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Abstract
Functional genomic screening with CRISPR has provided a powerful and precise new way to interrogate the
phenotypic consequences of gene manipulation in high-throughput, unbiased analyses. However, some experimen-
tal paradigms prove especially challenging and require carefully and appropriately adapted screening approaches. In
particular, negative selection (or sensitivity) screening, often the most experimentally desirable modality of screening,
has remained a challenge in drug discovery. Here we assess whether our new, modular genome-wide pooled CRISPR
library can improve negative selection CRISPR screening and add utility throughout the drug development pipeline.
Our pooled library is split into three parts, allowing it to be scaled to accommodate the experimental challenges
encountered during drug development, such as target identification using unlimited cell numbers compared
with target identification studies for cell populations where cell numbers are limiting. To test our new library, we
chose to look for drug–gene interactions using a well-described small molecule inhibitor targeting poly(ADP-ribose)
polymerase 1 (PARP1), and in particular to identify genes which sensitise cells to this drug. We simulate hit identifi-
cation and performance using each library partition and support these findings through orthogonal drug combina-
tion cell panel screening. We also compare our data with a recently published CRISPR sensitivity dataset obtained
using the same PARP1 inhibitor. Overall, our data indicate that generating a comprehensive CRISPR knockout screen-
ing library where the number of guides can be scaled to suit the biological question being addressed allows a library
to have multiple uses throughout the drug development pipeline, and that initial validation of hits can be achieved
through high-throughput cell panels screens where clinical grade chemical or biological matter exist.

Introduction
Pooled CRISPR knock-out (CRISPRko) screens have suc-

cessfully identified genome-wide collections of essential

genes,1–4 as well as mechanisms of drug resistance and as-

sociated biomarkers.5–7 However, this technology is also a

valid tool for the identification of biomarkers of drug sensi-

tivity where perturbations increase the toxicity of a drug or

another insult. Sensitivity screening, also known as negative

selection screening, requires the identification of the loss of

a key genotype or phenotype from the experimental popu-

lation. This is a more challenging screen modality, as the

experiment is looking to find the rarer event (i.e., loss of cer-

tain cell populations), which is contingent upon high pene-

trance of gene disruption and typically results in more

complex datasets where the signal-to-noise ratio is greater.8

Consequently, relatively fewer negative selection drug–

gene interaction screens have been published,9–12 in contrast

to many positive selection screens.13–15 While the rapid

development of pooled lentivirus and deep-sequencing-led

approaches have allowed us and others to exploit the posi-

tive selection approach in target identification (ID), drug

mechanism of action analysis, and patient stratification

focused screens, adapted tools are required to adequately

capture the reciprocal interest in sensitivity screening.
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Dual-direction and combined screening approaches

have been of great value in improving screen datasets

for negative selection screens6,16 These screens require

an additional arm that provides gain-of-function infor-

mation, and whilst powerful, they are experimentally

complex and might not provide high-sensitivity loss-of-

function genetic disruptions needed for rapid drug devel-

opment. Adapting pooled phenotypic approaches17 and

simple haploid genetics18,19 has also increased screen

power in some cases, but these specific examples re-

quired that the cell death pathways can be identified in

a time-resolved way or use a restrictive cell line back-

ground, respectively, and therefore have limited gener-

alized applicability. Much progress has been made in

improving both the penetrance and the precision of

CRISPR-based tools for screening, including the devel-

opment of new algorithms to better predict guide sequ-

ences and modifications to the molecular infrastructure

to increase editing rates,14,20,21 but robust screen out-

comes for negative selection remain challenging. A com-

mon feature of existing algorithms for guide target

site identification is the use of gene essentiality datasets

to train them. However, the reductionist tendency of

these algorithms often yields smaller, low complexity

libraries.

Recognizing that screen success rarely uses a one-size-

fits-all approach, here we have built a flexible pooled

screening CRISPRko library that is partitioned into

three parts to allow library design and complexity to

meet the experimental challenges of a given individual

screen. For instance, resistance screening could be

viewed as a relatively low-risk endeavor in most cases,

and screens can be successfully conducted using a lower

complexity library with four guides targeting each gene.

By contrast, negative selection screens require greater ex-

perimental power for robust hit ID, so a library with six

or eight guides per gene could be deployed to accommo-

date the need for greater experimental power. We tested

our library design of four guides per gene, six guides per

gene, or eight guides per gene in a negative selection

screen to identify genes that interact and specifically

sensitize cells to the poly(ADP-ribose) polymerase 1

(PARP1) inhibitor olaparib. Some of the hits identified

in the four-, six- and eight-guide library components

are validated by high-throughput cell panel screening.

Materials and Methods
Cell lines
HT-29 cells (American Type Cell Culture) were cul-

tured in McCoy’s supplemented with 10% fetal bovine

serum (all supplied by Gibco UK). Cells were routinely

checked for mycoplasma and identity verified by short

tandem repeat (STR) analysis.

Library generation
We generated three pooled, whole-genome guide RNA

libraries using the guide RNA design algorithms from

the Edit-R tool (Horizon Discovery).22 Each single

guide RNA (sgRNA) was synthesized (CustomArray,

Inc.) using a modified trans-activating CRISPR RNA se-

quence, as described in Chen et al.23 and Cross et al.18

(5¢-GTTTAAGAGCTATGCTGGAAACAGCATAGCA

AGTT-3¢). An all-in-one lentivirus plasmid vector was

used comprising a selection marker (puromycin resis-

tance), the expression cassette for Cas9 and the sgRNA

sequence. Each pooled sgRNA library was cloned into

the vector backbone using a Gibson Assembly Master

Mix kit (New England BioLabs) in accordance with the

manufacturer’s instructions. Library plasmids were puri-

fied using a Qiagen Plasmid Plus purification system in

accordance with the manufacturer’s instructions.

Lentivirus production
Lentivirus was produced as described in Le Sage et al.6

Cell transduction and screening protocol
Cell culture and screening was conducted as described in

Le Sage et al.6 Deviations from the previously described

protocol were the use of HT-29 cell line in the current

study. A total of 1.5 · 108 cells were transduced; 48 h

after library transduction, transduced and nontransduced

cells were treated with puromycin at a final concentration

of 0.6 lg/mL. Once selection was complete, puromycin

was removed and cell populations were divided for treat-

ments and replicates and maintained in multiple five-

layer flasks (Falcon), counted, and reseeded at 5.5 · 107

cells per treatment every 3–4 days with appropriate treat-

ments. Final pellets were harvested after 12 doublings of

cells treated with DMSO. Genomic DNA was extracted

using QIAamp DNA Blood Maxi kit (Qiagen). DNA con-

centration was determined using a Nanodrop spectropho-

tometer and at least 230 lg of genomic DNA for each

sample was then amplified by PCR to generate amplicons

of the sgRNA cassette using a forward primer, TC

GTCGGCAGCGTCAGATGTGTATAAGAGACAGU–

[variable]–TGTGGAAAGGACGAAACACC; and a re-

verse primer, GTCTCGTGGGCTCGGAGATGTGTA

TAAGAGACAGGATCAATTGCCGACCCCTCC. These

amplicon samples were purified using Agencourt beads

(Beckman) and deep sequenced on an Illumina NextSeq

platform (Microsynth AG).
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Data analysis
Raw next-generation sequencing libraries were evaluated

for quality using FASTQC version 0.11.5. (Babraham

Institute; Cambridge, UK).24 Guide counts were obtained

using an in-house customized version of k-mer counting,

which took into account guide staggering from the exper-

imental protocol. Briefly, guide-length fragments were

trimmed and hashed before mapping with exact string

counts from each file to provide raw counts for each

guide found in the library. Guide counts were then nor-

malized within each group (median based) and Log2

fold change was calculated to determine the change in

abundance of each guide in each sample. DrugZ was

used as the drug-interaction scoring tool, as described

previously.25,26 Network analysis was conducted using

EsyN and HumanMine with physical interaction.27

Cell panel screening
Cell lines were grown in vendor recommended culture

medium and STR-typed to verify identity. Cells were

seeded into 384-well assay plates and compounds

added after 24 h using a nine-point titration plus untreated

control for the single agent assays or a 6 · 6 optimized

dose matrix for the combinations. After a further 6 days

of incubation, cell viability was assessed using CellTiter-

Glo 2.0 (Promega). A baseline T0 measurement (at time

of drug of addition) was also taken to enable calculation

of growth inhibition, which enables the differentiation

between cytostasis and cytotoxicity. Single agent re-

sponses were analyzed by calculating the area under the

dose–response curve (response area) and combinations

were analyzed using synergy score which was calculated

using the Loewe additivity model using Horizon’s propri-

etary Chalice Analyzer software. (For detailed methods

see Kondo et al. 2002.28) Pharmacogenomic analysis of

response was performed using the mRNA expression

and CRISPRko gene dependency data obtained from

the Cancer Dependency Map (Depmap) portal release

2019q3. Correlation between drug response and PARP1

expression was analyzed by Pearson correlation. Cells

were ranked according to drug sensitivity using Response

Area and the top and bottom quartiles were assigned as

responders or nonresponders, respectively. Significant

differences in gene dependencies between these two pop-

ulations were then identified using Fisher’s exact test.

Network analysis of the top 250 genes that sensitive

cell lines were more dependent on was performed using

EsyN and BioGRID with physical interaction,27 and

functional annotation and clustering was performed

using the DAVID Bioinformatics Tool v6.8.29

Results
We partitioned the guides in our library for synthesis

across three independent arrays: one containing four

guides (LibA), and a further two arrays containing two

guides per gene each (LibB and LibC). When these li-

brary subsets are combined at the plasmid level in, they

generate a library in which a total of eight guides targets

each gene (Fig. 1). This approach facilitates screening

using a library consisting of four, six, or eight guides,

in accordance with the desired complexity. For the proof

of concept screen, each library plasmid was combined

in equimolar concentrations and packaged as a single len-

tiviral pool with eight guides per target gene (LibABC).

We tested this ABC pooled library in a drug–gene in-

teraction screen using the PARP1 inhibitor olaparib

(Fig. 1A). PARP1 inhibitors are well studied, and cells

that have compromised BRCA1 or BRCA2 function

are known to be sensitive to these inhibitors. However,

other studies indicate the existence of BRCAness,

where increased sensitivity to PARP1 inhibitors is evi-

dent in the absence of BRCA1 or BRCA2 mutations.30

Moreover, mechanisms of response to PARP1 inhibition

in tumors is etiologically dynamic and can result from

diverse effects, including increasing DNA lesions result-

ing from loss-of-function of PARP1 and trapping of

PARP at the loci of DNA damage.31 Thus, our screen

should be able to identify known sensitivity mechanisms

to olaparib to check that our library is effective, and to

potentially identify additional mechanisms of sensitivity.

HT-29 cells are a common-use colorectal carcinoma

laboratory screening model, and these cells were infected

with the ABC library at a low multiplicity of infection

followed by antibiotic selection to eliminate untrans-

duced cells. Following selection, replicate populations

of cells were split off and treated with either DMSO (ve-

hicle control) or a dose of 10 lM olaparib. Importantly,

after each treatment phase (one passage), cells in each

replicate were harvested and counted to monitor treat-

ment response and maintain optimal dose effect. This

was deemed to be a response rate of 20%–30% growth in-

hibition compared with control and was rigorously opti-

mized in pilot experiments (data not shown; Fig. 1C).

This growth inhibition provides both confidence of target

engagement (which results in loss of cell viability) and a

large assay window into which increments of effect

resulting from CRISPR perturbation can be measured,

allowing a suitable negative selection screening output.

Following the completion of the screen treatment

phase, which was terminated at 12 population doublings

of the vehicle control, samples were harvested and geno-

mic DNA was extracted and subjected to amplicon-based
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Fig. 1. (A) Schematic for negative selection drug-gene interaction screening. (B) Design of a flexible library for
screening. A total of 18,500 genes were targeted, with guides targeting each gene split between three libraries:
A, B, and C. LibA contains 76,886 guides; LibB contains 36,871 guides; LibC contains 36,454 guides. Libraries are
then combined to provide appropriate depth of screening for each campaign. (C) Growth tracking of cells in each
replicate and for each treatment. An average GI (growth inhibition) was determined across all passages as 24%.
Screening was conducted with the full, combined ABC library. (D) Replicate correlations were determined and
reported by rank analysis. Plots show total log next-generation sequencing counts per guide. DG, [druggable
genome]; DMSO, dimethyl sulfoxide; PARPi, [PARP1 inhibitor; olaparib]; WG, [whole-genome]; R1, [replicate 1];
R2, [replicate 2].
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sequencing to quantitatively identify genotype abun-

dance in each sample. Replicates were analyzed side by

side and showed high levels of concordance (Fig. 1D).

Genes were annotated for known control groups, and

the vehicle control sample was compared to baseline se-

quencing files derived from the plasmid samples ahead

of lentivirus production. As we included nontargeting

guides, positive controls (essential genes) and negative

controls (nonessential genes) in our library, this compar-

ison with plasmid samples allows a thorough qualifi-

cation of expected effects on cell survival and fitness

resulting from gene perturbation. Analysis of these con-

trol groups at the population level showed the expected

behavior where essential genes were robustly lost from

the population over time (Fig. 2A). Gene-level analysis

showed drop out of essential targets up to 64-fold in

some cases (Log2 �6); likewise, guide-level analysis

showed low representation of all guides targeting essen-

tial genes at the screen endpoint. As expected, LibABC

showed modest overall enrichment for non-targeting

controls.18 In silico comparison between each of the

sub libraries was conducted to evaluate the performance

of each module directly. This was determined by inde-

pendent analysis of each of the library subsets and com-

binations thereof, to simulate the performance of a screen

using LibA, LibAB and LibABC. The greatest overall

drop-out and lowest variance of control essential genes

was observed in the smallest library, LibA, as expected,

since this library contains the highest-ranking guides

(Fig. 2B). Interestingly, discovery of gene essentiality as

measured by a receiver operating curve analysis was

found to be robust with only two guides, but increasing

guide numbers clearly improved this outcome (Fig. 2C).32

This result is reassuring for the quality control of the

library. However, the identification of pan essential

genes by CRISPRko is among the more straightforward

of analytical tasks, since a defined list of expected essen-

tial genes exists. In order to explore the performance of

our modular library in drug–gene interaction, we used

the DrugZ analytical tool,25 which for this data proved

more sensitive than other methods, such as the more fre-

quently used robust ranking aggregation tools (data not

shown).33 This analysis was conducted for each of the

library modules. Discovery of sensitizing hits was sur-

prisingly robust even with the low complexity LibA,

which has four guides (Fig. 3A). We identified 39 hits

with a false discovery rate <0.05 (Fig. 3B), including

ATM and a large part of the Fanconi anemia (FA) path-

way. Several other key agonists of DNA damage re-

sponse (DDR) pathways such as MUS81, XRCC1, and

POLB were also identified, which indicates a robust on-

target effect in response to treatment with olaparib. All

three components of ribonuclease H2 were found to be

significantly depleted in the treated sample. More de-

tailed guide-level analysis indicates a reproducible re-

sponse for these top hits (Fig. 3C). These genes were

also found as part of a previously published study that

is similar to ours.9 Comparing our data in HT-29 cells

with the published data set9 shows good concordance

between the two studies (Fig. 3D).

Although hit ID was found to be robust even with the

simulated lower complexity library, a substantial increase

of hits was observed with increasing numbers of guides.

Up to 58 hits were found with the eight-guide library.

Importantly, whilst BRCA1 was identified robustly in

each library analysis, PTEN was found only when ana-

lyzing the screen with the eight-guide library (LibABC).

Previous publications have indicated that cells lacking

functional PTEN are more sensitive to PARP1 inhibi-

tors,34 and our data further supports these findings.

In addition to the analysis of genes that when lost sen-

sitize to PARP inhibitors, we also used our data to

look for resistance hits. Loss of PARG was a consistent

hit found with all three simulated versions of the screen,

with the highest representation of hits being evident

with LibABC, which was able to identify PARP1 with

substantially improved confidence (Fig. 3A). Overall,

these observations illustrate the value of additional li-

brary complexity when looking for robust and maximum

hit ID.

As our screen used a combined LibABC analyzed

independently informatically, we sought additional vali-

dation for hits identified with each version of the com-

ponent libraries. To do this, we used an orthogonal

pharmacological cell panel screening approach. We ran

a single agent screen with a viability readout following

six days of drug treatment using a diverse panel of 326

cancer cell lines treated with olaparib and a second

clinical-stage PARP inhibitor, talazoparib (BMN 673).

The pattern of response across different tissue lineages

was broadly similar for both compounds, and as previ-

ously reported, talazoparib was more potent than olaparib

(Fig. 4A).35 We used the publicly available genomic pro-

file and genome-wide loss-of-function screening data

for these cell lines in the DepMap portal to facilitate

pharmacogenomic analysis of PARP inhibitor response.

As expected, this revealed a significant positive correla-

tion between PARP1 expression and inhibitor response

(Fig. 4B), which is consistent with our finding that

CRISPR-mediated knock out of PARP1 drives resistance

to olaparib.

The integration of data obtained from drug sensitiv-

ity and loss-of-function screens is a valuable approach

for identifying the underlying genes and pathways that

NEGATIVE SELECTION CRISPR SCREENING 215



govern drug responses.2,36 Therefore, to elucidate genes

and pathways that could be important in modulating

the cellular response to olaparib, we further used the

DepMap CRISPR-mediated whole-genome loss-of-

function data to explore associations between our cell

panel drug sensitivity dataset and gene dependencies.

This was achieved by categorizing cell lines in the cell

panel screen as responders or nonresponders and then sys-

tematically searching for significant differences in gene de-

pendencies between the sensitive and resistant populations.

Fig. 2. (A) Control gene and guide performance was tracked by determining the log fold change in barcode
(guide) abundance over time, from the plasmid baseline to the DMSO-treated endpoint. For each analysis, a group-
level plot shows the median response of all control groups, whereas gene- and guide-level show higher resolution
analysis of the same data. For the screen, analysis was conducted using either the full reference library (LibABC) or
the smaller variants of this library, to evaluate how the reduced complexity libraries performed in comparison.
Negative control groups show two alternative groups of putative neutral genes or the non-essential gene collection
reported previously (NEG_Hart)1. Positive control gene group POS1 shows a limited group of genes previously
reported as broadly essential,18 whereas CEGv2_Hart annotates genes in the core essential collection.1 NT indicates
those guides with no targeting site. (B) Comparison of control groups by box plot for each library analysis.
(C). Receiver operator curve analysis of control group detection (essential genes vs. nonessential genes) for the
screen when conducted with libraries targeting genes with only one guide all the way to the full LibABC approach,
which contains eight guides per gene (numbers indicate guide number per gene). AUC, area under the curve.
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Strikingly, this revealed that olaparib sensitivity corre-

lated with a greater dependence on genes or pathways

that we and others identified using CRISPR sensitivity

screens, including DNA damage and repair pathways

and the spliceosome pathway (Fig. 4C and D).9 Notably,

the genes identified via the comparison of sensitive ver-

sus resistant cells included hits from the FA pathway

that were identified using our lower complexity four-

guide (FANCG, FANCM and FAAP24) and higher com-

plexity eight-guide (FANCE) CRISPR libraries.

The identification of ATM (all libraries), BRD2

(LibAB and LibABC), and BCL2L1 (BCL-XL; LibABC

only) as hits implicated the DDR pathway and BET-

and BCL2-family members as potential therapeutic tar-

gets in combination with PARP1 inhibitors. To further

validate these findings, we tested the ability of clinical-

stage small molecule inhibitors against these targets to

see whether there was synergy when used in combination

with PARP1 inhibitors. We analyzed growth suppression

in a panel of 10 cell lines that encompassed relevant can-

cer indications where PARP1 inhibitors are approved or

are being evaluated in the clinic and two colorectal can-

cer cell lines, including HT-29, to compare with the data

from our CRISPR screen (Fig. 5). The combinations of

PARP inhibitors with ATM and other DDR pathway an-

tagonists, such as inhibitors of ATR, CHK1, CHK2 and

WEE1, displayed strong synergy independent of which

pathway node was inhibited (Fig. 5). The inclusion of

multiple inhibitors against different parts of the pathway

and the use of different inhibitors against the same target

confirms that the observed synergy was pathway- and

target-specific, rather than owing to any compound-

specific off-target effect. The combination of PARP in-

hibitors with the BET and BCL-2 inhibitors also exhibited

robust and widespread synergy, although remarkably,

synergy was only evident for the pan-BCL-XL/2 inhibi-

tor ABT-263 with relatively little being observed for

the more BCL-2-selective compound ABT-199 (Fig. 5).

This could indicate that synergy is primarily driven

through inhibition of BCL-XL either alone or in combina-

tion with BCL-2. Although PTEN, a negative regulator of

the PI3K pathway, was identified as a sensitizing hit in

the CRISPR screen, no well-characterized small mole-

cule antagonists for PTEN exist. We therefore evaluated

the effects of PI3K pathway modulation by combining

PARP antagonists with a PI3K pathway inhibitor. This

combination was generally not synergistic and is consis-

tent with the hypothesis that upregulation (via PTEN

loss) rather than downregulation of the PI3K path-

way might be a greater driver of sensitization to PARP

inhibitors.

Overall, the data from the cell panel screens support

the sensitization and resistance hits identified with our

component ABC CRISPR library.

Discussion
We have developed a flexible and modular pooled

CRISPRko screening library that can be used to tailor

the power of each screen to the experimental or biologi-

cal complexity required. To support the data generated

using our new library we used high throughput combina-

torial cell panel screens as an orthogonal validation tool.

Our modular libraries use either four, six, or eight guides

to decrease or increase the resolution of each screen, as

appropriate. As a first demonstration of this approach,

we explored a known challenging paradigm, negative se-

lection screening. In contrast to positive selection or en-

richment screening, this often more valuable approach is

typically subject to greater noise resulting in poorer hit

discovery. Our results indicate that the higher complexity

library of eight guides per gene can be used for negative

selection screening or where an experimental paradigm is

anticipated to yield more noise. Examples of this would

be pooled phenotypic screening with flow cytometry sort-

ing endpoints or CRISPR screens conducted in complex

cell systems, such as primary or induced pluripotent

stem cell (iPSC)–derived tissues. Conversely, in experi-

ments where cell numbers need to be kept low because

‰
Fig. 3. (A) Drug–gene interaction analysis for each library analysis variant. DrugZ was used; a tool to assign
statistical significance (P-values) and plotted in either the synthetic lethality (sensitivity) or suppression (resistance)
direction against Log Fold Change. Hits are indicated (purple) and genes are colored by false discovery rate (FDR)
value (blue <0.05). Genes are sized by normz (z-normalized magnitude of effect). (B) Network analysis (physical
interaction) of hits passing an FDR threshold of 0.05 for analysis of the olaparib screen using either two, four, six,
or eight guides per gene. In the LibABC analysis (eight guides), genes are colored by cross-over: green indicates
genes that also scored in Zimmerman et al.9 in all three cell lines; purple indicates sharing by only two lines and
grey indicates order of significance for hits. BRCA1 is a hit network nexus and is colored gold for emphasis.
(C) Guide distribution of key hits by log fold change at the endpoint relative to the DMSO-treated population.
(D) Overlap of hits in screen published previously in alternative cell lines9.
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Fig. 4. Pharmacogenomic analysis of PARP inhibitor single agent responses across a cell panel. (A) Box plot
showing PARPi responses across a 326-cancer cell line panel stratified by tissue type and ranked according to
median values for olaparib. Cell viability was assessed following a 6-day treatment using CellTiter-Glo 2.0. A baseline
T0 measurement (at time of drug addition) was taken to enable calculation of GI. Response area, which is the area
under the dose response curve, was used as a measure of sensitivity to drug. (B) Correlation between PARPi
responses and PARP1 gene expression across the cell panel. Pearson correlation statistics are shown. (C) Network
analysis (with physical interaction) of genes on which olaparib sensitive cell lines are significantly more dependent
relative to insensitive lines. Overlapping hits with the CRISPR screen are shown. (D) Functional annotation clustering
analysis performed in the DAVID Bioinformatics tool of genes that olaparib sensitive cell lines are significantly more
dependent relative to insensitive lines.
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Fig. 5. Validation of CRISPR screening hits using combinations. (A) Heat-map representation of synergy scores
from PARPi combinations across a panel of 10 cell lines. Cell viability was assessed following a 6-day treatment
using CellTiter-Glo 2.0. A baseline T0 measurement (at time of drug addition) was taken to enable calculation of GI.
The synergy scores were calculated from each dose matrix using the Loewe additivity model. (B) Representative
dose matrices for combinations of PARP inhibitors with ATM, BCL-XL/2, and BET antagonists. For each combination,
GI values (left matrix) and the Loewe excess values (right matrix) are shown. Loewe excess values are determined
by subtracting the level of inhibition predicted as additive by the Loewe model from the actual observed inhibition.
Therefore, positive excess values indicate synergy and negative values indicate antagonism. The synergy score for
each matrix is shown below each example in gold text. A minimum synergy score of 2.1 was considered the
threshold for the combination to be considered synergistic and values over 12 are considered strong synergies. An
example of both a strong and a more moderate synergistic interaction are shown for each combination.
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numbers are limiting, our data indicate that using LibA

with four guides per gene will be sufficient to identify tar-

gets in a drug–gene sensitivity screen.

Our simulated analyses indicate that our component

libraries are all able to find essential genes or controls with

high confidence, and in fact only two guides were required

to successfully complete this exercise. Indeed, robust identi-

fication of essential genes using a low complexity library can

be expected, and is already established in multiple publica-

tions.2,3,37,38 Surprisingly, increasing the guide number in

the case of essential gene discovery resulted in a minor in-

crease in variance, most likely owing to the necessary but

modest decrease in the ranking performance of guides in-

cluded in each of the increasingly complex libraries.

The analysis of drop-out genes indicative of sensitiza-

tion to olaparib provided a surprisingly rich dataset and

showed excellent overall concordance with a previous

publication.9 Zimmermann and colleagues9 exploited an

alternative approach for enriching their dataset by simul-

taneous screening in several cell lines. We identify the

RNaseH2 complex as a key hit in our screens, an obser-

vation consistent with the results from Zimmermann

et al.,9 where the authors directly validated these hits.

The substantial overlap of hits identified in our single

CRISPR screen with previously published olaparib

screens is further compelling evidence that our new

component library is working effectively.

We validated some of the hits identified in our pooled

CRISPRko screen by combinatorial drug screens in cell

line panels with two clinical PARP inhibitors, olaparib

and talazoparib. This orthogonal approach delivers rapid

initial validation of selective hits in high throughput. Initial

validation through this approach enables targets to be con-

sidered in terms of their tractability in the clinic. These

data also illustrate how well CRISPR screens and high

throughput cell panel screens can be used to rapidly val-

idate new, clinically relevant genetic interactions.

Interestingly, the overlap between the hits in distinct

cell models, both from this screen and those published

previously,9 indicate that while broad agreement is

found between some of the major hits (as discussed

above), there remains a high degree of difference be-

tween hits found in each cell line background. Although

overall concordance between screens is broadly substan-

tially great than that observed in RNA interference

screens, for example,39–41 this observation is a valuable

indication that robust conclusions around drug-gene in-

teractions are best made from screens conducted across

diverse genetic and lineage backgrounds, to more com-

pletely describe the effects. This can be achieved with

our fully integrated pooled CRISPRko and high through-

put cell panel screening platform.

Overall, our analysis of screening with a new flexible

library and hit validation by combinatorial drug screen-

ing provides a powerful new approach, particularly well

suited to the variable experimental demands of each

screening campaign with potentially rapid clinical trans-

lation. Hit identification was broadly improved with

higher complexity libraries, providing increased confi-

dence and interrogation depth. The lower complexity

screens also performed well, indicating that these tools

will be poised to support robust hit discovery in future

positive selection screening campaigns.
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