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Abstract: For biomedical imaging, the interest in noninvasive imaging methods is ever increasing.
Among many modalities, photoacoustic imaging (PAI), which is a combination of optical and
ultrasound imaging techniques, has received attention because of its unique advantages such as
high spatial resolution, deep penetration, and safety. Incorporation of exogenous imaging agents
further amplifies the effective value of PAI, since they can deliver other specified functions in
addition to imaging. For these agents, carbon-based materials can show a large specific surface area
and interesting optoelectronic properties, which increase their effectiveness and have proved their
potential in providing a theragnostic platform (diagnosis + therapy) that is essential for clinical use.
In this review, we introduce the current state of the PAI modality, address recent progress on PAI
imaging that takes advantage of carbon-based agents, and offer a future perspective on advanced
PAI systems using carbon-based agents.

Keywords: photoacoustic; carbon materials; molecular imaging; contrast agents; theragnosis

1. Introduction

In recent decades, molecular imaging has become an essential technology thanks to
advances in imaging techniques and the development of novel nanocomposites. It has been
widely applied in areas ranging from basic biomedical research, for example, the monitor-
ing of cell structure and functionality [1–3] through clinical implementations such as early
cancer diagnosis and therapy monitoring, and, when partnered with nuclear medicine and
CT-imaging, observing vessel angiogenesis [4–7]. In particular, optical imaging techniques
such as confocal microscopy (CM), multiphoton microscopy (MPM), and fluorescence
imaging (FLI) have accelerated the rapid development of molecular imaging based on
the relatively safe ultra-sensitive interactions between radiation and target nanomateri-
als [8–10]. Although these optical methods have the benefits of high spatial resolution
(1–10 µm) and spectroscopic differentiation, they suffer from the significant reduction of
light intensity with depth, resulting from scattering and absorption by biological tissues.
Normally, the imaging depth of pure optical imaging is theoretically limited to 1 mm and
computational diffused imaging methods cannot maintain their high resolution in deep
tissue [11–14].

Photoacoustic imaging (PAI) is a new biomedical technology that provides dual image
contrast by merging optical and acoustic imaging techniques. Thanks to its hybrid imaging
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properties, PAI is able to visualize relatively deep tissue (i.e., several cm) while maintaining
the excellent resolution of its acoustic component [15–18]. Figure 1 indicates the basic
principles of PAI. When a high-energy laser pulse strikes the sample, the light pulse is
absorbed and converted into thermal energy. As the sample’s temperature increases,
thermoelastic expansion occurs accompanying acoustic emission; this phenomenon is
called the photoacoustic (PA) effect [19]. The broadband acoustic wave emitted is then
detected by ultrasound sensors. Because there is less scattering of an acoustic wave from
living tissues compared to incident light, PAI achieves relatively deep tissue imaging
compared to pure optical imaging. Given its ability to capture endogenous contrast
absorbers in the body with an optimal wavelength laser, PAI can provide physical mapping
information on blood vessels, lipids, collagen, and melanin [20–24], as well as estimates
of physiological variables such as hemoglobin concentration, saturated oxygen ratio, and
blood flow [25–28]. These advantages of PAI can contribute to resolving many problems in
fundamental science and pre- and clinical research fields [29–33].
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The endogenous PA contrasts in the living body help to achieve diverse contrast in
molecular PA imaging of individual organs and biological components, but the insensitivity
to low concentrations of biomolecules and their absorption of visible light limits the ability
to provide strong PA signals from deep tissues [34]. In addition, white and transparent
organs, such as the intestines, lymph nodes, and bladder cannot produce sufficient PA
signals because of their extremely low light absorption. Therefore, there has been an
ongoing need for exogenous PA contrast agents to achieve high PA sensitivity, deep
tissue imaging, and specific targeting of non-pigmented organs [35–40]. A variety of
materials have been used as the exogenous contrast agent, including small-molecule
chromophores, π-conjugated polymer-type organic semiconductors, gold nanoparticles, or
organic-inorganic hybrid materials, and they have shown the PA imaging capability along
with desired properties such as biotic degradation, biodistribution, or renal clearance as
summarized before [41]. Meanwhile, carbon-based nanomaterials have attracted attention
owing to their unique shape, extended π-conjugation, synthetic flexibility for surface
engineering, large surface area, or interesting photophysical properties, which are of the
main focus of this review paper as shown below.

Carbon nanomaterials have been rapidly developed over the past decades and have
received great attention from not only academia but also industry. The sp2 nanoma-
terials have been designed into different dimensions such as 0-dimensional nanodots,
1-dimensional nanotubes, 2-dimensional nanosheets, and more complex structures such
as nanohorns and nano-onions, which then have application in many fields such as en-
ergy, electronics, the environment, and biomedicine [42]. In general, nanomaterials can
have large specific surface areas and enhanced optoelectric properties, which bring about
the formulation of affordable nanoprobes for bio-imaging; further, they can provide a
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theragnostic platform, i.e., a combination of diagnosis and therapy. In all bio-related appli-
cations, the cytotoxicity of materials is of great importance. In view of this, nanotubes with
high aspect ratios are controversial because their pathogenicity is similar to asbestos [43].
For example, some multiwalled carbon nanotubes such as MWCNT-7 have been recently
classified as a potential carcinogen by the International Agency for Research on Cancer
(IARC) and restricted in the EU, while others remain not classifiable [44]. Physicochemical
parameters such as diameter, stiffness, or biopersistence of the materials are considered as
major drivers for their biological reactivity, which leaves room for tailoring the nanotubes
to reduce nanotoxicology [45]. Additionally, thorough purification or surface modification
can significantly alleviate the negative effects [46,47]. Nonetheless, special caution should
be paid to using long and rigid carbon nanotubes. Other carbon materials are non-cytotoxic
or show only low acute toxicity so far, which reveals their promise. Here, we classify these
carbon materials in accordance with their overall shapes and briefly summarize the recent
relevant research.

This review paper focuses on recent developments of photoacoustic methodologies
and carbon-based imaging agents that offer the enhancement of optical contrast and further
provide therapeutic effects. Considering that the carbon-based agents have been seldom
summarized before, we anticipate that this review paper will, particularly, help readers who
follow the recent progress on photoacoustic bio-imaging fields in which carbon materials
are used as a functional imaging agent.

2. Multiscale Photoacoustic Imaging Systems

PAI systems can be classified as photoacoustic microscopy (PAM) or photoacoustic
computed tomography (PACT), according to the system capabilities (i.e., spatial reso-
lution, imaging depth) and the hardware configuration (e.g., single- or multi-acoustic
transducers) [48,49].

2.1. Photoacoustic Microscopy (PAM)

PAM can create high-resolution images using a focused laser beam or a focused ultra-
sound capture scheme. Thanks to the high speed of lasers and fast scanning techniques
such as micro-electro-mechanical systems (MEMS) and galvo-scanners, PAM can produce
images in real-time [50–57]. When the spatial resolution is determined by a small, focused
laser beam spot, the technique is called optical-resolution PAM (OR-PAM) (Figure 2a).
OR-PAM can show the microvasculature of a mouse ear with a resolution on the order of
several micrometers (Figure 2d). However, the penetration depth of OR-PAM is normally
limited to approximately 1 mm because of the light diffusion in biological tissue. When
the tighter ultrasonic detection bounds become the determining factor for spatial resolu-
tion, it is called acoustic-resolution PAM (AR-PAM) [51,58–60]. Even when AR-PAM does
not provide better spatial resolution than OR-PAM, it can achieve a greater penetrating
depth of a few millimeters because there is less ultrasound scattering in biological tissue
(Figure 2b). Optical excitation is realized through dark-field illumination in AR-PAM, achiev-
ing a spatial resolution of 53 µm with an imaging depth of 1.8 mm in vivo (Figure 2e).

2.2. Photoacoustic Computer Tomography (PACT)

PACT acquires 2- and 3-dimensional PA images with multi-array ultrasound trans-
ducers and CT reconstruction methods [52,61–64]. Multifold ultrasound signal detection
with single laser irradiation contributes to achieving real-time PAI with improved image
acquisition speed without mechanical scanning approaches (Figure 2c). Depending on the
center frequency and the geometry of the ultrasound elements of the probe, PACT can
provide an imaging depth of several centimeters. By integrating the multi-dimensional PA
data acquired from the multi-array transducer, it is possible to obtain enough information
to reconstruct a volumetric PA image of the original feature. Depending on the ultrasound
detector type (e.g., arch, ring) and data acquisition continuations, diverse optimized PACT
reconstruction algorithms have been proposed. PACT can be implemented for macroscopic
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imaging, and it has been successfully used for various types of structural, functional, and
molecular imaging. In combination with a tissue-specific contrast probe, targeted PACT
imaging can be achieved (Figure 2f). Although real-time imaging can be achieved using
PACT, it is subject to distortion from artifacts in the image reconstruction process.
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3. Carbon Materials for Photoacoustic Imaging
3.1. Carbon Nanotubes

The carbon nanotube is theoretically made from a graphene sheet rolled up into a
seamless cylinder [65]. The carbon nanotube was first introduced in 1991 [66] and many
studies in the last few years have shown promising applications in the fields of medicine
and nanotechnology because of their interesting functionalities. Kim et al. made gold
nanotubes (GNT), which are essentially carbon nanotubes coated with a thin gold layer [67].
By conjugation of the lymphatic endothelial receptor antibody, GNTs were used to target
specific lymphatic vessels by PAI and for photothermal therapeutic applications. The
functional composite materials showed enhanced contrast in lymphatic vessels under NIR
irradiation, which could result in more efficient PA imaging and photothermal therapy
and had biocompatibility with minimal toxicity. Furthermore, following bio-conjugation
with the antibody (anti-LYVE-1) that is specific to the lymphatic endothelial hyaluronan
receptor-1 (LYVE-1), the resultant materials allowed mapping of the lymphatic endothelial
cells (LECs); this may lead to a useful alternative to the current fluorescent labelling method
that is limited in its in vivo applications because of potential cytotoxicity, immune response,
photobleaching, and signal interference [68]. De la Zerda et al. conjugated the single-
walled carbon nanotube (SWNT) with Arg-Gly-Asp (RGD) peptide for tumor-targeting PAI
agents [69]. SWNT-RGD showed a significantly higher PA signal in the mouse tumor than
plain SWNT in ex vivo specimens. The in vivo imaging in the mouse tumor also showed a
higher PA signal with SWNT-RGD than with plain SWNT. To enhance the PA signal, they
attached Indocyanine Green (ICG) dye to the SWNT-RGD (Figure 3a) [70]. SWNT-ICG-RGD
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particles showed a 20-fold higher absorbance than plain SWNTs (Figure 3b). As a result of
its high PA signal, the SWNT-ICG-RGD achieves better sensitivity for detecting tumor cells;
the process detects a 20-times lower number of tumor cells than with previous SWNT-RGD
particles (Figure 3c). Therefore, by combining with other agents, the carbon nanotube
can be used to create advanced PAI agents with enhanced sensitivity and specificity for
biomedical applications.
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3.2. Carbon Nanohorns

Single-walled carbon nanohorns (SWNHs) are from the family of nanocarbons and
are, in principle, obtained from graphene sheets, similar to single-walled carbon nan-
otubes (SWCNTs), by oblique rolling into a cone shape. The conical-shaped material is
sp2-hybridized and semi-conducting, similar to CNTs, and typically forms dahlia-like or
bud-like aggregates, which are composed of thousands of horns. The overall diameter
of SWNH aggregates measure from 80–100 nm on average, which is favorable for the
enhanced permeability and retention (EPR) effect. Furthermore, the aggregates are bio-
compatible and free from metal impurities and absorb long-wavelength light (e.g., red
or near-infrared). Therefore, SWNHs have been widely used in biomedical applications,
including drug delivery and bio-imaging [71–73]. Figure 4 shows the role of SWCNTs in
PA imaging applications. Notably, Chen et al. encapsulated SWCNTs with a hydrophilic,
polyethylene glycol-based polymer (C18PMH-PEG) to maintain water dispersibility and
then investigated the imaging capability (Figure 4a). The composite materials absorbed
NIR light, showing their potential in photothermal therapy as well as in PA imaging
in vivo [74]. Figure 4b presents multifunctional SWNHs that enable synergistic therapeu-
tic effects. Yang et al. coated SWNHs with biocompatible polymers {i.e., poly (maleic
anhydride-alt-1-octadecene) and poly (ethylene glycol) methyl ether-b-poly (D,L-lactide)},
and loaded two types of drugs such as cisplatin and doxorubicin. The drug-loaded SWNHs
not only generated a PA signal and heat when irradiated at 808 nm, but also exhibited a sus-
tained release of drugs in tumors, which enabled PA imaging-guided chemo-photothermal
therapeutics [75].
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3.3. Carbon Nanodots

Carbon nanodots (C-dots) are a relatively new material among nanocarbons; their
diameter is typically less than 10 nm. Interestingly, these nanoscale carbon materials exhibit
unique luminescent properties as a result of quantum confinement effects, similar to metal-
based semiconducting quantum dots (QDs). In contrast to other nanocarbons, they have
good water dispersibility; furthermore, size tunability, ease of synthesis, chemical inertness,
and biocompatibility have attracted great attention and broadened the range of potential
applications in the bioimaging field [76]. For the formation, small molecules or polymers
are widely used to form and further functionalize the carbon matrices. Recently, Wu et al.
prepared functional porphyrin-incorporated carbon nanodots (PNDs) based on citric acids
via a solvothermal reaction. The implantation of porphyrin units significantly enhanced the
light absorption in the NIR region, increasing penetration depth for in vivo photoacoustic
imaging and also enabling photodynamic therapy (PDT). Furthermore, the targeting
moiety Cetuximab (C225), which recognizes the epidermal growth factor receptor (EGFR),
was introduced onto the outer surface of particles to enable the imaging and therapeutic
modalities (C225-PNDs). Thus, a precise and efficient therapy could be performed for
cancer cells such as HCC827 and MDA-MB-231 cells using excitation at 808 nm through a
two-photon absorption process (Figure 5a) [77]. Sun et al. demonstrated multifunctional
C-dot-based nanomaterials that are capable of multimodal imaging (i.e., fluorescence and
PA imaging) and useful for photothermal and photodynamic therapies. The combination
of citric acid and polyethyleneimine (PEI) provided amine-rich red emissive carbon dots
(RCDs) after a solvothermal process. The exposed amine groups on RCDs were further
modified with the photosensitizer chlorin e6 (Ce6), leading to the formation of Ce6-RCDs,
which helps generate singlet oxygen (1O2) upon irradiation with a NIR laser. These
materials, therefore, show a high efficacy for cancer therapy in vitro and in vivo, even with
a reduced laser power density (e.g., 0.5 W cm−2 at 671 nm) (Figure 5b) [78].

Biodegradability and renal clearance are of great importance for clinical use, given that
exogenous chemical agents can easily accumulate in organs such as the liver without being
excreted [16]. Figure 6 shows C-dot imaging agents that degrade under physiological con-
ditions and, therefore, possess enhanced biocompatibility permitting practical biomedical
applications, although some carbon-based agents have undergone considerable chemical
and physical changes and unavoidably resulted in cytotoxicity [79]. Lee et al. reported
nitrogen-doped C-dots (NCNDs) that have strong absorption in the near-infrared region,
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high photo-stability, and excellent biodegradability. Therefore, biodegradable dots can not
only provide deep-tissue PA imaging but also perform photo-thermal therapy for tumors.
The materials showed biodegradation as designed, and renal clearance was confirmed after
degradation [39].
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Notwithstanding small molecules, including citric acid (CA), that have been used for
the preparation of C-dots, many polymeric materials such as naturally occurring substances
or synthetic polymers have also been used as a precursor [80]. Jia et al. used Hypocrella
bambusae (HB), a parasitic fungus in bamboo, to synthesize C-dots via a solvothermal
method without the need for any additives [81]. HB, used commonly in traditional Chinese
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medicine, caused the formation of C-dots (HBCDs), which showed good dispersibility
in water, broad absorption of light, and low cytotoxicity in this study. The resultant
HBCDs exhibited excellent photodynamic and photothermal therapy properties along
with fluorescence (FL) or PA imaging capability, which gave rise to synergistic effects
in tumor treatment (Figure 7a). Furthermore, semiconducting π-conjugated polymers
have been used for the preparation of functional C-dot imaging agents, as reported by
Ge et al. [82]. The poly(thiophene)-based derivative PPA was synthesized via oxidative
polymerization of 3-(4-(thiophen-3-yl)phenyl)propanoic acid (monomer) (Figure 7b), which
was not water-dispersible (Figure 7b, inset) and showed a sheet-like shape by itself when
measured by transmission electron microscopy (TEM) (Figure 7c). On the other hand, after
hydrothermal carbonization, the polymer presented water-dispersible C-dots (Figure 7d,
inset) as measured by TEM (Figure 7e). The resulting C-dots provided (i) multimodal
imaging under visible light excitation for FL imaging and NIR irradiation for simultaneous
PA imaging, and (ii) high conversion efficiency of photon energy into heat for photothermal
therapy (PTT) in living mice.
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Figure 7. (a) Schematic illustration of HBCDs derived from Hypocrella bambusae (HB) for bimodal FL/PA imaging and
synergistic PDT/PTT of cancer. Reprinted with permission from [81]. Copyright, Elsevier (2014). (b–e) Preparation and
characterization of C-dots: (b) synthetic route to PPA (inset: the photograph shows that the PPA is insoluble in water).
(c) TEM image of PPA. (d) synthetic route to C-dots (inset: the photograph shows water-dispersible C-dots). (e) TEM and
high-resolution TEM (HRTEM) images of C-dots. Reproduced with permission from [82]. Copyright, John Wiley and
Sons (2015).

Elementally engineered C-dots that emit an NIR fluorescence as well as the PA signal
were demonstrated. Qu et al. prepared C-dots and fine-tune their optical band gaps via a
solvothermal method [83]. Herein, they used dimethyl sulfoxide (DMSO), which allowed
them to dope sulfur atoms in the C-dots and to achieve the photoluminescence and photoa-
coustic imaging together with photothermal effect (Figure 8). Furthermore, the obtained
materials could exhibit enhanced biodistribution, passive targeting, and renal clearance,
which would be an essential prerequisite for advanced biomedical applications. Similarly,
Li et al. demonstrated nitrogen-doped C-dot-based theragnostic agents that are capable
of showing selective imaging and delivering drugs to tumors [84]. The materials were
prepared from citric acid and 1,4,5,8-tetraminoanthraquinone (TAAQ) via a hydrother-
mal method, which caused dehydration and graphitization, forming C-dots containing
α-carboxyl and amine groups on the edges of carbonized matrices. The resultant large
amino acid-mimicking C-dots (LAAM TC-CQDs) showed strong absorption at 650 nm and
provided near-infrared (NIR) fluorescence at 700 nm and PA imaging in the NIR region.
The LAAM TC-CQDs were found to have a high binding affinity to the large neutral amino
acid transporter 1 (LAT1) that can be expressed in tumors; they also show high loading
efficiency of drugs as a result of the π-conjugated matrices, enabling tumor-specific imaging
and chemotherapeutics.
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(e) Temperature evolutions of the C-Dots (50 µg mL−1) at various power densities. (f) Temperature curves of the C-Dots
(200 µg mL−1) under five cycles of photothermal heating under 655-nm laser irradiation (1 W cm−2). Reproduced with
permission from [83]. Copyright, Springer Nature (2020).

3.4. Hybrid Nanocomposites

Although many carbon materials have been widely explored as a contrast agent in the
PA imaging field so far, they still suffer from intrinsic issues, for instance, low absorption co-
efficients in the NIR region and their detectable cytotoxicity, which can limit further in vivo
clinical applications [15]. To overcome these drawbacks, a variety of inorganic components
have received considerable attention and demonstrated the potential to provide hybrid
composites [85–88]. As a typical example, with the use of elemental gold, composite mate-
rials have been produced by forming gold nanorods (GNRs), gold nanoparticles (AuNPs),
or gold layers, in conjunction with carbon materials [89,90]. Jia et al. demonstrated func-
tional gold nanorods that are coated with silica layers and further decorated with C-dots
(GNR@SiO2-CDs) (Figure 9). The GNRs obtained provided PA imaging and photothermal
therapy while C-dots were used for FL imaging and photodynamic therapy. The silica
layer between GNRs and C-dots could enhance chemical stability under physiological
conditions and prevent the fluorescence quenching of C-dots. The theragnostic agents, thus,
achieved FL/PA imaging-guided PDT/PTT and showed remarkable sensitivity and spatial
resolution when treating cancer cells. After treatment, the composites are, in principle,
discharged from the body of mice without noticeable toxicity [91].

Gold nanoparticles (AuNPs) have also been demonstrated to possess photophysical
properties when incorporated in carbon-based composites. Figure 10a shows the synthetic
procedure for CNT-based nano-ring composites (CNTR) having tunable diameters ranging
from tens to hundreds of nanometers. Here, single-walled CNTs were efficiently aggregated
and coiled to form a nanostructure via a double emulsion method in a ternary solvent
system, and the surface of the materials was further coated with redox-active poly(4-
vinylphenol) (PvPH) brushes via a surface-initiated atom-transfer radical-polymerization
(SI-ATRP). The polymers then served as a reducing agent to induce the growth of AuNPs
onto the CNTR, which played multiple roles as a probe in surface-enhanced Raman spec-
troscopy (SERS) and as a PA contrast agent when excited in a region of NIR irradiation. With
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this technique, the materials helped examine cancer cells and provided imaging-guided
photothermal therapy in two tumor xenograft models [92]. AuNPs can be positioned
inside as well as outside carbon composites and impart an imaging capability to the ma-
terials. Li et al. reported the preparation of carbon-based nanocapsules with AuNPs
inside (Au@CSN) [93]. The inorganic nanoplatform was found to have a hollow structure
consisting of interior space and a mesoporous shell, thus, AuNPs could be included inside
the platform, as shown in Figure 10b. The resultant nanocapsules are biocompatible and
capable of cancer theragnostics. In particular, the embedded AuNPs provided computed
tomography and PA tomography as well, and the carbonaceous matrices enabled efficient
photothermal therapy. Further, the encapsulation of chemodrugs in the hollow struc-
ture could cause a synergistic effect between the imaging-guided photothermal treatment
and chemotherapy.
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Silica (SiO2) is a good starting point for biocompatible materials, it has also been used
extensively as a structural template for the preparation of hybrid imaging agents [94,95].
Zhang et al. reported degradable, hollow, mesoporous, composite particles [96] based
on silica nanoparticles (SiO2 NPs) obtained from tetraethyl orthosilicate (TEOS) via hy-
drolyzation. APTES (3-aminopropyltriethoxysilane) is introduced onto the surface to
adhere to polyacrylonitrile (PAN) as a carbon source; this functions via hydrogen bonds be-
tween the primary amine in APTES and the nitrile in PAN, giving polymeric nanoparticles
(PAN/SiO2). Subsequent thermal carbonization results in the formation of carbon-coated
layers on the Si core and further acid treatment forms hydrophilic functionalities such
as carboxyl or hydroxyl groups. The resultant particles (Si/C NPs) are then loaded with
doxorubicin (DOX) and the outer surface of the materials is further functionalized with
polyethylene glycol (PEG) to form the desired composite particles (PEG-Si/C-DOX NPs)
that are capable of PA imaging-guided photothermal treatment or chemotherapy. The
particles accumulate at the desired location because of their size, providing efficient can-
cer treatment upon irradiation with NIR light; they also biodegrade under physiological
conditions, making them a multifunctional, biocompatible agent for cancer theragnostics
(Figure 11a). Figure 11b shows spherical carbon composites that have mesopores (diameter
~2.5 nm), as reported by Zhou et al. [97]. In the synthesis, TEOS and charged surfac-
tants (hexadecyl trimethylammonium chloride; CTCA) are used to form the mesoporous
silica-based framework together with resorcinol and formaldehyde under basic conditions.
Calcination then produces mesoporous carbon nanospheres (Meso-CNs) that are able to
absorb a wide spectrum of light (i.e., 300–1400 nm) that induces more efficient PA imaging
and photothermal conversion in comparison with SWCNT or gold nanorods. Further-
more, mesopores can substantially enhance the properties of composite materials [98].
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Their size, volume, and high specific surface area allow them to be loaded with DOX
for chemotherapy at a high capacity (35 wt.%) and to produce a triggered release of the
drug molecules in response to pH or NIR light. In addition to PAN or the aromatic small
molecules shown, many organic materials have the capability of providing carbonaceous
matrices. For example, microporous organic polymers generally show a very high char
yield when carbonized [99–102], a strong requirement for the formation of matrices during
carbonization. Different types of other materials with fibrous or hierarchical structures or
from natural sources also facilitate the synthesis of matrices [103–107].
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and Sons (2016).
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for mesoporous carbon nanospheres (Meso-CNs) as photoacoustic agents and chemo-photothermal
cancer therapy platforms. Reproduced with permission from [97]. Copyright, Ivyspring International
Publisher (2018).
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Graphene is one of the carbon allotropes and has a π-conjugated, two-dimensional
structure. As a result of its large surface area and unique electronic properties, the layered
material has been widely used for the formation of carbon-based composites. Zhang
et al. deposited Bi2Se3 nanoparticles onto a graphene oxide (GO) layer in the presence
of poly(vinylpyrrolidone) (PVP) and formed the GO/Bi2Se3/PVP nanocomposites via
a solvothermal method [86], as shown in Figure 12a. The elemental bismuth has good
biocompatibility despite its heavy metal nature and can provide high computed tomog-
raphy (CT) contrast because of its large X-ray attenuation coefficient (Bi, 5.74 cm2 kg–1 at
100 eV), overcoming the disadvantages of widely used iodine-based agents, including renal
toxicity and a short imaging window. At the same time, the nano-sized GO not only acts
as a structural support but also enables PA imaging and photothermal therapy using NIR
irradiation at 808 nm. In general, CT has the advantages of deep tissue penetration, high
resolution, and facile construction of three-dimensional (3D) images, while PA imaging
offers high contrast in soft tissues because of good spatial resolution and high sensitivity.
Therefore, the nanomaterial platforms can combine both these advantages to better locate
target cells and accurately guide PTT.
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Reduced graphene oxides (RGOs) have also provided a versatile platform for nanocom-
posites. For example, Xu et al. developed functional RGO-based composites that are
capable of multimodal imaging and do not interfere with blood circulation [85]. The multi-
component materials were formed using RGO sheets that were decorated with iron oxide
nanoparticles (IONPs) and also encapsulated with polyethylene glycols (PEGs), which re-
sulted in the cocktail materials, RGO-IONP-1stPEG-2ndPEG, as shown in Figure 12b. Taking
advantage of strong NIR absorption and superparamagnetism, the designed agents could
achieve positron emission tomography (PET) imaging and magnetic resonance imaging
(MRI) along with PA imaging. Furthermore, the overall size of the materials allows them to
be selectively accumulated in tumors as a result of the enhanced permeability and retention
(EPR) effect; this suggests the value of nanoconjugation on RGOs and points to a rational
design process for tumor-targeting theragnostic agents.

A variety of inorganic additives and novel carbon allotropes have also attracted atten-
tion since these hybrids are able to show unprecedented yet comprehensively validated
outcomes of having the desired photophysical properties for imaging. As an example,
Bao et al. developed metal-doped carbonaceous nanocomposites via a single-step hy-
drothermal method [108]. As shown in Figure 13a, the particles were formed predomi-
nantly from p-phenylenediamine as a carbon source in the presence of trace metal ions
such as Ni, Pd, or Cu. This results in the formation of metal-, N-, or O-doped carbon-based
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wire-like nanocomposites (MNOCNPs) that exhibit high NIR absorption, photothermal
properties, and biocompatibility while also being conjugated with polyethylene glycol
(PEG) and rhodamine B isothiocyanate (RITC) for fluorescence (FL) imaging. Taking advan-
tage of their surface properties and overall size (~40 nm), the materials show physiological
features such as the endoplasmic reticulum and tumor accumulation without causing liver
damage. Therefore, the agent materials could be used for PA/FL/thermal imaging-guided
cancer treatment; they hold the promise of a nucleolar delivery system triggered by NIR
irradiation that addresses lysosomal entrapment and liver damage. Although we only
present here the incorporation of several specific metal ions, other metal ions (including
lanthanide (III) ions) that have unique physical properties, for example, long-lasting lumi-
nescence or paramagnetic properties, have the potential for further functionalization of
carbon matrices [109–115].

Two-dimensional materials have received great interest and broadened their scope of
application in the fields of energy storage, energy conversion, sensing, and catalysis [116,117].
Recently, Li et al. reported nanotransducers that can provide simultaneous PA imaging
and photothermal therapy using graphdiyne (GDY), a two-dimensional carbon-based
network comprised of benzene rings and acetylene linkages [118]. This novel sp- and
sp2-hybridized carbon network was first demonstrated in 2010 [119] and has now shown
unique properties such as uniform pore size, strong NIR absorption, and controllable
electronic properties. The GDY sheets can be encapsulated with polyethylene glycol (PEG)
via intermolecular electrostatic interactions, which results in the nanocomposite GDY-PEG
(Figure 13b); the materials show biocompatibility and efficient photothermal ablation of
cancer cells in response to laser irradiation at 808 nm. Similarly, other 2D materials such
as metal chalcogenides or MXenes that have recently received attention are thought to
provide the platform for formulating theragnostic agents similar to GDY or RGO sheets,
which then may have synergistic or enhanced photophysical properties [120–122].
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Elsevier (2019). (b) Synthesis of the fabrication process of the PEG-functionalized graphdiyne material
(GDY-PEG). Reprinted with permission from [118]. Copyright, American Chemical Society (2017).
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Metal-organic frameworks (MOFs) have provided a platform for the formation of
carbon nanocomposites which are used in bio-imaging and phototherapy. Wang et al.
demonstrated the formation of spherical carbon-based nanocomposites using the zeolitic
imidazolate framework-8 (ZIF-8) [123]. The synthetic precursor was encapsulated by a
mesoporous silica shell (SiO2) followed by pyrolysis at 800 ◦C and etching with sodium hy-
droxide; these resulted in the formation of monodisperse, metal-doped carbon nanospheres
(PMCS) (Figure 14). The resulting materials contained meso-sized pores and porphyrin-like
zinc centers (confirmed by elemental mapping) that played a role as photosensitizer in the
carbon matrix; these were further coated with polyethylene glycol-vitamin E (PEG-VE)
for biocompatibility. As designed, the PEGylated PMCS showed good stability and high
photothermal conversion under 808 nm irradiation, and further enabled PA imaging and
provided photodynamic properties for cancer treatment.
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Reproduced with permission from [123]. Copyright, John Wiley and Sons (2016).

4. Concluding Remarks

Photo-acoustic imaging is a new class of biomedical methods that can provide multi-
contrast images with deep penetration depth and high spatial resolution much sought after
in clinical applications. The hybrid images obtained from PAI are generally derived from
a combination of optical and acoustic signals; the imaging methodology can be further
classified in detail as PA microscopy or PA computer tomography, depending on the config-
uration of the entire system. Together with suitably developed instrumentation, exogenous
agents can play a remarkable role not only in increasing the contrast and sensitivity of PA
images but also in giving rise to other desired functions such as therapeutic effects. Among
many candidate materials, carbon-based agents have been widely researched for these
bio-imaging applications in the form of nanotubes, nanohorns, nanodots, or nanosheets.
They have been embedded in a variety of matrices to provide photoacoustic signals, as
extensively summarized in this review. We anticipate that the imaging techniques and the
contrast agents described will be further developed into more advanced materials and to
monitor or manipulate them using the PA signals generated from the materials [124,125].
Therefore, on the one hand, the agent materials can be incorporated into biocompatible
polymers such as hydrogels or bio-based thermosets, to enhance sensing ability as a signal
transducer for PA signals under physiological conditions [123–132]. On the other hand,
they would provide spatiotemporal control of stimuli-responsive materials that exhibit
auto-inductive or reversible responses [133–138] or would be used to analyze interior
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structures when embedded in complex materials containing biomimetic or hierarchical
structures [104,117,139–141]. Furthermore, the functional carbon-based materials would
open up the possibilities for the development of theragnostic biomedical devices, e.g.,
smart vascular scaffolds or self-powered healthcare systems that can sensitively monitor
diverse bio-signals on the basis of PA signals and provide an early, relevant treatment
when needed.
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