion via activation 
of FXR and inhibition of ATP-dependent K  +  channels (172). 
It has been suggested that the changes in bile acid composition 
and concentrations induced by bariatric surgery can contribute to 
metabolic changes via FXR and TGR5-signaling pathways.

However, in humans, the contribution of bile acid changes to 
metabolic improvements after bariatric procedures is less clear. 
One study reported that total plasma bile acid concentrations 
increased twofold after RYGB but decreased after AGB, despite 
similar weight loss (173). Longitudinal study suggests that there 
are two phasic increases in plasma bile acid concentrations in a 
cohort of RYGB patients at 1 month and up to 24 months after 
surgery (168). This time course differs from the time course 
of metabolic resolution suggesting that they are unrelated 
phenomena.

THe GUT MiCROBiOMe

The human gut microbiome consists of 10–100 trillion of 
microorganisms, primarily bacteria, in the digestive tract (174). 
The composition of the gut microbiome influences digestion, 
absorption, inflammation, and intestinal motility. Over the past 
decade, several studies have demonstrated that gut microbial 
populations are closely associated with metabolic disorders such 
as dyslipidemia, obesity, and diabetes (175). The gut microbiome 
is established early in life (176). Exposure to antibiotics alters 
the normal distribution of intestinal flora and is associated with 
changes in metabolism in some (177) but not all studies (178). 
Diet and lifestyle and geography are the primary influencers of 
the distribution of intestinal flora (179).

In humans, gut microbiota produce glycoside hydrolases 
and polysaccharide lyases, which facilitate digestion of sucrose, 
lactose, and starch (180). Undigested polysaccharides are 
subject to fermentation by intestinal bacterial leading to the 
production of short-chain fatty acids, which can provide 5–10% 

energy consumption (181). Gut microbiota is also involved in 
signaling of FXR and TGR5 by modifying the bile acid pool 
(182). In fact, bile acids interact with gut microbiota by direct 
effects on the mucosal defense, membrane integrity, oxidative 
and pH stress to increase the growth of bile acid-metabolizing 
bacteria (183).

d-lactate acidosis is a rare complication of jejuno-ileal bypass 
surgery or patients with short bowel syndrome (SBS) (184). 
d-lactate production is mainly dependent on the colonic micro-
biome (184). Notably, in patients with SBS or after jejuno-ileal 
bypass surgery, delivery of an increased amount of undigested 
carbohydrates to the colon can result in excess d-lactate accu-
mulation (185, 186). Bacteroides thetaiotaomicron abundance is 
decreased in obese subjects compared to lean individuals (187). 
Patients with type 2 diabetes may exhibit decreased abundance 
of butyrate-producing bacteria and an increase in various oppor-
tunistic pathogens (188). Dietary fiber intake in patients with 
type 2 diabetes increases acetate and butyrate-producing bacteria 
improves glycemic control (189). Use of metformin is accompa-
nied by increased abundance of Escherichia and a decrease of 
Intestinibacter (190). Impaired glucose tolerance is reversed after 
the transfer of metformin-altered microbiota to germ-free mice 
(191). Acarbose alters bile acid metabolism through changes in 
gut microbial populations (192). This results in great interest in 
microbiota alteration on improvement of metabolic parameters. 
Recently, transplantation of fecal microbiota or “bacteriot-
herapy” seems a promising therapeutic method for metabolic  
syndrome (193).

Individuals with obesity exhibit markedly decreased abun-
dance of B. thetaiotaomicron. However, the abundance of this 
microbe increased after SG despite similar metabolic outcomes 
suggesting that this is incidental to the improvements in glucose 
metabolism after bariatric surgery (187). Randomized trials are 
warranted in the future to further assess the gut mechanism after 
bariatric surgeries in humans.

CONClUSiON

The upper gastrointestinal tract plays a primary role in the 
regulation of glucose excursions in response to meal ingestion 
by determining the rate of gastric emptying and indirectly by 
regulating appetite and satiation, barrier integrity, and nutrient 
absorption. Bariatric surgery has helped improve our knowledge 
of the mechanisms underlying gut–pancreas interactions and 
may enable development of effective dietary or pharmacological 
strategies in the management of diabetes.
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