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Abstract

Research Article

IntroductIon

Automatic and precise alignment of consecutive whole‑slide 
histopathology section images is a key process leading to the 
future cell‑level three‑dimensional (3D) tissue reconstruction 
and topographical proteomics. However, only few studies 
focused on this topic.[1‑6] The bottlenecks were attributed to 
the following four factors: (1) a ×10 magnified, whole‑slide 
histopathology image was at average 32,947 × 27,054 
pixels in size, and at its maximal resolution may reach 
100,000 × 100,000 pixels. Dealing with data of this size 
was extremely challenging using the common computing 
hardware;[3] (2) currently, most histopathology slides are 

manually made, thereby introducing various distortions 
to the tissue section, such as cuts, folds, tearing, and local 
tissue stretch or compression;[1,4] (3) each whole‑slide image 
was unique and slightly different than each other in spatial 
coordinates, and they were cut in a continuous manner with 
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4‑μm spacing, thereby making the assessment of alignment 
adequacy difficult, as no ground‑truth image was available in 
each level of the whole‑slide image series; and (4) for nonglobal 
stained slides, such as immunohistochemical (IHC) slides, the 
images produced from different antibodies were usually viewed 
as independent objects by the current established registration 
methods and were, thus, difficult to be aligned, particularly 
in sections wherein the stained proteins are highly expressed 
in contrast to the low‑counterstained background. Several 
image‑registration models and algorithms were proposed in 
few previously conducted studies. They mainly addressed the 
first three above‑mentioned issues and significantly improved 
the accuracy and precision of aligning serial neighborhood, 
globally‑stained, histopathological section images.[1‑6] 
However, in daily laboratory usage, efficacy issues were still 
common, and the alignment and concatenation of multiple, 
differently and strongly stained IHC whole‑slide images 
usually failed. In this study, we improve the current method 
to align consecutive, whole‑slide gigapixel histopathology 
images, thereby enhancing the program efficiency and 
addressing the issue regarding the alignment of multiple, 
nonglobally and differently stained IHC section images. The 
Hausdorff distance was used to measure the effectiveness of 
image alignment.[1] We prove that our method can successfully 
achieve image alignment at a near cell‑level resolution, thereby 
not only leading to the future cell‑level 3D tissue reconstruction 
but also displaying the ability to incorporate the topographical 
protein information into the reconstruction.

MaterIals and Methods

Whole‑slide, 4 μm thick, serial IHC histopathology section 
images were prepared from formalin‑fixed, paraffin‑embedded 
tissues of the skin, breast, stomach, prostate, and soft tissue 
using 21 different IHC antibodies [Figure 1 for selected 
images of p63, CK5/6, EMA, CK7 and HER2, Supplemental 
Table 1 for staining conditions, clones and methods for all 
used antibodies, and Supplemental Figure 1 for set design], 
with an average image dimensions of 32,947 × 27,054 
pixels. IHC staining was performed in a Leica‑Bond Max 
automated immunostainer (Leica, Taipei, Taiwan), and 
whole‑slide images (MIRAX Virtual Slide File., mrxs, 
binary, Carl Zeiss MicroImaging) were generated using a 
3DHISTECH Pannoramic 250 Flash III scanner (3DHISTECH 

Ltd., Budapest, Hungary) at ×400 resolution using a ×20 
objective, with a 24‑bit red, green, and blue (RGB) format 
and 0.19 um/pixel resolution. The images were then viewed 
by CaseViewer (ver. 2.3 or above, https://www. 3dhistech.com/
research/software‑downloads/) and exported as. TIF files with 
a 1:4 conversion (equivalent to a ×100 view or ×10 objective in 
practice, a resolution of 0.76 μm/pixel) for further computation. 
This study was approved by the Institutional Review Board of 
the National Taiwan University Hospital (201412155RIND) 
and Fu Jen Catholic University (C108102).

The general flowchart of the proposed method is shown in 
Figure 2. The input images contained a reference (Sequence 0) 
image and translated (Sequences 1–n with phase correlation, 
scale/rotation recovery on RGB transformation) high‑resolution 
images (HR0 and HTn) and 1× low‑resolution images of 
3295 × 2705 pixels (LR0 and LTn) rescaled from HR0 and HTn. 
The alignment began with the initial alignment (preprocessing) 
of HR0 and HTn (object segmentation and rigid registration) 
and nonlinear registration of LR0 and LTn, followed by the 
multidimensional graph‑based image registration of the 
segmented patches, and finally, the fusion of deformed patches 
for inspection. To assess the alignment accuracy, a graph‑based 
method was adapted to check the distance shift from the local 
highest and lowest probability points converged from the 
neighborhood regions (Hausdorff distance).[1]

Initial alignment
The initial alignment was used to reduce the object deviations 
between serial whole‑slide IHC images. The staining 
intensities from different antibodies between each image were 
normalized by the Gamma correction.[7] Foreground object 
preidentification was performed to detect the extent of staining 
in the tissue according to the reaction intensity generated by the 
Otsu thresholding algorithm,[8] while the noise were removed. 
To correctly identify the surrounding nonstained region, a 
segmentation template was generated using an image matting 
and segmentation algorithm[9] and applied to segment the tissue 
based on the result of the foreground object preidentification. 
The segmentation template differentiated an image into three 
regions, namely foreground (object), background, and unknown 
regions. The ring region collected from the outer 50 pixels from 
the Otsu foreground region comprised the unknown region, and 
it was then verified by an image matting algorithm defined as 
( ) ( ) ( ) ( ) ( )x ‑ y x ‑ y x ‑ y x ‑ y x ‑ yα αL F 1 - B= × + ×( ) , where 

Figure 1: Selected serial immunohistochemical histopathological section images scanned at ×10 resolution: (a) p63, (b) CK5/6, (c) EMA, (d) CK7, 
and (e) HER2
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L (x, y) denotes the input image pixel value and x and y the image 
coordinates. The terms F (x. y) and B (x. y) denote the pixel values in 
the foreground and background, respectively, and α(x. y) denotes 
the average opacity value of the foreground pixels.

To minimize the inherent global angle deviations due to manual 
tissue sectioning, the longest horizontal and vertical diameters 
of each image were first determined; the intersection point 
was considered as the object center, which was then used 
to calculate the displacement between two objects. A rigid 
similarity transformation,[10] appropriate for whole‑slide image 
registration owing to its low computation complexity, was 
applied to rescale the inconsistent objects and calibrate the 
angle differences between each HR0 and HTn. The component 
matrix, which included rotation, translation, and scaling, is 
described as follows:

cos sin
sin cos

'

'

X dxX
= S +

Y dyY
θ θ
θ θ

−       
       −        (1)

Where dx and dy denote translation parameters, S a resale 
parameter with rotation matrix θ, X and Y the original 
coordinates of HR0, and X’ and Y’ the transformed coordinates 
of HTn.

Nonlinear registration with low resolution images
The global calibration corrected most angle deviations due to 

manual sectioning, and it was followed by nonlinear image 
registration to align the inconsistent areas between major 
tissue elements.[11] A patch‑wise image registration model[3] 
was adapted to efficiently discretize the deformation and 
evaluate the similarity between LR0 and LTn. To compute 
the deformation matrix Dy from each aligned LR0/LTn, an 
objective similarity function with respect to the discretized 
deformation J (LT0, LRn, Dy) was defined as the computation 
o f  [ ] [ ] [ ]0 n 0nmin J LT ,LR ,Dy = D LT ,LR ,Py +S u

u , 
where the D function measured the image similarity, and the 
S function measured the reasonability of the transformation.

To assess the similarity, which described the correspondence 
between neighbor images, the normalized gradient 
field[12] formula was applied, taking advantage of its 
intensity‑gradient‑driven algorithm that could accurately 
address the registration of differently stained IHC images. The 
D function that measured the image similarity was defined as 
follows:

ˆ ˆ
1

ˆ ˆ
ε ε

Ω

 ∇ ∇
 ∫  ∇ ∇ 

n 0 n 0
2

LTn
n 0

n 0

D[LT ,LR ,Dy] = NGF[LT ,LR ,Dy]

= LT (Py(x)) LR (x)‑ dx
LT (Py(x)) LR (x)

 (2)

Where D denotes the prolongation operator that interpolates 

Table 1: Average baseline differences in serial sections of the same immunohistochemical staining with 1 section apart, 
2 sections apart, and 3 sections apart by the proposed method

Distances between sections 
(Number) segmentation objects

Hausdorff distance (baseline differences)

Average (µm) (range) SD (µm) P (t‑test)
1 section apart, 4 µm in distance (30) 44.64 (41.31‑50.01) 7.49 ‑
2 sections apart, 8 µm in distance (30) 42.56 (36.98‑48.14) 13.20 0.46
3 sections apart, 12 µm in distance (30) 44.88 (35.95‑53.81) 6.15 0.89
SD: Standard deviation

Figure 2: Flowchart of the proposed multidimensional, graph‑based image‑registration method. The alignment began with the initial alignment of 
high‑resolution reference and translated images (object segmentation and rigid registration) and nonlinear registration of low‑resolution reference and 
translated images, followed by the multidimensional graph‑based image registration of the segmented patches, and finally, the fusion of deformed 
patches for inspection
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the low‑resolution deformation onto the image grid, and 
2 2 2

2
x = x +

ε
ε  is to assess image similarity. The square 

brackets in the expression y(x) denote the bilinear interpolation 
of y based on the four neighboring pixels on the grid of y.

A diffusive regularizer[13] was included to physically define 
the deformation model during image registration to ensure 
the robustness and computation speed. To avoid the local 
minimal value and optimize the joint objective function, the 
L‑BFGS[14] was applied as an optimizer using a discretized 
analytic derivative and was initialized with the analytic Hessian 
of the regularizer, which can be interpreted as a special case 
of linear elasticity as follows:

ˆ ˆ[ ] = ,2 û u
α ∇ ∇∑

∈
S u u u  (3)

Multidimensional graph‑based registration
To address the minor local deformations of the detailed internal 
tissue structures generated between differently stained images, 
a multidimensional graph‑based registration was proposed. The 
algorithm featured two stages: Registration by feature point 
aggregation and graph‑based registration. The high‑resolution 
slides (H) were partitioned into patches first, each of size 
4915 × 4915 pixels, with overlapping areas up to 10% of the 
patch size. For each patch, an individualized transformation 
was independently performed using a deformation matrix Dy. 
High‑dimensional vectors generated from NGF deformation 
were obtained, and a cubic B‑spline transform was estimated 
using regularized least‑squares error minimization. Finally, 
the step was refined by resolution progression from low (LTn) 
to high (HTn).

Registration by feature point aggregation
The pixels in the RGB color space were first translated 
into a gradient vector image, ∇Gi, which was defined as 

2 2
i x yG (x, y)= (G +G ),i R,T∇ ∈ , where 2

xG  and 
2
yG  denote 

the gradient translations of the horizontal and vertical axes, 
respectively. The properties of the gradient magnitude 
contributed to the preservation of differently stained tissue 
structures, and they clearly demonstrated the differences and 
similarities in pixel intensity from different gradient vector 
directions, thereby facilitating the extraction of correct 
matching feature points. K‑means clustering[15] was applied 
to each translated patch for accurate feature point extraction 
in discretized‑intensity categories.

Matching feature points were extracted using speeded up 
robust features,[16] which contained steps including matching, 
feature point detection, and local neighborhood description. 
A Hessian matrix‑based blob detector was used for detecting 
the feature points. The determinant of the Hessian matrix 
was applied as a measure of the local variety around the 
points, while the points were selected when the determinant 
was maximal. The detector of the feature points contained 
an indicator to assign invariability for every interest point 

for a local neighborhood description. These descriptors were 
adapted to search for correlations between the original image 
and transformed image when deformations occurred. By 
comparing the descriptors obtained from different images, 
matching pairs could be found.

Moreover, the process was refined by boundary control to 
compute the relative distance and orientation of the vector 
pointing from the centroid to boundary control points. The 
boundary control points were set along the object boundary, 
which was the result of foreground object segmentation, in a 
clockwise sequence 76 pixels apart. In each alignment after 
the feature point extraction, the distances of the matching 
feature points, >100 pixels and <15 pixels, were removed to 
enhance the significant feature points for the construction of 
the deformation graph model.

Deformation graph model construction
Nonlinear registration on the patched sections was performed 
using the deformation graph model construction to reduce 
the local deformation. The algorithm contained three 
stages: Deformation graph model construction, graph‑based 
registration, and fusion of deformed patches. For the 
construction of the deformation graph model, Delaunay 
triangulation[17] was used to define the deformation spatial 
relations by feature points. The entire patched image was 
covered with triangles, and any vertex of each triangle did 
not fall in the circumscribed circle of other triangles, thereby 
generating uniqueness. In each align, when the feature points 
were altered, only a part of the triangular structures needed to 
be changed, thereby enhancing the computation performance. 
Figure 3 shows the graphs of deformation spatial relations from 
a part of differently stained images.

After model construction, the one‑to‑one corresponding 
relationship between the pairs of triangle in two aligned 
images was defined for achieving smooth graph‑based 
registration. Figure 4 shows an example of alignment; the 
triangle of moving 1s in the transformation patch was always 
mapped to the triangle of fixed 1s in the reference patch. All 
the pairs of the corresponding triangles were transformed 
using an affine transformation matrix[18] for matching. 

Figure 3: Example graphs of deformation spatial relations with (a) p63 
and (b) EMA. Delaunay triangulation was used to define the deformation 
spatial relations by feature points. The entire patched image was 
covered with triangles, and any vertex of each triangle did not fall in the 
circumscribed circle of other triangles, thereby generating uniqueness

a b
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The transformation matrix AT was defined as follows: 
AT = Mtranslation × Mscaling × Mrotation × Mshear, which contains 
translation, scaling, rotation, and shear mapping, where 

Mtranslation was 
1 0 x1
0 1 x2
0 0 1

 
 
 
  

 , Mscaling was 
s1 0 0
0 s2 0
0 0 1

 
 
 
  

 , Mrotation 

was 
cos ‑sin 0
sin cos 0

0 0 1

θ θ
θ θ

 
 
 
 
 

 , and Mshear was/.

Finally, to obtain a global smooth deformation, bilinear 
interpolation was used to fuse the deformed patches into 
a complete graph. The global smoothness of the fused 
deformation was ensured by comparing the differences 
between the two deformation vectors in the overlapping areas.

All the experiments were conducted using MATLAB 
2019b together with the C++ open source library. The 
hardware environments were Intel Core i7‑8700K 4.60 
GHz processor, 32 G of random access memory at 2400 
MHz, and Microsoft Windows 10 operating system. For 
validating the effectiveness of the proposed method, the 
average (Avg) and standard deviations (SD) of the Hausdorff 
distance[3,19] were calculated. The performance accuracy of 
the registration was evaluated by calculating the differences 
between the manual segmentations of the corresponding 
structures after registration.[1,3] To assess the accuracy and 
precision of each alignment, thirty structure objects were 
manually segmented per slide pair by a pathology expert 
without the knowledge of the registration result to calculate 
the Hausdorff distance in a stack of every 5 different IHC 
stainings (HR0 and HT1‑4, total 120 segmentation objects). 
To assess the inherent error (baseline difference) in serial 
sectioning, a 4‑slide stack of the same CK5/6 staining 
was also created. The average Hausdorff distances were 
calculated between slides that are 1 section apart (4 μm in 
distance), 2 sections apart (8 μm in distance), and 3 sections 
apart (12 μm in distance).

results

Figure 5 shows an example of aligning paired patch 
images at different stages: Original offset, initial alignment 
using a published protocol (patch‑based nonlinear image 
registration),[3] and using our proposed method. The aligning 
precision and accuracy were gradually improved. In the 
original offset and initial alignment, macrostructural image 
deviations were noted. Using the published protocol, most 
macrostructures were aligned, although microstructures (e.g., a 
hair follicle, as marked in the figure) were not aligned. Using 
the proposed method, most microstructures were aligned. 
The results demonstrated that smooth microstructural 
correspondences were established.

Figure 6 shows the examples of feature point extraction in 
different IHC‑stained patch images obtained after performing 
the proposed registration feature point aggregation at the 
multidimensional graph‑based registration stage. The results 
demonstrate that the coordinates of most of the important 
microstructures (determined by a pathologist) were featured 
during the registration with correspondence.

To demonstrate the effectiveness of the proposed method in the 
practical screening of the proteome topology, a pseudocolor 
system was applied for visualization. Each color represented 
a different protein highlighted by the corresponding IHC 
antibodies. The proposed method showed the best alignment 
through which the protein–protein coexpression or mutually 
exclusive expression could clearly be elucidated.

The computation time was in average 300 s per patch of the 
proposed method, as compared with 320 s per patch for the 
published patch‑based nonlinear registration method. It took 
about 5 h to align two whole‑slide images with 60 patches and 
about 8.3 h to align two images with 100 patches.

The average baseline differences (inherent error caused by 
serial sectioning) are listed in Table 1. The results estimated 
the minimum Hausdorff distance that can be achieved. The 
different distances between the sections did not generate a 

Figure 4: Process of alignment by the deformation spatial relations graphs of the proposed multidimensional graph‑based registration
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statistically significant (P > 005) deviation from the HR0 slide 
in Hausdorff distance calculation.

Overall the proposed multidimensional graph‑based 
registration method improved the aligning efficiency and 
precision [Table 2]. The average Hausdorff distances across 
a stack of five different IHC stainings (HR0 and HT1‑4, 
total 120 segmentation objects) were 361.79 μm (range: 

139.28–688.702 μm), 93.89 μm (range: 59.59–153.85 μm), 
and 48.93 μm (range: 43.75–54.77 μm) for initial alignment, 
published patch‑based nonlinear registration method, and 
proposed multidimensional graph‑based registration method, 
respectively. The average standard deviations were 62.82 μm, 
50.85 μm, and 14.94 μm, respectively. The best alignment 
occurred in skin tissue using the antibodies of p63, CK7, and 

Table 2: Performance evaluation of image registration by Hausdorff distances on a stack of 5 serial, whole‑slide, 
immunohistochemical tissue sections by different protocols

Stainings (HR0 and HT1‑4) 
(Number) segmentation 
objects

Initial alignment Patch‑based nonlinear 
registration

Proposed multi‑dimensional 
graph‑based registration

Average (µm) SD (µm) Average (µm) SD (µm) Average (µm) SD (µm)
HR0‑HT1 (30) 222.5687 58.1487 82.9659 40.0861 48.6919 11.9077
HR0‑HT2 (30) 139.2823 59.6697 59.5939 24.9455 48.5248 14.9938
HR0‑HT3 (30) 396.6143 56.0818 153.8545 92.0210 43.748 11.7146
HR0‑HT4 (30) 688.702 77.3843 79.1539 46.3391 54.7710 21.1615
Average (120) 361.7918 62.8211 93.8921 50.8479 48.9339 14.9444
SD: Standard deviation, HR: High‑resolution reference image, HT: High‑resolution translated images

Figure 5: Comparing different methods in terms of the alignment accuracy and precision (10×). (a‑d) Results of the original offset, with significant 
macrostructural alignment deviations were noted (red asterisks). (e‑h) Registration results of the initial alignment. (i‑l) Registration results obtained by 
applying patch‑based nonlinear region. (m‑p) Registration results obtained by applying the proposed method. The alignment accuracy and precision 
were gradually improved. Within the red circles are the examples of a hair follicle microstructure, showing the best alignment by the proposed method

a b c d
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CK5/6 (mean Hausdorff distance 46.99 μm), while the wrost 
alignment occurred in prostatic tissue stained with MAOa, 
where the alignment failed [mean Hausdorff distance >1000 
μm, or Hausdorff distance uncalculable, Supplemental 
Figure 2], and the data were excluded (see Discussion).

dIscussIon

The precise alignment and registration of consecutive 
whole‑slide histopathological section images is a key 
step leading to the future topographical proteomics and 

3D reconstruction of disease tissues at the cell‑level 
resolution. However, only few models and algorithms, 
including unsupervised content classification‑based nonrigid 
registration and patch‑based nonlinear image registration, 
were established for this purpose.[3,4,6,20] These methods 
could be programmed and automatized, providing significant 
improvements compared with the conventional outline‑based 
or manual‑based image overlaying systems. However, in daily 
laboratory practice, minor issues were still witnessed, one of 
which was in the application of topographical proteomics. 
In addition, the alignment between the series of strongly and 
differently stained whole‑slide IHC images was usually a 
problem. The conventional hematoxylin‑ and eosin stain or 
special stains (such as Periodic acid–Schiff stain and Giemsa 
stain) were global stains, i.e., the dyes stained all the tissue 
elements by chemical reactions, although certain stains would 
highlight certain tissue structures. Under these circumstances, 
pattern recognition can be used for image alignment and 
registration.[7‑9] IHC stains, however, were nonglobal stains. 
The principle of IHC stains was the antigen–antibody reaction, 
and thus, only cells that contained certain proteins could be 
stained. Although there existed a hematoxylin counterstain 
in the background, when the stained protein was highly 
expressed, the background hematoxylin stain would be 
masked and pose a problem when aligning the neighborhood 
IHC images, because they were usually mistaken as different 
objects. In this study, a multidimensional graph‑based 
registration algorithm improved the unsupervised content 
classification‑based nonrigid registration method to address 
this issue. Our proposed algorithm offered the advantages 
of rigid and nonrigid registration methods. Initializing the 
registration of high‑resolution slides using a rigid method 
preserves the main morphology information and providing a 
deformation matrix generated from nonlinear low‑resolution 
slide registration for following multidimensional graph‑based 
registration provides high‑resolution patch images for the local 
microstructural alignment.

By calculating the Hausdorff distances [see Table 1], we 
proved that the proposed method could improve the overall 
alignment accuracy (represented by the average Hausdorff 
distances) and precision (represented by the standard deviation 
of the Hausdorff distances). The published patch‑based 
nonlinear registration method,[3] despite showing a significant 
improvement from the initial alignment, encountered problems 
in capturing the specific matching feature points in most local 
tissue microstructures, because the stained protein distribution 
and intensity were different in each IHC slide. The proposed 
graph‑based deformation model bypassed this problem through 
intensity‑independent feature point caption and construction, 
thereby performing effectively. The overall performance 
improvement was 52.1% and 29.3% for the average and SD 
values with the Hausdorff distance, respectively.

However, the main limitation of the proposed method is the 
inherent tissue deviation due to manual serial sectioning. The 
neighboring two sections, in nature, are significantly alike but 

Figure 6: Registration feature point aggregation. Four paired patch images 
with feature points were demonstrated. (a and b) p63‑K5/6, (c and d) 
p63‑EMA, (e and f) p63‑CK7, and (g and h) p63‑HER2

a b

c d

e f

g h
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not the same. The average human cell size is approximately in 
the range of 15–20 μm, and using the average and SD deviations 
of the Housdorff distances (49 and 15 μm, respectively), a 
deviation of three cells in accuracy and of one cell in precision 
can be expected. Fortunately, in real human biology, cells with 
similar or related functions usually work together as microunits, 
such as in a microvessel, nerve, or folliculosebaceous unit, 
which has a size >50 μm; additionally, with the microstructure 
aligned, most functional topology proteomics can be correctly 
interpreted [see Figures 5 and 7]. Most of the human biology 
works through functional microunits rather than individual 
cells. Some other modern methods, including next‑generation 
immunohistochemistry using mass cytometry,[21,22] multichannel 
or multiplex immunofluorescence,[23‑25] or thick‑section 
confocal microscopy,[26] although could detect multiple protein 
statuses on a single slide in identical cells giving a highly 
accurate evaluation on protein interactions, these methods are 
usually expensive, labor intensive, limited in the interpreted 
section size, require cell labeling, and demand high techniques, 
thereby making them unlikely to be daily screening tools. 
Interestingly, these methods were developed because in those 
days “the conventional serial‑section approach may have 
instead approximated the cellular co‑localization poorly owing 
to heterogeneity effects.”[25] Now with our proposed method, 
serial whole‑slide IHC sections can be accurately and precisely 
aligned. The “old‑day” approach offers several clear advantages, 
especially for screening purposes. First, whole‑slide images can 
be reviewed in a bright room (without requiring a dark room 
for immunofluorescence), providing an overall view of the 
proteome topology and facilitating pattern recognition. Second, 
for each protein, the staining condition can be optimized 
because the stain works on independent slides. By contrast, 
there is usually a compromise in the staining condition when 
multiple labels or stains work on the same slide. Third, most 
pathologists worldwide are acquainted with the conventional 

IHC images, thereby making the application of this method 
highly practical from the daily usage viewpoint. Last, because 
IHC is an essential part in daily pathology practice, even a local 
hospital can provide all the needed instruments and slides for 
the proposed method. No new instrument, reagent, or technique 
is required.

The alignment quality, however, still heavily depends on the 
quality of the antibody used. In this project, the best alignment 
came from skin tissue sections stained with p63, CK7, and 
CK5/6. These three antibodies gave highly specific and clear 
staining signals with clean background and minimal cross 
reaction, thus preserving the skin internal microstructures. By 
contrast, the alignment failed in prostatic tissue sections stained 
with MAOa. The antibody had intrinsic poor quality, giving a 
blurred and nonspecific staining pattern with high background, 
thus masking the underlying tissue microstructures.

Another limitation of the proposed method is that its ability to 
treat extreme tissue torsion is still limited, as with other aligning 
methods.[4] Tissue information based on consistent spatial 
correlations may be incorrect because of the artifacts introduced 
by cutting, folding, stretching, or tearing during tissue slicing. 
Excessive extraction of registration feature points is possible 
when artifacts are introduced so that mutually exclusive proteins 
are brought together with variable overlaps. Additionally, the 
proposed method, although provides accurate and precise 
image alignment, show no apparent advance in terms of the 
computation time (average 300 s per patch, as compared 
with 320 s per patch for the published patch‑based nonlinear 
registration method). For screening purposes, the scanning 
resolution could be decreased to reduce the computation time.

conclusIons

This study presented a three‑step image‑registration method to 
efficiently align serial, whole‑slide IHC tissue section images. 

Figure 7: Pseudocolor system demonstrating the immunohistochemical protein expression for practical proteome topology: p63 (red), CK5/6 (green), 
EMA (blue), and CK7 (yellow) and HER2 (magenta) in protein staining (a‑d) and background staining (e‑h) areas. The stained areas in each whole‑slide 
immunohistochemical image were extracted and transformed to a pseudocolor. The protein–protein coexpression or mutually exclusive expression 
could clearly be observed
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First, rigid registration was applied for the initial global 
alignment. Second, the patch‑based nonlinear registration 
method was employed to perform low‑resolution registration to 
achieve alignment between major tissue structures. Third, the 
proposed multidimensional graph‑based registration, combined 
with a deformation matrix from patch‑based nonlinear 
registration, was used to align the global and local deformation 
microstructures, improving the registration performance and 
robustness. Owing to its low cost and minimal requirements, 
our proposed method offers great advantages in screening the 
proteome topology in the daily laboratory practice.
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Table S1: Antibodies used in creating whole‑slide immunohistochemical tissue section images

Antibody Isotype Clone Source Dilution Retrieval
BCL2 Mouse IgG1 124 Dako 1:200 Citrate PH 6.0
CD10 Mouse IgG1 56C6 Leica 1:30 EDTA PH 9.0
CD31 Mouse IgG1 9G11 BioGenex 1:75 EDTA PH 9.0
CD34 Mouse IgG1 QBEnd 10 Dako 1:50 EDTA PH 9.0
CK5/6 Mouse IgG1 D5/16B4 Thermo 1:75 EDTA PH 9.0
CK7 Mouse IgG1 OV‑TL 12/30 Dako 1:300 EDTA PH 9.0
CK (AE1/3) Mouse IgG1 AE1/AE3 BioGenex 1:300 EDTA PH 9.0
D2‑40 Mouse IgG1 D2‑40 Dako Ready to use EDTA PH 9.0
Desmin Mouse IgG1 33 BioGenex 1:250 EDTA PH 9.0
E‑cadherin Mouse IgG1 NCH‑38 Dako 1:400 EDTA PH 9.0
EMA Mouse IgG2a E29 Dako 1:200 EDTA PH 9.0
ERG Rabbit EP111 Bio SB 1:50 EDTA PH 9.0
GATA3 Mouse L50‑823 Leica 1:100 EDTA PH 9.0
Her‑2 Rabbit IgG 4B5 Ventana Ready to use EDTA PH 9.0
MAOa Rabbit IgG EPR7101 Epitomics 1:50 EDTA PH 9.0
MYC Rabbit IgG Y69 Abcam 1:50 EDTA PH 9.0
p40 Rabbit IgG Polyclonal Biocare 1:200 EDTA PH 9.0
p63 Mouse IgG1 DAK‑p63 Dako 1:100 EDTA PH 9.0
PR Rabbit 1E2 Ventana 1:2 EDTA PH 9.0
PSA Mouse IgG1 ER‑PR8 Dako 1:100 EDTA PH 9.0
S100 Rabbit Z0311 Dako 1:1800 EDTA PH 9.0

Supplemental Figure 1: Set design for consecutive, whole‑slide, immunohistochemical section images. (a) Every set contained 1 Hematoxylin‑and‑Eosin 
stained slide and 5 immunohistochemical slides. The Hematoxylin‑and‑Eosin slide was the conventionally and globally stained slide used for 
histopathology interpretation. A total of 21 antibodies were successfully applied on five different kinds of tissues. (b‑d) Examples of consecutive, 
whole‑slide, immunohistochemical sections: (b) EMA staining, (c) Desmin staining, and (d) CK (AE1/3) staining
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Supplemental Figure 2: Aligning sections stained with MAOa in 
prostatic tissue. (a) The MAOa antibody showed high background 
staining across the prostatic tissue, masking the underlying tissue 
microstructures. (b) The low‑resolution image extracted for nonlinear 
registration after discretization. (c) A pseudocolor system showed the 
result of aligning other immunohistochemical sections with the section 
stained with MAOa. The results were of poor accuracy and precision 
using published and proposed methods
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