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Abstract

Th2 immunity and allergic immune surveillance play critical roles in host

responses to pathogens, parasites and allergens. Numerous studies have reported

significant links between Th2 responses and cancer, including insights into the

functions of IgE antibodies and associated effector cells in both antitumour

immune surveillance and therapy. The interdisciplinary field of AllergoOncology

was given Task Force status by the European Academy of Allergy and Clinical

Immunology in 2014. Affiliated expert groups focus on the interface between

allergic responses and cancer, applied to immune surveillance, immunomodula-

tion and the functions of IgE-mediated immune responses against cancer, to

derive novel insights into more effective treatments. Coincident with rapid expan-

sion in clinical application of cancer immunotherapies, here we review the current

state-of-the-art and future translational opportunities, as well as challenges in this

relatively new field. Recent developments include improved understanding of Th2
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antibodies, intratumoral innate allergy effector cells and mediators, IgE-mediated

tumour antigen cross-presentation by dendritic cells, as well as immunotherapeu-

tic strategies such as vaccines and recombinant antibodies, and finally, the man-

agement of allergy in daily clinical oncology. Shedding light on the crosstalk

between allergic response and cancer is paving the way for new avenues of treat-

ment.

It has been recognized that tumours manipulate immune

responses. On the other hand, the overall immune compe-

tence of the host could critically determine immune surveil-

lance against cancer and the clinical course. Allergy and

atopy are characterized by a systemic bias to Th2 immunity,

which may exert a potential influence on cancer development.

In fact, allergy and oncology may represent two opposite

concepts: whereas immune tolerance is desired in allergy, it is

detrimental in cancer. Hence, the establishment of a Task

Force on AllergoOncology (AO) within the Immunology Sec-

tion of EAACI is timely and appropriate. The aim of the

Task Force is to connect basic scientists interested in Th2

immunity and cancer with clinical oncologists and to support

an interdisciplinary exchange to advance knowledge and

understanding of immune responses in both fields. At pre-

sent, this is the first AO platform worldwide.

Previous AO activities have included a first concerted

paper (1), international conferences, the book ‘IgE and Can-

cer’ (2) and a Symposium-in-Writing on AO (3).

A Pre-Task Force Meeting was held at the EAACI annual

conference in Copenhagen in 2014, leading to the establish-

ment of the Task Force within the Interest Group of

Immunology, with its first business meeting in Barcelona in

2015. The primary objectives of the Task Force were con-

firmed: to serve as an interface between the disciplines of

oncology and allergy, covering: (i) basic, (ii) translational,

(iii) epidemiological and (iv) clinical research, including

allergy problems in clinical oncology, as well as (v) mecha-

nisms of tumour-induced immune modulation and (vi) novel

vaccination and immunotherapy approaches harnessing IgE

functions to target cancer.

The goal of this position paper was to provide an update

on developments in the AO field since 2008 (1). We therefore

aimed to review (i) clinical, mechanistic and epidemiological

insights into Th2 immune responses in cancer, (ii) current

immunological markers with a complementary role in allergy

and cancer, (iii) correlation of these markers with the pro-

gress of malignant diseases and (iv) an update on how oncol-

ogists can manage allergic reactions to cancer therapeutics.

The different topics were drafted by subgroups of the Task

Force and further discussed, developed and compiled during

a meeting in Vienna in 2015. The position paper was there-

after recirculated and critically appraised, and the final

version was approved by all Task Force members.

Epidemiology

The epidemiologic association between allergy and cancer

risk has been summarized in meta-analyses, with inverse

associations reported for several cancers including glioma,

pancreatic cancer, and childhood leukaemia (4, 5). The

majority of previous studies have relied on self-reported

ascertainment of allergic status, being typically limited, retro-

spective, and associated with potential biases. Emerging evi-

dence comes from prospective studies based on self-reported

allergy history which have reported inverse associations in

studies of colorectal (6), but not haematopoietic or prostate

cancer (7, 8). A large-scale study based on hospital discharge

records reported an inverse association between allergy/atopy

of at least 10 years in duration and incidence of brain cancer

[RR (Relative Risk) = 0.6, 95% CI (Confidence Interval)

0.4–0.9] in a cohort of 4.5 million men (9). Nested case–con-
trol studies reported inverse associations between borderline

or elevated total IgE (10) or respiratory-specific IgE and

glioma risk (10, 11). Serum total and allergen-specific IgE

provided evidence of inverse associations with the develop-

ment of melanoma, female breast cancer, gynaecological

malignancies and also glioma (12). Findings at other cancer

sites are unclear (13–15). One study reported an inverse trend

between increasing blood eosinophil count and subsequent

colorectal cancer risk (16). Another study reported that

serum concentrations of soluble CD23/FceRII (sCD23) and

soluble CD30 (sCD30) were positively associated with risk of

non-Hodgkin’s lymphoma (17). Several studies have exam-

ined associations with SNPs in allergy-related genes with sig-

nificant associations between SNPs in FCER1A, IL10,

ADAM33, NOS1 and IL4R genes and glioma risk reported

in one recent study which requires further replication (18).

Further research in large-scale prospective studies using

validated measures of self-reported allergy history and/or

biomarkers of allergy is needed, including repeated evalua-

tions over time, sufficient latency with respect to the
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developing tumour, and detailed data on potentially con-

founding variables (19).

Th2-associated antibodies in cancer

Although studied for decades, our understanding of different

immunoglobulin classes in cancer biology is still limited. IgG

antibodies are the predominant antibody class for passive

immunotherapy. Recent findings elucidated that the tumour

microenvironment may specifically promote less potent

immunoglobulin isotypes such as IgG4 (20). Furthermore,

IgG and IgE free light chains engaging mast cells could

reduce tumour development in vivo (21). Furthermore, by

promoting specific phenotypes of tumour infiltrating leuco-

cytes and through inducing a higher expression of inhibitory

Fcc receptors, malignant cells can evade humoral immune

responses and counteract the antitumour effector functions

of therapeutic IgG antibodies (22).

A preliminary study has reported that both IgE and

IgG4 specific towards two of three cancer antigens are ele-

vated in patients with cancer compared with healthy volun-

teers (23). The phenomenon that anticancer therapies, such

as alkylating agents and hormone-based chemotherapies,

affect circulating total and specific IgE levels has also been

reported (24); however, any implications on clinical course

require further investigations. A number of these studies

also provide evidence in support of Th2 humoral immunity

to derive new tools for malignant disease monitoring and

prognosis. Interestingly, IgE antibodies isolated from

patients with pancreatic cancer mediate antibody-dependent

cell-mediated cytotoxicity (ADCC) against cancer cells (25).

Furthermore, higher levels of polyclonal IgE in nonallergic

individuals are directly correlated with lower disease inci-

dence and higher survival in multiple myeloma in a clinical

study (26). Collectively, these studies point to important

roles for Th2-associated antibodies and tumour immune

surveillance.

In situ expression of AID and potential insights into

antibody isotype expression in cancer

The enzyme cytidine deaminase (AID) which is responsible

for converting cytidine to uracil and thereby induces targeted

damage to DNA, is a key driver of immunoglobulin (Ig)

somatic hypermutation events and class switch recombination

processes that give rise to IgG, IgA or IgE. On the other

hand, AID has multifaceted functions linking immunity,

inflammation and cancer (27).

AID is thought to be expressed predominantly by germinal

centre (GC) B cells within secondary lymphoid organs. How-

ever, studies on local autoimmunity, transplant rejection, and

tissues exposed to chronic inflammation point to the capacity

of B lymphocytes to form GC-like ectopic structures outside

of secondary lymphoid tissues (27, 28), which is now also

demonstrated within benign and malignant tissues. Class

switching of local GC-derived B cells to different isotypes

may have a profound influence on local immune responses

and on disease pathobiology. However, whether tumour

microenvironments support direct class switching to IgE

remains unclear, although some evidence from animal models

points to IgE production at early stages of carcinogenesis

(29). Remarkably, local follicle-driven B cell-attributed

immune responses may be either positively or negatively

associated with clinical outcomes of patients with cancer

(30, 31).

IgE receptor expression on immune cells and epithelial

cells

The high-affinity receptor FceRI tetrameric form abc2 is

expressed on mast cells and basophils. The trimeric form of

the high-affinity receptor FceRI (ac2) and the low-affinity

receptor CD23/FceRII (b form) (Fig. 1A) is expressed on

human monocytes and macrophages, dendritic cells (DCs),

eosinophils, platelets and neutrophils (32). The ‘a’ form of

CD23/FceRII is also expressed by subsets of B cells (33). IgE

cell surface receptors FceRI, FceRII/CD23 (Fig. 1A) and

also the soluble IgE receptors galectin-3 and galectin-9 are

expressed not only by haematopoietic cells, but also by non-

haematopoietic cells including epithelia (Table 1).

Depending on the nature and distribution of IgE receptors,

different functions might be envisaged. Galectin-3 is well recog-

nized for its contribution to tumour progression and metastasis

development (34), while galectin-9 seems to have antiprolifera-

tive effects (35, 36). The trimeric FceRI(ac2) showed membra-

nous and cytoplasmic expression in intestinal epithelial cells and

a prominent FceRI a-chain expression was also found in the

Paneth cells of patients with cancer of the proximal colon. In

the same study, a similar distribution could be observed in tis-

sues from patients with gastrointestinal inflammation, whereas

no expression was observed in healthy controls (37).

It is important to note that cell surface-expressed IgE-bind-

ing structures may have different effector functions compared

with their secreted forms such as soluble FceRIa chain (38)

and galectin-3 (39) in cancer, which may be of key functional

importance.

Effector cells in allergy and cancer

Mast cells

Mast cells are perhaps the most classical effector cells of IgE

(Fig. 1B). Their presence at the periphery, but also infiltrat-

ing tumours, argues for a role in tumour biology (40). The

presence of mast cells in many tumours has been associated

with poor prognosis (41), and it has been suggested that they

may contribute to an immunosuppressive tumour microenvi-

ronment and thereby impede protective antitumour immu-

nity. In addition, mast cells may promote tumour growth by

inducing angiogenesis and tissue remodelling through the

induction of changes in composition of the extracellular

matrix (42). In contrast, in colorectal cancers, mesothelioma,

breast cancer, large B-cell lymphoma, and in non-small-cell

lung cancer, high mast cell density has been associated with

favourable prognoses (43, 44). The observation of degranu-

lating mast cells near dying tumour cells has suggested a

Allergy 72 (2017) 866–887 © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.868

AllergoOncology: EAACI position paper Jensen-Jarolim et al.



cytotoxic effect and their presence in invasive breast carcino-

mas correlate with better prognosis (45). In prostate cancer,

peri-tumoral mast cells were shown to promote, while

intratumoral mast cells may restrict angiogenesis and tumour

growth (46). This apparent dichotomy in mast cell functions

in cancer may be explained by (i) tumour type, (ii) tumour

Figure 1 Cell surface IgE receptors and IgE-mediated direct and

indirect effects. (A) Cartoon of IgE binding to its cell surface recep-

tors. IgE binds to tetrameric (abc2) (left) and trimeric forms (ac2)

(middle) of FceRI through the extracellular domain of the alpha (a)

chain of the receptor. The low-affinity receptor CD23 trimer binds

IgE through recognition of the lectin domain (right). (B) Direct and

cell-mediated effects of antitumour IgE. Like IgG antibody thera-

pies, IgE targeting tumour antigens can exert direct effects through

recognizing the target antigen, such as interference with signalling,

resulting in growth inhibition. IgE can also bind via IgE receptors

(FceRI or FceRII/CD23) to a specific repertoire of effector cells (illus-

trated in the bottom panel). These interactions may lead to effector

functions against tumour cells, such as antibody-dependent cell-

mediated phagocytosis (ADCP) or cytotoxicity (ADCC), or mediator

release. Cross-linking of IgE is required for effector cell activation,

whereas soluble tumour antigens expressing only a single epitope

do not trigger IgE cross-linking on the surface of effector cells.
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Table 1 Expression of IgE-binding structures on haematopoietic or nonhaematopoietic cells in humans

IgE-binding

structure

Receptor

composition/

splice variants Expression on haematopoietic cells Expression on nonhaematopoietic cells

High-affinity IgE

receptor/FceRI

Tetrameric

receptor abc2

Mast cells, basophils

Kraft S, Kinet JP. Nat Rev Immunol

2007 May;7(5):365–78

–

Trimeric

receptor ac2

Mast cells, basophils

Kraft S, Kinet JP. Nat Rev Immunol

2007;7(5):365–78

Monocytes, macrophages

Boltz-Nitulescu G, et al. Monogr

Allergy 1983;18:160–2

Spiegelberg HL. Int Rev Immunol

1987;2(1):63–74

Dendritic cells

Novak N, et al. J Clin Invest 2003;

111(7):1047–56

Bieber T, et al. J Exp Med 1992;

175(5):1285–90

Allam JP, et al. J Allergy Clin Immunol

2003; 112(1):141–8

Bannert C, et al. PLoS One 2012; 7(7):

e42066

Yen EH, et al. J Pediatr Gastroenterol

Nutr 2010; 51(5):584–92

Eosinophils

Gounni AS et al. Nature 1994, 367(6459):

183–6

Platelets

Hasegawa S et al. Blood 1999; 93(8):

2543–51.

Small intestinal and colonic epithelial cells

Untersmayr et al. PLoS One 2010

Feb 2;5(2):e9023

a chain Neutrophils

Dehlink et al., PLoS One 2010, 5(8):

e12204

Alphonse MP et al. PLOS One 2008;

3(4):e1921

Paneth cells

Untersmayr E et al. PLoS One 2010;

5(2):e9023

Smooth muscle cells

Gounni AS et al. J Immunol 2005;175(4):

2613–21

Low-affinity IgE

receptor/FceRII/

CD23

CD23a isoform Antigen-activated B cells

Reviewed in: Gould HJ, Sutton BJ. Nat

Rev Immunol 2008;8(3):205–17.

doi: 10.1038/nri2273

CD23b isoform B cells

Yukawa K, et al. J Immunol 1987;138(8):

2576–80

Monocytes, macrophages

Vercelli D et al. J Exp Med 1988;167(4):

1406–16

Pforte A et al. J Exp Med 1990;171(4):

1163–9

Eosinophils

Capron M et al. Chem Immunol 1989;47:

128–78

Platelets

Capron M et al. J Exp Med 1986;164(1):

72–89

Dendritic cells

Bieber T et al. J Exp Med 1989;170(1):

309–14

Small intestinal and colonic epithelial cells

Kaiserlian D et al. Immunology 1993

Sep;80(1):90–5
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stage, (iii) mast cell phenotypic plasticity and (iv) location of

mast cells in relation to tumour cells.

A wealth of evidence from human cancers and mouse

models of cancer indicates that mast cells via the action

of histamine on H1, H2 and H4 receptors contribute to

tumour invasion and angiogenesis (44). Mast cells may

also suppress the development of protective antitumour

immune responses by promoting regulatory T cell (Treg)--

mediated suppression in the tumour microenvironment

(47).

Mast cells are attracted to the tumour microenvironment

by stem cell factor (SCF) secreted by tumour cells, and

secrete pro-angiogenic factors as well as matrix metallopro-

teinases (MMPs), which promote tumour vascularization and

invasiveness. Stem cell factor is the ligand for CD117 (c-kit

receptor), highly expressed by mast cells. SCF is essential in

mast cell recruitment, tumour-associated inflammation,

remodelling and immunosuppression (48). Stem cell factor-

stimulated mast cells produce matrix metalloprotease-9

(MMP-9) that facilitates recruitment of mast cells and other

cells to the tumour. MMP-9 also augments tumour-derived

SCF production in an amplification feedback loop. Using

mast cell-deficient (C57BL/6-KitW-sh/W-sh) mice, it was shown

that mast cells (and mast cell-derived MMP-9) are necessary

and sufficient to promote growth of subcutaneously engrafted

prostate adenocarcinoma cells (49). Furthermore, mast cell

tumour-promoting potential is augmented through costimula-

tion with tumour-derived SCF and Toll-like receptor 4

(TLR4) ligand, inhibiting mast cell degranulation, but trig-

gering their production and secretion of vascular endothelial

growth factor (VEGF) and interleukin-10 (IL-10). In

contrast, mast cell stimulation by TLR4 ligand alone induces

IL-12, important regulator of T- and NK-cell responses (50).

Fibroblast growth factor-2 (FGF-2) and VEGF derived

from mast cells trigger intense angiogenic responses in vivo

(46). Infiltration of mast cells and activation of MMP-9 par-

allel the angiogenic switch in premalignant lesions and,

accordingly, accumulation of mast cells is usually found in

Table 1 (Continued)

IgE-binding

structure

Receptor

composition/

splice variants Expression on haematopoietic cells Expression on nonhaematopoietic cells

Galectins Galectin-3 Monocytes, macrophages

Liu FT et al. Am J Pathol 1995;

147(4):1016–28

Neutrophils

Truong MJ, et al. J Exp Med

1993;177(1):243–8

Eosinophils

Truong MJ et al. Eur J Immunol

1993;23(12):3230–5

Basophils and mast cells

Craig SS et al. Anat Rec 1995;

242(2):211–9

Dendritic cells

Brustmann H. Int J Gynecol

Pathol 2006;25(1):30–7

Smetana K et al. J Leukoc Biol

1999;66(4):644–9

Gastric cells

Fowler M et al. Cell Microbiol 2006;8(1):44–54

Small intestinal, colonic, corneal, conjunctival and

olfactory epithelial cells, epithelial cells of kidney, lung,

thymus, breast, prostate

Dumic J, et al. Biochim Biophys Acta 2006;1760(4):

616–35

Jensen-Jarolim E et al. Eur J Gastroenterology & Hepatol

2002;14(2):145–52

Uterine epithelial cells

von Wolff M et al. Mol Hum Reprod 2005;11(3):189–94

Fibroblasts

Openo KP et al. Exp Cell Res 2000;255(2):278–90

Chondrocytes and osteoblasts

Janelle-Montcalm A et al. Arthritis Res Ther 2007;9(1):R20

Osteoclasts

Nakajima K et al. Cancer Res 2016;76(6):1391–402

Keratinocytes

Konstantinov KN et al. Exp Dermatol 1994;3(1):9–16

Neural cells

Pesheva P et al. J Neurosci Res 1998; 54(5):639–54

Galectin-9 T cells

Chabot S et al. Glycobiology

2002 Feb;12(2):111–8

Monocytic cells, macrophages

Harwood NM et al. J Leukoc

Biol 2016; 99(3):495–503

Mast cells

Wiener Z et al. J Invest

Dermatol 2007; 127(4):906–14

Intestinal epithelial cells

Chen X et al. Allergy 2011;66(8):1038–46

M cells

Pielage JF et al. Int J Biochem Cell Biol 2007;39(10):

1886–901

Nasal polyp fibroblasts

Park WS et al. Biochem Biophys Res Commun 2011;

411(2):259–64

Endometrial epithelial cells

Shimizu Y et al. Endocr J 2008;55(5):879–87

Endothelial cells

Imaizumi T et al. J Leukoc Biol 2002; 72(3):486–91
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the proximity of CD31+ cells and microvessels (51). Mast

cells are a major source of interleukin-17 (IL-17) which

enhances microvessel formation, being negatively prognostic

in gastric cancer (52). Mast cells may also contribute to an

immunosuppressive tumour microenvironment as they mobi-

lize the infiltration of myeloid-derived suppressor cells

(MDSCs) into tumours and induce the production of IL-17

by MDSCs (47), which indirectly attracts Tregs, enhancing

their suppressor function and IL-9 production; in turn, IL-9

strengthens the survival and pro-tumour effect of intratu-

moral mast cells.

There is some evidence, however, that these pro-tumoral

activities of mast cells may be subverted by targeting these

cells to promote tumour destruction. In a mouse allograft

model, triggering of degranulation of mast cells by IgE anti-

body cross-linking of cell surface FceRI resulted in Treg cell

impairment and acute CD4+ and CD8+ T cell-mediated tis-

sue destruction (53). In addition, human mast cells have been

demonstrated to directly induce lymphoma tumour cell death

in vitro when incubated with an anti-CD20 IgE antibody

(54). These insights suggest the potential to reactivate these

cells against cancer through immunotherapies.

Eosinophils

Blood and tissue eosinophilia are prominent features of

allergy and also found to be associated with various cancers.

Tumour-associated eosinophilia (TATE) has been reported to

correlate with good or with bad prognosis. Epidemiological

and clinical studies suggest evidence of intratumoral eosino-

phil degranulation and tumoricidal activity (55) (Fig. 1B).

Human eosinophils have been reported to induce colon can-

cer cell death in vitro, implying mechanisms involving innate

receptors (TCRcd/CD3 complex, TLR2) and mediators such

as alpha-defensins, TNF-a, granzyme A and IL-18 (56–58).
Tumoricidal functions of eosinophils were target antigen-spe-

cific and differed among individuals. Additionally, tumour

antigen-specific IgE has been shown to trigger eosinophil-

mediated tumour cell death by cytotoxic mechanisms (59).

Importantly, eosinophils from allergic donors proved more

cytotoxic (56), which suggests that the allergic state favours

antitumour processes.

Macrophages

Tumour-associated macrophages (TAMs) differentiate from

monocyte precursors circulating in blood (Fig. 1B) and are

recruited to tumour sites by several pro-inflammatory mole-

cules such as chemokines (C-C motif chemokine ligand)

CCL2, CCL3, CCL4, CCL5, and also VEGF, transforming

growth factor-b (TGF-b) and colony-stimulating factors

(GM-CSF and M-CSF) (60). Even if their phenotype is

under the control of specific tumour-derived chemokines and

cytokines that polarize macrophages to a pro-immune ‘M1’

or immunosuppressive/pro-angiogenic ‘M2’ phenotype, their

transcriptional profiles are distinct from regular M1 or M2

macrophages (61). Tumour-associated macrophages are char-

acterized by high expression of CCL2, CCL5, and IL-10 and

by MGL1, dectin-1, CD81, VEGF-A, CD163, CD68,

CD206, arginase-1 (Arg-1), nitric oxide synthase 2 (NOS2),

MHC-II and scavenger receptor A (62). Tumour-associated

macrophages may differ considerably in terms of function

and M1/M2 phenotype, depending on the type of tumour,

stage of progression and location within the tumour tissue

(60, 63); The M1/M2 TAM heterogeneity could explain the

poor prognosis in glioma and breast cancers and better

prognosis in stomach and colon, prostate and non-small-

cell lung cancers (60). Tumour-associated macrophage

heterogeneity depends on the localization in the tumour

microenvironment: In normoxic areas, TAMs show a

CD206lowMHCIIhi M1-like phenotype; in hypoxic areas

TAMs show a CD206hiMHCIIlow M2-like phenotype (61,

63). The expression of Arg-1 as well as VEGF-A, Solute

Carrier Family 2 members 1 and 3 (SCL2A1 and SCL2A3)

and NOS2 are specifically modulated in hypoxic area in

CD206hiMHCIIlow TAMs (63). Innovative drugs allow the

positive effects of elevating M1/kill and other anticancer

innate responses but they also increase an undesired,

‘overzealous M1/kill–Th1 cytotoxic response’ contributing to

chronic inflammation (64).

New strategies aim to re-educate TAMs to exert antitu-

mour functions. In fact, even in a Th2-M2 tumour microen-

vironment macrophages stimulated by IL-4 and IL-13 were

able to inhibit proliferation of B16-F1 melanoma cells (65).

Moreover, macrophages may via IgE and IgG binding to

diverse receptors on them acquire anti-tumour-killing

potency. Tumour-associated macrophages express these

receptors as well, enabling therapeutic monoclonal antibodies

to engage in antibody-dependent cell-mediated cytotoxicity/

phagocytosis (ADCC/ADCP) (66). Recent discoveries show

IgG4-positive cells in several tumour environments, possibly

being attracted by CCL1–CCR8 interactions. The only

macrophage subtype producing CCL1 is M2b which support

vascularization and promote Th2-biased tumour microenvi-

ronments (67). More research on IgG/IgE effector functions

by TAMs is necessary to define new therapeutic concepts.

Dendritic cells

Antigen cross-presentation by DCs is key feature of antitu-

mour immunity as it results in the generation of cytotoxic

CD8+ T lymphocytes (CTLs) against tumour antigens.

Recently, an IgE-mediated cross-presentation pathway has

been discovered (68, 69) (Fig. 2), resulting in priming of CTLs

to soluble antigen at unusually low dose, and independent

MyD88 signals or IL-12 production by DCs. Passive immu-

nization experiments and DC-based vaccination strategies con-

firmed that IgE-mediated cross-presentation significantly

improves antitumour immunity and even induces memory

responses in vivo. However, IL-4, a signature Th2 cytokine,

efficiently blunted IgE-mediated cross-presentation indicative

for a feedback mechanism that prevents overshooting CTL

responses during allergy (70). Deciphering details of IgE/

FceRI-mediated cross-presentation will further provide new

insights into the role of Th2 immune responses in tumour

defence and improve DC-based vaccination strategies.
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T lymphocytes

CD8+ T lymphocytes and Th1 cells play the central role in

elimination of tumour cells by the immune system (Fig. 2).

Th1 cells produce interferon-gamma (IFN-c) which mediates

antitumour activity by several mechanisms, including activa-

tion of macrophages, enhancement of antigen processing and

presentation, and inhibition of angiogenesis (71). The role of

Th2 cells in cancer is more controversial. In some cancers,

including breast (72), gastric (73) and pancreatic cancer (74,

75), Th2 cells and associated cytokines [IL-4, IL-13, Thymic

stromal lymphopoietin (TSLP)] contribute to tumour pro-

gression. In addition, IL-4 plays a crucial role in the survival

of colon cancer stem cells (76). Therefore, IL-4 and IL-13

receptors are promising anticancer targets (77). On the other

hand, Th2 cells and cytokines can also play protective roles

against cancer. In Hodgkin lymphoma, high numbers of Th2

cells are associated with better survival (78). Thymic stromal

lymphopoietin has been shown to block early breast carcino-

genesis through the induction of Th2 cells (79). Thymic stro-

mal lymphopoietin can inhibit colon cancer by inducing

apoptosis of cancer cells (80). Thymic stromal lymphopoietin

and Th2 cells also mediate resistance to carcinogenesis in

mice with epidermal barrier defect (81, 82).

Further, DCs pulsed with anti-prostate-specific antigen

(PSA) IgE or with anti-HER2/neu IgE antibody, complexed

with antigen, induced enhanced CD4 and CD8 T-cell activa-

tion in vitro compared to antigen-complexed IgG1 (83, 84).

Similar observations were made upon OVA-specific IgE/

FceRI-mediated cross-priming in DC and T-cell cocultures,

where CD8 T-cell proliferation and granzyme B secretion

were increased (69). Collectively, these findings support

potential roles for Th2 responses in IgE immune surveillance

against cancer.

Translational strategies to target cancer

Tumour vaccines and adjuvants

Different approaches to induce IgE-mediated adaptive immu-

nity against cancer have been designed.

A cellular vaccine based on tumour cells infected with

modified vaccinia virus Ankara (MVA) and loaded with IgE

conferred protection in mice upon tumour challenge, slower

Figure 2 Tumour antigen uptake and presentation by dendritic

cells recruits cytotoxic CD8+ T lymphocytes. Tumour cells display

tumour antigens at a high density, facilitating cross-linking of IgE

fixed to FceRI receptors on antigen-presenting cells, such as den-

dritic cells (DCs). Tumour antigens may be taken up via three possi-

ble routes: (1) soluble tumour antigen binding to receptor-bound

IgE; (2) By IgE-opsonized soluble antigen binding to IgE receptors

and (3) IgE-opsonized tumour cells binding to IgE receptors. Endo-

cytosis of IgE–antigen complexes leads to digestion in lysosomes

and loading of antigenic peptides on MHC I molecules. Cross-pre-

sentation via proteasome, loading to MHC I and recognition by

CD8+ T lymphocytes (CTLs) is depicted.

Allergy 72 (2017) 866–887 © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd. 873

Jensen-Jarolim et al. AllergoOncology: EAACI position paper



T
a
b
le

2
Ig
E
a
n
ti
b
o
d
ie
s
ta
rg
e
ti
n
g
c
a
n
c
e
r
a
n
ti
g
e
n
s

Ig
E
s
p
e
c
ie
s

Ig
E
s
p
e
c
ifi
c
it
y

N
o
m
e
n
c
la
tu
re

T
e
c
h
n
o
lo
g
y

u
s
e
d

fo
r
p
ro
d
u
c
ti
o
n

E
x
p
re
s
s
io
n

s
y
s
te
m

In
v
it
ro

re
s
u
lt
s

R
o
u
te

o
f
Ig
E

in
v
iv
o

a
d
m
in
is
tr
a
ti
o
n

T
a
rg
e
te
d
c
a
n
c
e
r

c
e
lls

(r
o
u
te

o
f

c
e
ll
in
o
c
u
la
ti
o
n
)

M
o
u
s
e

m
o
d
e
l

R
e
fe
re
n
c
e
s

P
a
s
s
iv
e
im

m
u
n
o
th
e
ra
p
y
s
tu
d
ie
s

M
o
u
s
e

g
p
3
6
o
f
M
M
T
V

C
lo
n
e
A
8

a
n
d
H
1
1

M
u
ri
n
e

h
y
b
ri
d
o
m
a

F
u
s
io
n
o
f

s
p
le
e
n
c
e
lls

w
it
h
P
3
X
2
0

m
y
e
lo
m
a
c
e
lls

N
R

i.
p
.

H
2
7
1
2
m
o
u
s
e

m
a
m
m
a
ry

c
a
rc
in
o
m
a

(s
.c
.
a
n
d
i.
p
.)

C
3
H
/H
e
J

N
a
g
y
E
e
t
a
l.
,

C
a
n
c
e
r
Im

m
u
n
o
l

Im
m
u
n
o
th
e
r.

1
9
9
1
;3
4
(1
):
6
3
–
6
9
.

R
a
t/
h
u
m
a
n

c
h
im

a
e
ri
c

M
o
u
s
e
L
y
-2

Y
T
S
1
6
9
.4

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

M
u
ri
n
e

h
y
b
ri
d
o
m
a

Y
T
S
1
6
9
.4
L

A
D
C
C

m
e
d
ia
te
d

b
y
m
u
ri
n
e
T
c
e
lls

e
x
p
re
s
s
in
g

c
h
im

a
e
ri
c
F
c
eR

I

s
.c
.

E
3
m
o
u
s
e

th
y
m
o
m
a
(s
.c
.)

C
5
7
B
L
/6

K
e
rs
h
a
w

M
H
e
t
a
l.
,

J
L
e
u
k
o
c
B
io
l.

1
9
9
6
;6
0
(6
):

7
2
1
–
7
2
8
.

M
o
u
s
e
a
n
d

m
o
u
s
e
/h
u
m
a
n

c
h
im

a
e
ri
c

C
o
lo
re
c
ta
l

c
a
n
c
e
r
a
n
ti
g
e
n

m
Ig
E
3
0
.6

a
n
d

c
h
Ig
E
3
0
.6

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

M
u
ri
n
e

m
y
e
lo
m
a

(S
p
2
/0
)

A
n
ti
g
e
n
b
in
d
in
g

a
ffi
n
it
y

i.
v
.

H
u
m
a
n
C
O
L
O

2
0
5
(s
.c
.)

S
C
ID

K
e
rs
h
a
w

M
H

e
t
a
l.
,

O
n
c
o
l
R
e
s
.
1
9
9
8
;

1
0
(3
):
1
3
3
–
1
4
2
.

R
a
t/
h
u
m
a
n

c
h
im

a
e
ri
c

M
o
u
s
e
L
y
-2

Y
T
S
1
6
9
.4

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

M
u
ri
n
e

h
y
b
ri
d
o
m
a

Y
T
S
1
6
9
.4
L

A
D
C
C

m
e
d
ia
te
d

b
y
h
u
m
a
n
T
c
e
lls

e
x
p
re
s
s
in
g

c
h
im

a
e
ri
c
F
c
R
eI

i.
p
.

E
3
m
o
u
s
e

th
y
m
o
m
a
(i
.p
.)

N
O
D
-S
C
ID

T
e
n
g
M
W

e
t
a
l.
,

H
u
m

G
e
n
e
T
h
e
r.

2
0
0
6
;1
7
(1
1
):

1
1
3
4
-1
1
4
3
.

M
o
u
s
e
/h
u
m
a
n

c
h
im

a
e
ri
c

F
B
P

M
O
v
1
8
Ig
E

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

M
u
ri
n
e

m
y
e
lo
m
a

(S
p
2
/0
-A
g
1
4
)

D
e
g
ra
n
u
la
ti
o
n
a
n
d

A
D
C
C

c
y
to
to
x
ic
it
y

m
e
d
ia
te
d
b
y

p
la
te
le
ts

i.
v
.

IG
R
O
V
1
h
u
m
a
n

o
v
a
ri
a
n
c
a
rc
in
o
m
a

c
e
lls

(s
.c
.)

C
.B
-1
7

S
C
ID
/S
C
ID

G
o
u
ld

H
J
e
t
a
l.
,

E
u
r
J
Im

m
u
n
o
l.

1
9
9
9
;2
9
(1
1
):

3
5
2
7
–
3
5
3
7
.

A
D
C
C

a
n
d
A
D
C
P

m
e
d
ia
te
d
b
y

h
u
m
a
n
m
o
n
o
c
y
te
s
,

A
D
C
C

m
e
d
ia
te
d
b
y

h
u
m
a
n
e
o
s
in
o
p
h
ils

i.
p
.

H
U
A

p
a
ti
e
n
t-

d
e
ri
v
e
d
o
v
a
ri
a
n

c
a
rc
in
o
m
a
(i
.p
.)

n
u
/n
u

K
a
ra
g
ia
n
n
is

e
t
a
l.
(5
9
)

H
u
m
a
n
iz
e
d

H
E
R
2
/n
e
u

T
ra
s
tu
zu
m
a
b

Ig
E

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

H
E
K
2
9
3

A
n
ti
g
e
n
b
in
d
in
g

a
ffi
n
it
y
,

d
e
g
ra
n
u
la
ti
o
n
,

A
D
C
C
,

in
te
ra
c
ti
o
n
w
it
h

h
u
m
a
n

m
o
n
o
c
y
te
s
,

a
n
d
d
ir
e
c
t

c
y
to
to
x
ic
it
y
in

h
u
m
a
n
b
re
a
s
t

c
a
n
c
e
r
c
e
lls

N
R

N
R

N
R

K
a
ra
g
ia
n
n
is

e
t
a
l.
(9
9
)

Allergy 72 (2017) 866–887 © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.874

AllergoOncology: EAACI position paper Jensen-Jarolim et al.



T
a
b
le

2
(C
o
n
ti
n
u
e
d
)

Ig
E
s
p
e
c
ie
s

Ig
E
s
p
e
c
ifi
c
it
y

N
o
m
e
n
c
la
tu
re

T
e
c
h
n
o
lo
g
y

u
s
e
d

fo
r
p
ro
d
u
c
ti
o
n

E
x
p
re
s
s
io
n

s
y
s
te
m

In
v
it
ro

re
s
u
lt
s

R
o
u
te

o
f
Ig
E

in
v
iv
o

a
d
m
in
is
tr
a
ti
o
n

T
a
rg
e
te
d
c
a
n
c
e
r

c
e
lls

(r
o
u
te

o
f

c
e
ll
in
o
c
u
la
ti
o
n
)

M
o
u
s
e

m
o
d
e
l

R
e
fe
re
n
c
e
s

H
u
m
a
n

H
E
R
2
/n
e
u

C
6
M
H
3
-B
1

Ig
E

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

M
u
ri
n
e

m
y
e
lo
m
a

(P
3
X
6
3
A
g
8
.6
5
3
)

D
e
g
ra
n
u
la
ti
o
n
a
n
d

Ig
E
-f
a
c
ili
ta
te
d

a
n
ti
g
e
n

s
ti
m
u
la
ti
o
n

i.
p
.

D
2
F
2
/E
2
m
o
u
s
e

m
a
m
m
a
ry

c
a
rc
in
o
m
a

c
e
lls

e
x
p
re
s
s
in
g

h
u
m
a
n
H
E
R
2
/n
e
u
(i
.p
.)
*

H
u
m
a
n

F
c
eR

Ia

T
g
B
A
L
B
/c

D
a
n
ie
ls

e
t
a
l.

(8
3
,
1
0
6
)

M
o
u
s
e
/h
u
m
a
n

c
h
im

a
e
ri
c

E
G
F
R

4
2
5
Ig
E
a
n
d

2
2
5
Ig
E

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

H
E
K
2
9
3

D
ir
e
c
t
c
y
to
to
x
ic
it
y

in
d
u
c
e
d
b
y
4
2
5

Ig
E
,
A
D
C
C

m
e
d
ia
te
d
b
y
2
2
5

Ig
E
a
n
d
h
u
m
a
n

m
o
n
o
c
y
te
s

N
R

N
R

N
R

S
p
ill
n
e
r
e
t
a
l.

(1
0
0
)

M
o
u
s
e
/h
u
m
a
n

c
h
im

a
e
ri
c

M
U
C
1

3
C
6
.h
Ig
E

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

C
H
O
-K
1

N
R

s
.c
.

4
T
1
tu
m
o
u
r
c
e
lls

e
x
p
re
s
s
in
g
h
u
m
a
n

M
U
C
1
(s
.c
.)

H
u
m
a
n

F
c
eR

Ia

T
g
B
A
L
B
/c

T
e
o
e
t
a
l.
(5
4
)

M
o
u
s
e
/h
u
m
a
n

c
h
im

a
e
ri
c

C
D
2
0

1
F
5
.h
Ig
E

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

C
H
O
-K
1

A
D
C
C

u
s
in
g
h
u
m
a
n

m
a
s
t
c
e
lls

a
n
d

e
o
s
in
o
p
h
ils

a
s

e
ff
e
c
to
r
c
e
lls

N
R

N
R

N
R

T
e
o
e
t
a
l.
(5
4
)

V
a
c
c
in
a
ti
o
n
s
tu
d
ie
s

M
o
u
s
e

D
N
P

m
A
b
S
P
6

M
u
ri
n
e

h
y
b
ri
d
o
m
a

M
u
ri
n
e

h
y
b
ri
d
o
m
a

N
T

i.
p
.

M
C
3
8
m
o
u
s
e
c
o
lo
n

c
a
rc
in
o
m
a
c
e
lls

e
x
p
re
s
s
in
g

h
u
m
a
n
C
E
A

(s
.c
.)
†

C
5
7
B
L
/6

R
e
a
li
E
e
t
a
l.
,

C
a
n
c
e
r
R
e
s
.
2
0
0
1

1
5
;6
1
(1
4
):

5
5
1
7
–
5
5
2
2
.

M
o
u
s
e

D
N
P

S
P
E
7

M
u
ri
n
e

h
y
b
ri
d
o
m
a

M
u
ri
n
e

h
y
b
ri
d
o
m
a

D
e
g
ra
n
u
la
ti
o
n
o
f

h
a
p
te
n
iz
e
d
c
e
lls

s
.c
.

T
S
/A
-L
A
C
K
m
o
u
s
e

m
a
m
m
a
ry

c
a
rc
in
o
m
a

c
e
lls

c
o
a
te
d
w
it
h

D
N
P
(s
.c
.)

B
A
L
B
/c

N
ig
ro

e
t
a
l.
(8
5
)

M
o
u
s
e
/h
u
m
a
n

c
h
im

a
e
ri
c

N
IP

A
n
ti
-N
IP

Ig
E

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

J
5
5
8
L
m
u
ri
n
e

m
y
e
lo
m
a

D
e
g
ra
n
u
la
ti
o
n
o
f

h
a
p
te
n
iz
e
d
c
e
lls

s
.c
.

T
S
/A
-L
A
C
K
m
o
u
s
e

m
a
m
m
a
ry

c
a
rc
in
o
m
a

c
e
lls

c
o
a
te
d
w
it
h

N
IP

(s
.c
.)

H
u
m
a
n

F
c
eR

Ia

T
g
B
A
L
B
/c

N
ig
ro

e
t
a
l.
(8
5
)

H
u
m
a
n

(t
ru
n
c
a
te
d
)

N
/A

tm
Ig
E

G
e
n
e
ti
c

e
n
g
in
e
e
ri
n
g

C
h
ic
k
e
n

e
m
b
ry
o

fi
b
ro
b
la
s
ts

D
e
g
ra
n
u
la
ti
o
n

s
.c
.

T
S
/A
-L
A
C
K
m
o
u
s
e

m
a
m
m
a
ry

c
a
rc
in
o
m
a

c
e
lls

c
o
a
te
d
w
it
h

tr
u
n
c
a
te
d
Ig
E
(s
.c
.)

H
u
m
a
n

F
c
eR

Ia

T
g
B
A
L
B
/c

N
ig
ro

e
t
a
l.
(8
6
)

Allergy 72 (2017) 866–887 © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd. 875

Jensen-Jarolim et al. AllergoOncology: EAACI position paper



tumour growth and increased survival (85). This antitumour

adjuvant effect may depend on the interaction of IgE with

FceRI as it was lost in FceRIa�/� mice, but not in CD23�/�

mice. In parallel, using a humanized hFceRIa mouse model

expressing the human FceRIa chain, human IgE could exert

antitumour adjuvant effects (86). When a human truncated

mIgE (tmIgE) which retained binding to FceRI and trigger-

ing immune cell activation was inserted into a rMVA, the

resulting rMVA-tmIgE showed a protective effect in the

above humanized FceRIa mouse model (86).

Other anticancer vaccine approaches are based on specific

tumour antigens and tumour antigenic mimotopes which

have shown promise in restricting tumour growth (87). When

using evolutionarily conserved cancer antigens, such as

HER2/neu or EGFR, a vaccine may be used across different

species (88). Furthermore, the formulation with adjuvants

like aluminium hydroxide, orally sucralfate or proton pump

inhibitors, may help to direct induction of protective IgE

antibody and merit careful study (89).

Recombinant IgE anticancer antibodies

Engineering antibodies with Fc regions of the IgE class

specific for cancer antigens is designed to (i) harness the

high affinity of this antibody isotype for its cognate Fce
receptors on tissue-resident and potentially tumour-resident

immune effector cells and (ii) utilize the properties of IgE to

exert immune surveillance in Th2 conditions such as in

tumour microenvironments. Recombinant antibody tech-

nologies and approaches to recombinant IgE (rIgE) produc-

tion have advanced significantly with a number of

antibodies already engineered and tested in vitro and in vivo

(see Table 2). Recombinant IgE can be generated by differ-

ent cloning strategies (Fig. 3). While classical restriction

enzyme-based cloning requires the presence of specific

restriction sites flanking the gene of interest, expression of

IgE by insect cells requires a recombinant baculovirus stock

containing the antibody expression cassette. Novel protocols

enable site-specific transposition of the coding sequence

using bacmid-containing E. coli as intermediate hosts. Poly-

merase Incomplete Primer Extension cloning, independent of

restriction or other recombination sites, facilitates rapid

cloning with the option of site-specific mutagenesis at the

same time. Human/mouse chimaeric IgEs were also gener-

ated by hybridoma technology from a knock-in mouse

strain (90), and more efficient cloning strategies using mam-

malian expression vectors are available (91). In future fully

human IgE antibodies could be generated from synthetic

human antibody repertoire libraries (92), or cloned directly

from the B cells of patients (93).

Also the heavily glycosylated structure of the IgE antibody

class has to be considered. IgE has seven glycosylation sites,

six of which are occupied mainly by complex N-glycans

including terminal galactose, sialic acid and fucose structures

(94). Oligomannosidic structures are only identified at posi-

tion Asn394 (94), and some evidence suggests that they may

be involved in binding to IgE Fc receptors and in some bio-

logical activities of IgE (95). On the other hand, complex N-T
a
b
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glycosylation of IgE is not thought to have a direct impact

on its ability to bind to FceRI or CD23. The contribution of

glycosylation on IgE binding to galectin-3 and galectin-9 (96)

remains unclear. There is increasing evidence that the glyco-

sylation of IgEs in healthy and different disease states may

vary, prompting the need for further research on the impor-

tance of glycans on IgE functions against cancer.

In vitro effector functions of IgE antibodies in the cancer

context

Eosinophil, monocyte and macrophage-mediated ADCC/

ADCP, antigen presentation by DCs and degranulation of

mast cells and basophils, have been identified as potent

mechanisms of IgE-mediated anticancer functions in vitro

(69, 97, 98) (Fig. 1B).

The ADCC/ADCP functions against cancer of the anti-

folate receptor-alpha (FRa) IgE, MOv18, have been previ-

ously described (59). Recently, the therapeutic anti-HER2/

neu and anti-EGFR IgG1 antibodies, trastuzumab (Her-

ceptin�, Roche Diagnostics, Basel, Switzerland) and cetux-

imab (Erbitux�, Merck Biopharma, Darmstadt, Germany),

respectively, have been cloned and engineered recombinantly

as humanized and chimaeric IgE antibodies (99, 100). Using

U937 monocytic effector cells (101), trastuzumab IgG1 medi-

ated killing of HER2-overexpressing CT26 murine as well as

of SKBR3 human mammary carcinoma cells mainly by

ADCP, whereas trastuzumab IgE mediated killing via ADCC

(99). Similarly, cetuximab IgG1 and IgE mediated compara-

ble levels of phagocytosis of EGFR-overexpressing A431

human tumour cells by purified human monocytes, but cetux-

imab IgE triggered significantly higher levels of ADCC than

IgG1 (100). Eosinophil ADCC killing has also been demon-

strated in vitro using an anti-human CD20 IgE antibody

against OCl-Ly8 lymphoma cells (54). Incubation with this

anti-CD20 IgE stimulated cord blood-derived mast cells to

release IL-8 and kill CD20+ tumour cells. Similarly, trastuzu-

mab IgE, cetuximab IgE, anti-PSA IgE, and MOv18 IgE

activated RBL SX-38 rat basophilic leukaemia cells when

cross-linked with anti-IgE antibody engaged with multimeric

antigen, or when incubated with target cells overexpressing

specific tumour-associated antigen (84, 99, 100, 102). In con-

trast, monomeric soluble tumour antigen did not trigger

degranulation (84, 100, 102). Accordingly, incubation of

MOv18 IgE-sensitized RBL SX-38 cells with patient sera

containing elevated levels of soluble FRa, did not lead to

mast cell degranulation. Furthermore, MOv18 IgE did not

trigger the basophil activation in the presence of soluble FRa,
which is highly elevated in the sera of subsets of ovarian carci-

noma and mesothelioma patients (102). This suggests that in

tumours, mast cells may release potent inflammatory

mediators in the presence of tumour-specific IgE and overex-

pressed tumour antigen, while IgE in the absence of multimeric

antigen is not expected to trigger anaphylactic responses.

Notably, antigenic epitopes also need to be displayed in a rigid

spacing to lead to productive triggering (103). Given that the

potent anticancer functions of IgE antibodies in vitro, it is

important to consider these results in the patient context (104).

The impact of soluble tumour antigen in the circulation has

been considered from a safety perspective (97, 102). However,

the possible inhibitory activity of soluble tumour antigen

sequestering IgE and preventing tumour cell engagement with

effector cells needs to be elucidated.

Furthermore, the ability of patient immune effector cells to

eradicate malignant cells must be evaluated to consider: (i)

the impact of treatments as chemotherapy or steroid intake

on effector cell functions, (ii) the effect of the tumour

microenvironment on IgE receptor expression and on killing

properties of these effector cells, and (iii) whether IgE

immunotherapy may itself re-educate effector cells to enhance

their antitumour functions (105).

In vivo models in AllergoOncology

Various animal models have been successfully employed to

study the in vivo efficacy of IgE antibodies against cancer

(106), with different limitations.

Direct application of human IgE in tumour bearing mice is

not applicable as human IgE does not bind rodent Fce recep-

tors (Table 3). Next, humans express FceRI on a broad

range of cells including monocytes, mast cells, basophils,

eosinophils, platelets, Langerhans cells and DCs (Table 1),

whereas murine FceRI expression has only been confirmed

on mast cells and basophils (Table 4). Furthermore, also

CD23 can be found on numerous human cells, while mice

express CD23 on only B cells and certain T cells (106).

Despite these differences, a xenograft model with severe

combined immunodeficient (SCID) mice, and a patient-

derived xenograft model of ovarian carcinoma both reconsti-

tuted with human peripheral blood mononuclear cells, were

successfully used to demonstrate the superior tumour-killing

potential of MOv18 IgE over IgG1 via both CD23 and

FceRI (59, 107). More human-relevant models have been

established using transgenic mice strains that express human

FceRIa, which complexes with endogenous murine FcRb
and FcRc subunits, forming fully functional tetrameric

FceRI on mast cells and possibly trimeric receptors on

macrophages, Langerhans cells and eosinophils, with a tissue

distribution like in humans (108–110). A human anti-HER2/

neu (C6MH3-B1 IgE) IgE tested in this model significantly

prolonged the survival of immunocompetent mice bearing

HER2/neu-expressing tumours (83). A constraint of these

Figure 3 Examples of expression systems used for recombinant

expression of antitumour IgE. (A) Recombinant IgE by cloning the

variable domains of IgG of desired specificity to an IgE constant

domain. (B) Classical restriction enzyme-based cloning requires the

presence of specific restriction sites flanking the gene of interest.

(C) Expression of IgE by insect cells requires a recombinant bac-

ulovirus stock containing the antibody expression cassette. (D)

Polymerase Incomplete Primer Extension (PIPE) cloning facilitates a

rapid cloning of DNA sequences with the option of performing

site-specific mutagenesis at the same time.
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transgenic models is the lack of CD23 expression, precluding

evaluation of IgE-triggered CD23-mediated phagocytosis

(111). A surrogate immunocompetent model system of syn-

geneic carcinoma in rats aims to better recapitulate the

human IgE immune system (105), as FceRI and CD23

expression and cellular distribution in rat cells, including

monocytes and macrophages, mirrors that of humans.

Relevant models to address toxicity of human IgE antibod-

ies are nonhuman primates (NHP) such as cynomolgus

(Macaca fascicularis) and rhesus (Macaca mulatta) monkeys,

as they have been shown to mediate anaphylaxis induced by

human IgE (112). Cynomolgus monkeys have been routinely

used to evaluate the safety of IgG therapeutic antibodies cur-

rently used in the clinic. A fully human IgE antibody target-

ing HER2/neu (C6MH3-B1 IgE), administered systemically,

was also well tolerated in cynomolgus monkeys (83). How-

ever, while recent studies confirmed the cross-reactivity of

human IgE with cynomolgus monkey peripheral blood leuco-

cytes (PBLs) with comparable binding kinetics, human IgE

dissociates faster from cynomolgus monkey PBLs and trig-

gers a different cytokine release profile (113). This is impor-

tant in toxicity studies using IgE in this species. Further, also

differences in the interaction of FccRs with the various

human IgG isotypes have been found (114). Thus, while

NHP are meaningful models for toxicity studies of human

antibodies, they must be used with caution.

The dog (Canis lupus familiaris) is another potential model,

as dogs suffer from spontaneous cancer and atopic diseases,

making them a relevant clinical experimental model (115).

For instance, the canine counterparts to HER2/neu and

canine EGFR expression are highly homologous to the

human molecules, and can be targeted by trastuzumab and

cetuximab (88). An additional advantage is the remarkable

similarity of the human and dog immune systems in terms of

immunoglobulin classes, IgE and FceRI expression and func-

tional homology (116). Thus, canine anti-EGFR IgG has

been generated (117) and IgE is currently being generated for

comparative studies in canine cancer patients.

Table 3 Cross-reactivity of IgE and Fce receptors of different species, with the equilibrium association constant (KA) or equilibrium dissocia-

tion constant (KD), where available, described exactly as in the original references

Species Human FceRI NHP* FceRI Mouse FceRI Rat FceRI Dog FceRI

Human

IgE

KA† = 0.5–2.7 9 109 M�1

Ishizaka T, Soto CS,

Ishizaka K. Mechanisms

of passive sensitization.

III. J Immunol 1973;

111(2):500–11

Pruzansky JJ, Patterson

R. Immunology 1986;

58(2):257–62

KD† = 1.876 9 10�8 M

Saul L et al. MAbs

2014; 6(2):509–22

No binding

Fung-Leung

WP et al.

J Exp Med

1996;183:49–56

No binding

Fung-Leung WP

et al. J Exp

Med 1996;183:

49–56

No binding

Lowenthal M,

Patterson R,

Harris KE. Ann

Allergy 1993;

71(5):481–4

NHP

IgE

KD = 3 9 10�10 M

Meng YG, Singh N,

Wong WL. Mol Immunol

1996; 33(7–8):635–42

N.D. N.D. N.D. No binding

Lowenthal M,

Patterson R,

Harris KE. Ann

Allergy 1993;

71(5):481–4

Mouse

IgE

KA† = 4.4 9 108 M�1 N.D. KA† = 1.75–3.57‡ 9

109 M�1

Sterk AR, Ishizaka T.

J Immunol 1982;

128(2):838–43

KA† = 2.49–5.05§ 9

109 M�1

Sterk AR, Ishizaka T.

J Immunol 1982;

128(2):838–43

N.D.

Rat IgE KD† = 1.58 9 10�8 M

Mallamaci MA et al.

J Biol Chem 1993;

268(29):22076–83

N.D. KA† = 1.46–2.68‡ 9

109 M�1

Sterk AR, Ishizaka T.

J Immunol 1982;

128(2):838–43

KA† = 7.84–8.05§ 9

109 M�1

Sterk AR, Ishizaka T.

J Immunol 1982;

128(2):838–43

N.D.

Dog

IgE

KD = 9.2 9 10�9 M

Fung-Leung WP et al.

J Exp Med 1996;183:49–56

Ye H et al. Mol Immunol

2014; 57(2):151–9

Confirmed binding

Fung-Leung WP et al.

J Exp Med 1996;183:49–56

N.D. N.D. KD = 2.1 9 10�8 M

Ye H et al. Mol

Immunol 2014;

57(2):151–9

N.D., not determined; NHP, non-human primates.

†Affinity determination based on cells, not receptor subunits; therefore, also CD23 binding might contribute to the denoted values.

‡Depending on mouse strain used as a source of mast cells.

§Depending on mast cell source (rat or RBL cell line).
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The described animal models are informative for preclini-

cal testing, but clinical trials in human patients are required

to fully understand the therapeutic potential and risks associ-

ated with IgE anticancer antibodies.

Allergy in clinical oncology: a cross-disciplinary field

Allergic reactions to anticancer drugs are a common clinical

problem, seen especially with platinum drugs, taxanes,

anthracyclines (118) and monoclonal antibodies (mAbs)

(119). In some cases, it is the excipient rather than the drug

itself that is responsible for the hypersensitivity reaction. The

administration of some of these drugs is routinely preceded

by premedication with steroids.

Treatment of allergic anticancer drug reactions is, as for

other episodes of hypersensitivity, using intravenous fluids,

antihistamines, steroids and antipyretics, depending on the

risk evaluation (Fig. 4A). Desensitization algorithms can be

used in cases of established drug allergy, in which escalating

small doses of the drug are administered in a controlled envi-

ronment with ready access to critical care facilities (120)

(Table 5). Desensitization has a particular role to play in

clinical scenarios where repeated rechallenge with an active

drug may be required, as in the management of ovarian can-

cer, but also in allergy to anticancer mAbs (121).

Due to the increased utilization of chemotherapies and tar-

geted mAbs hypersensitivity reactions to these medications

have increased dramatically worldwide, preventing the use of

first-line therapies, with consequent impact in patient’s sur-

vival and quality of life (122). These reactions can range

from mild cutaneous reactions to life-threatening symptoms

including anaphylactic shock with IgE and/or mast cell/

Table 4 Tissue distribution of IgE receptors in humans vs animal models in AllergoOncology

Human Basophils, mast cells, eosinophils,

monocytes, dendritic cells,

Langerhans cells

Reviewed in: Daniels TR et al.

Cancer Immunol Immunother

2012;61(9):1535–1546

Monocytes, eosinophils, B cells,

T cells, dendritic cells,

Langerhans cells, platelets

Rev. in: Daniels TR et al.

Cancer Immunol Immunother

2012;61(9):1535–1546

Mouse (wt) Basophils, mast cells

Rev. in: Daniels TR et al. Cancer

Immunol Immunother 2012;61(9):

1535–1546

l+, d+ B cells, some CD8+

T-cell subsets

Delespesse G et al. Immunol

Rev 1992 Feb;125:77–97

Mouse (transgenic)

mFceRIa�/�, hFceRIaTg,
C57BL/6 background

Dombrowicz D et al.

Immunity 1998;8(4):517–529

hFceRIa on bone marrow-derived

mast cells

Dombrowicz D et al. J Immunol

1996 Aug 15;157(4):1645–51

mFceRIa is replaced with

hFceRIa, which complexes

with murine FcRb and FcRc

subunits

hFceRIaTg, C57BL/6J

background

Fung-Leung WP et al. J Exp

Med 1996 Jan 1; 183(1): 49–56

hFceRIa on bone marrow-derived

mast cells

Fung-Leung WP et al. J Exp Med

1996 Jan 1; 183(1): 49–56.

PMCID: PMC2192401

hFceRIa complexes with

murine FcRb and FcRc

subunits

Model 1: mFceRIa�/�,
hFceRIaTg

Model 2: mFceRIa�/�, mFcRb�/�,
hFceRIaTg, BALB/c background

Dombrowicz D et al. Immunity,

Volume 8, Issue 4, 1 April 1998,

Pages 517–529

Mast cells, basophils, monocytes,

eosinophils, Langerhans cells

Dombrowicz D et al. Immunity,

Volume 8, Issue 4, 1 April 1998,

Pages 517–529

mFceRIa is replaced with

hFceRIa, which complexes

with murine FcRb and/or

FcRc subunits

Rat Basophils, mast cells,

macrophages, eosinophils

Daniels TR et al. Cancer Immunol

Immunother 2012;61(9):1535–1546

B cells, macrophages

Capron A et al. Eur J Immunol

1977 May;7(5):315–22

Mencia-Huerta JM et al. Int

Arch Allergy Appl Immunol

1991;94(1–4):295–8

Dog Basophils, tissue mast cells,

monocytes, Langerhans cells,

CD1+ dendritic cells

Jackson HA et al. Veterinary

Immunology and

Immunopathology, Volume 85,

Issues 3–4, March 2002,

Pages 225–232

Eosinophils

Galkowska H et al. Veterinary

Immunology and

Immunopathology, Vol 53,

Issues 3–4, October 1996,

Pages 329–334

Data not complete,

sometimes not evident if

expression relates to FceRI

or CD23
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basophil involvement, and occur during or within one 1 h of

the drug infusion or hours–days, as these patients have exten-

sive premedications, including steroids (123). The symptoms

are associated with the release of tryptase and other media-

tors such as histamine, leukotrienes and prostaglandins,

implicated in the cutaneous, respiratory, gastrointestinal and

cardiovascular symptoms (124). Other systemic symptoms

such as chills and fever are thought to be due to the release

of IL-1 and IL-6 among others (125). Atypical symptoms

such as pain have been associated with taxanes and some

monoclonal antibodies (126). Deaths have been reported

when re-exposing patients to chemotherapy drugs to which

they have presented immediate hypersensitivity reactions

(127). Delayed reactions can present as either mast cell/ba-

sophil-mediated symptoms or as delayed cell-mediated-type

intravenous (i.v.) hypersensitivity (128).

There is increasing evidence that patients with immediate

and delayed hypersensitivity to chemotherapy and mono-

clonal antibodies can be safely re-exposed to these

medications through rapid drug desensitization (RDD)

(129), in which diluted amounts of drug are reintroduced

through a multistep protocol, achieving the target dose in

few hours (Fig. 4B). Thereby, inhibitory mast cell mecha-

nisms protect the patients against anaphylaxis (130). Most

patients with hypersensitivity reactions are candidates for

RDD, except for patients with Steven Johnsons syndrome

(SJS), toxic epidermal necrolysis, drug reaction with eosino-

philia and systemic symptoms (DRESS), and acute eczema-

tous generalized pustulosis. The success of RDD relies on

personalized protocols (131). Platins including carboplatin,

cisplatin and oxaliplatin, taxanes including paclitaxel and

docetaxel, and monoclonal antibodies such as rituximab,

trastuzumab and cetuximab have been successfully desensi-

tized (132). The largest desensitization study worldwide

reported that 370 highly allergic patients received 2177 suc-

cessful desensitizations to 15 drugs, three of which (beva-

cizumab, tocilizumab and gemcitabine) were unprecedented

and in which 93% of the procedures had no or mild

Figure 4 Treating hypersensitivity in clinical oncology. (A) Proposed

algorithm for the evaluation of hypersensitivity of chemotherapy

drugs and indications for rapid drug desensitization (RDD). BAT,

basophil activation test; HSR, immediate hypersensitivity reaction.

(B) Proposed mechanism for chemotherapy RDD (adapted from

Ref. 164). (C) Outcomes of Brigham and Women’s Hospital desen-

sitization protocols for carboplatin, paclitaxel and rituximab in 2177

cases for 370 patients (adapted from Ref. 133).
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reactions, 7% moderate to severe reactions which did not

preclude the completion of the treatment, and there were no

deaths (Fig. 4C) (133). The study indicates that the overall

health costs were not increased over standard treatment.

Most importantly, a group of women with ovarian cancer

sensitized to carboplatin had a non-statistically significant

lifespan advantage over nonallergic controls.

Therefore, IgE- and non-IgE-mediated chemotherapy

hypersensitivity reactions can be managed by RDD, enabling

sensitized patients to receive the full treatment safely, thus

representing an important advance in the patient’s treatment

and prognosis.

Conclusions

This position paper summarizes current knowledge and

developments in the field of AO since (1). Novel insights

gained highlight the merits of studying the nature of Th2

immune responses in cancer, much of which remains

insufficiently understood. Epidemiologic analyses support

associations between allergies, allergen-specific and total IgE

levels with lower risk of cancer development, to date only

shown with regard to specific malignancies. Whether these

associations relate to antigen- or allergen-specific responses

or whether they represent protective effects of IgE through

recognition of specific tumour antigens remains unclear.

Understanding these associations and the contributions of

IgE and Th2 immunity in protection from cancer growth

would also contribute to understanding whether patients with

allergic asthma who receive anti-IgE treatment may be at risk

of developing cancer. Short-term follow-up findings have not

revealed any enhanced risk of cancer development to date

(134); however, further longer follow-up studies and novel

functional insights will be informative.

Emerging studies further support the study of the prototypic

Th2 isotype, IgE as a means to combat tumours when directed

against cancer antigens through promoting the interaction

between effector and cancer cells, and stimulating CTLs via

Table 5 Brigham and Women’s Hospital three-bag 12-step desensitization protocol for paclitaxel 300 mg

Target dose (mg) 300

Standard volume per bag (ml) 250

Final rate of infusion (ml/h) 80

Calculated target concentration (mg/ml) 1.2

Standard time of infusion (min) 187.5

Volume Concentration

(mg/ml)

Total mg

per bag

Amount

infused

(ml)

Solution

1

250 ml of 0.012 mg/ml 3 9.38

Solution

2

250 ml of 0.120 mg/ml 30 18.75

Solution

3

250 ml of 1.190 mg/ml 297.638 250

Note: The total volume and dose dispensed are more than the final dose given to patient because many of the solutions are not completely

infused

Step Solution Rate

(ml/h)

Time

(min)

Volume

infused

per step (ml)

Dose

administered

with this step

(mg)

Cumulative

dose (mg)

1 1 2.5 15 0.63 0.0075 0.0075

2 1 5 15 1.25 0.015 0.0225

3 1 10 15 2.5 0.03 0.0525

4 1 20 15 5 0.06 0.1125

5 2 5 15 1.25 0.15 0.2625

6 2 10 15 2.5 0.3 0.5625

7 2 20 15 5 0.6 1.1625

8 2 40 15 10 1.2 2.3625

9 3 10 15 2.5 2.9764 5.3389

10 3 20 15 5 5.9528 11.2916

11 3 40 15 10 11.9055 23.1971

12 3 80 174.375 232.5 276.8029 300

Total time: 5.66 h
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antigen cross-presentation. Collectively, these findings support

the unique properties of IgE to activate anticancer immune

responses in passive and active immunotherapy of cancer and

provide evidence of safety. Whereas cell-fixed tumour antigen

can trigger cross-linking of IgE on its Fc receptors expressed

on effector cells, monovalent soluble antigen does not. Some

in vivo models relevant to IgE biology have been designed with

careful consideration of species-specific IgE receptor expres-

sion profile. Mouse models have been used most often,

whereas rats, dogs and NHP may offer new alternatives to

address specific questions of potency, safety and function. A

couple of recombinant anticancer IgE antibodies are in the

pipeline, and parallel interrogation of the same antibody

immunotherapies in clinical oncology will determine the pre-

dictive value of in vivo models.

Recent findings shed light into the alternative Th2 anti-

body isotype IgG4 and its expression and functions in mela-

noma and other cancers (135). The mechanisms of this

humoral immune bias in oncology merit further in-depth

study. Finally, it has to be emphasized that allergic reactions

to anticancer agents, chemotherapy and biologics represent

important challenges in daily clinical oncology practice,

which can be dealt with by desensitization protocols analo-

gous to those used in allergen immunotherapy.

In summary, the AO field represents an open interdisci-

plinary science forum where different aspects of the interface

between allergy and cancer are systematically addressed and

discussed, gaining thereby previously unappreciated insights

for cancer immunotherapy.
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