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Purpose: New bioactive anthraquinone derivatives are investigated for antibacterial, tyrosinase inhibitory, antioxidant cytotoxic 
activity, and molecular docking.
Methods: The compounds were produced using the grindstone method, yielding 69 to 89%. These compounds were analyzed using 
IR, 1H, and 13C NMR and elemental and mass spectral methods. Additionally, the antibacterial, antioxidant, and tyrosinase inhibitory 
activities of all the synthesised compounds were evaluated.
Results: Compound 2 showed remarkable tyrosinase inhibition activity, with an (IC50: 13.45 µg/mL), compared to kojic acid (IC50: 
19.40 µg/mL). It also exhibited moderate antioxidant and antibacterial activities with respect to the references BHT and ampicillin, 
respectively. Kinetic analysis revealed that the tyrosinase inhibitory activity of compound 2 was non-competitive and competitive, 
whereas that of compound 1 was low. All compounds (1-8) were significantly less active than doxorubicin (LC50: 0.74±0.01μg/mL). 
However, compound 2 affinity for the 2Y9X protein was lower than kojic acid, with a lower docking score (−8.6 kcal/mol compared to 
(−4.7 kcal/mol), making it more effective.
Conclusion: All synthesized compounds displayed remarkable antibacterial, tyrosinase inhibitory, antioxidant, and cytotoxic activ-
ities, with compound 2 showing exceptional potency as a multitarget agent. Anthraquinone substituent groups may offer the potential 
for the development of treatments. The derivatives were synthesized using the grindstone method, and their antibacterial, antioxidant, 
tyrosinase inhibitory, and cytotoxic activities were inspected. Molecular docking and molecular dynamics simulations were performed 
using compound 2 and kojic acid to validate the results and confirm the stability of the compounds.
Keywords: anthraquinone, tyrosinase enzyme, antioxidant activity, molecular docking, binding affinity, kojic acid, antibacterial 
activity, cytotoxic activity

Introduction
Innovations in green chemistry can pave the way to environment-friendly processes and products with uncompromised 
bio-efficacy. Anthraquinone is an oxygen reduction reaction (ORR) catalyst due to its efficient redox capacity.1,2 The synthesis 
of hydrogen peroxide for industrial use mainly depends on anthraquinone because it selectively reduces oxygen molecules to 
hydroperoxide radicals, and 10-hydroxy-9-anthraxyl radicals are formed, which then undergo hydrogen abstraction, ultimately 
producing hydrogen peroxide and anthraquinone.1,3 Fused heterocyclic systems can be found in various pharmaceutically 
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essential formulations and also in some natural products; many of them contain indeno furans, which are known to possess 
antibacterial and free radical scavenging properties. The indene derivatives are also well-known for their antibacterial properties.4 

Diethyl 4-cyano-2-hydroxy-5-oxo-4,5-dihydroindeno[1,2-b]pyran-3,4-dicarboxylate (13.2%) and diethyl-2,20-(1,3-dioxo- 
2,3-dihydro-1H-indene-2,2-diyl)bis(2-cyano acetate)2 (15%) were two crystalline solid products.5,6 Phytoalexins of plant origin 
are used in the treatment of various infectious diseases caused by different etiological agents.7 Medical researchers have closely 
examined the diverse biological activities of many plant-derived molecules and marine natural products.8 The controversy 
surrounding kojic acid stems from its toxicity.9 Anthraquinone, a compound widely used in the cosmetic, medical, and agricultural 
industries, needs effective tyrosinase inhibitors with nominal side effects.10

Anthraquinone and its derivatives have been found to exhibit a variety of pharmacological effects, including anticancer,11 anti- 
inflammatories,12 antifungal,13 antibacterial,14 antiplatelet,15 and neuroprotective properties.16 Furthermore, these compounds 
exhibit desirable characteristics, such as significant emission, excitation, and absorption coefficients for visible wavelengths, as 
well as low toxicity.17,18 Some of the natural products which are 2.3-dihydro-1 H inden-1-one are shown in Figure 1. Some of the 
natural products, 2.3-dihydro-1 H inden-1-one, are shown in Figure 1

Tyrosinase, an enzyme frequently present in nature, is reported to have a dinuclear copper core and possesses several 
functions (EC 1.14.18.1). It is often used to manufacture polyphenolic compounds and pigments like melanin.11 The 
catalytic mechanism involving tyrosinase in the oxidation of phenols and diphenols depends on the active site, copper.19 

The copper present in this enzyme is responsible for its impressive catalytic activity in the first two steps, which involves the 
conversion of L-tyrosine into melanin. The process involves hydroxylating L-tyrosine to create L-dihydroxyphenylalanine 
(L-DOPA), which is further oxidized to form dopaquinone.20

Tyrosinase and similar proteins are synthesized in the rough endoplasmic reticulum. However, tyrosinase possesses 
some specificity related to malignant melanoma and enzymatic browning in mammals. Developing new and safer 
tyrosinase inhibitors is necessary for various applications across industries, such as food, cosmetics, dermatological 
products, and some medicines. Unfortunately, the number of inhibitors found suitable for clinical applications and skin 
whitening is limited; hence, there is a need for a continued search for natural and synthetic tyrosinase inhibitors. A recent 
review on tyrosinase inhibitors describes this aspect extensively.21

On the other hand, the pathophysiology of many diseases is significantly influenced by free radicals, and this is the reason 
for the growing interest in discovering and developing novel antioxidants that reduce the risk of damages caused by free 
radicals.22,23 The use of antioxidants as preservatives in food items and dermatology, especially cosmetics, attracted more 
outstanding interests.24–26 Due to their paramount importance as additives or antioxidants used to stop or slow down the 
natural occurrence of oxidation, they find diverse and extensive applications in producing numerous formulations.27 

Therefore, it is pivotal to discover novel tyrosinase inhibitors with enhanced efficacy and nil side effects.24

The purpose of conducting molecular docking studies is to understand better the results of in vitro activity studies, specifically 
regarding possible substrate preferences and variations in the active site of the target structure.28 We have exploited the crystal 
structure of PPO3, a tyrosinase from Agaricus bisporus in its deoxy-form that includes an additional unidentified lectin-like 
subunit by means of anthraquinone-attached cyclopentanone derivatives. The inhibitor tropolone protein data bank (PDB ID code: 
2Y9X) was used for this purpose.29 Using modern bioinformatics and cheminformatics tools, it is possible to create new 
anthraquinone-based chemical entities with a high degree of accuracy in terms of safety and efficacy. Additionally, the growing 
field of drug repurposing can be applied to discover new therapeutic uses for this scaffold, as given in some recent articles.11

Anthraquinone derivatives are well known for their antibacterial properties, especially against E. coli and S. aureus,30,31 and 
also reported to act as antioxidants and exhibit tyrosinase activity.32,33 Cosmetic products commonly use tyrosinase-inhibiting 
agents to preserve skin whiteness, and the use of antioxidants for skin lightening is based on the hypothesis involving oxidative 
processes.34 The levels of phenolic and flavonoid compounds and their capacities for scavenging free radicals and inhibiting 
tyrosinase activity were closely related. The stronger the scavenging and inhibiting properties against free radicals and tyrosinase, 
the higher the concentration of antioxidants, such as kojic acid, which is known for its anti-tyrosinase and antioxidant properties.35

In a previous study, an interaction between tyrosinase and antioxidants was reported.36 Therefore, the current 
study aimed to investigate anthraquinone-connected cyclopentanone derivatives as potential multitarget agents.
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Anthraquinone-connected cyclopentanone derivatives were synthesised using the grindstone method, and their 
antibacterial, antioxidant, tyrosinase inhibitory, and cytotoxic activities were inspected. Compound 2 was sub-
jected to computational studies, including molecular docking and molecular dynamics simulations.

Experimental
Chemistry
A Thermo Scientific Nicolet iS5 FT-IR spectrometer (4000–400 cm−1 range) and a Bruker DRX-300 MHz and 75 MHz 
instrument (for 1H and 13C NMR spectra analysis) were used to record the spectra of compounds. An elemental analyzer was 
used to determine the percentage of C, H, S, and N. Mass spectral analyses were performed by the hyphenated gas chromato-
graphy (GC-MS) Clarus SQ8 model from Perkin Elmer. All preparations were carried out using commercially available, general- 
purpose solvents and reagents, whereas analyses were performed using spectroscopic-grade solvents.

Figure 1 Typical natural products based on 2.3-dihydro-1 H inden-1-one.
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Synthesis of compound 2,6,11-Trioxo-3-Phenyl-N-(o-Tolyl)-2,3,6,11-Tetrahydro-1H- 
Cyclopenta[a]anthracene-1-Carboxamide (1)
3-Oxo-N-(o-tolyl)butanamide (0.01 mmol), 1.4-dihydroxyanthracene-9,10-dione (0.01 mmol), and aromatic aldehydes 
(0.01 mmol) were mixed and ground for an hour at room temperature using the grindstone method. Thin layer 
chromatography (TLC) was used to determine the formation of new products after the reactions. The mixture was 
separated and purified by column chromatography using a solvent combination of ethyl acetate and hexane in a ratio of 
4:6. All other compounds (2–8) were synthesised using the above method.

Yield 72%; mp 149°C; IR (cm−1): 2987 (Ar-NH), 3296 (NH), 1743 (C=O); 1H NMR (300MHz, DMSO-d6): 8.29–7.88 
(4H, Ar, d); 7.57–7.40 (d, Ar, 2H); 7.38–7.07 (4H, d, Ar); 7.23–6.77 (ph, m, 5H); 7.23 (1H, s, -NH); 4.92 (s, 2H, -CH2); 4.58 (s, 
CH2, 2H); 2.11 (s, -CH, 1H); 13C NMR (75 MHz, DMSO-d6): 206.0 (1C, -C=O); 185.2–182.1 (2C, C=O); 147.2–128.9 (6C, Ar 
ring); 168.2 (1C, C=O); 147.2–128.9 (6C, Ar ring); 136.2–125.0 (6C, C=O); 133.6–126.8 (6C, Ar ring); 58.9 (1C, C=O); 58.4 
(1C, -CH); 17.3 (1C, -CH3); EI-MS (m/z): 472.15 (M+, 33.9%); Elemental analysis: CalcdFor (C31H21NO4): C, 78.97; H, 4.49; 
N, 2.97% Found: C, 78.96; H, 4.52; N, 2.94%.

The spectral data of compounds (2–8) were reported in the Figures S1-S16 Supporting Information.

Biological Screening
Tyrosinase Inhibitory Activity
A modified spectrophotometric method was employed to estimate the anti-tyrosinase activity using L-dopa as 
a substrate. All compounds (1–8) were dissolved in dimethyl sulfoxide (DMSO) to attain the required dilution . 
The mixture used in the reaction had a final volume of 3.0 mL and contained 1.5 mM L-DOPA, 0.1 mM sodium 
phosphate buffer with a pH of 6.5, and 12.42 U of mushroom tyrosinase. This mixture was preheated at 30°C 
and incubated for two minutes. The extent of dopachrome formation was determined by measuring the spectro-
photometric absorbance at 475 nm using a Perkin Lambda 35 UV/VIS Spectrometer. Kojic acid was used as 
a positive control. The following expression gives the proportion of the inhibitory tyrosinase activity:

The absorbance values of the control solution before and after incubation are denoted as A and B, respectively, whereas 
the absorbance values of the sample solution before and after incubation are denoted as C and D, respectively.37

Antioxidant Activity
The addition of an antioxidant to a 1.1-diphenylpicrylhyrazyl (DPPH) solution in methanol at 517 nm causes the 
loss of the vibrant purple colour and a reduction in absorption. This indicates that the amount of residual 
1.1-diphenylpicrylhyrazyl (DPPH) is inversely proportional to the level of antioxidant activity. The test com-
pounds were added to 0.004% (w/v) methanolic solutions of 1.1-diphenylpicrylhyrazyl (DPPH) (4 mL) at various 
concentrations (25 or 100 µg/mL in methanol). The absorbance at 517 nm was measured after a 30-minute 
incubation period, and the percentage inhibition was calculated using the following formula:38

Where, A sample: absorbance of the sample, A control: absorbance of DPPH solutions (except the test material, 
which contains all compounds); tests were carried out in triplicate.

Antibacterial Activity
The antibacterial properties of the compounds were evaluated using the disc diffusion method, in which the compounds 
were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 100 μg/mL. They were then impregnated into discs 
made of sterile filter paper (8 mm in diameter). Two type culture isolates were included, such as S. aureus (MTCC 96) 
and E. coli (MTCC 739). The bacterial test samples were prepared using sterile saline solution and pure colonies and the 
density was adjusted to reach a turbidity level of 0.5 McFarland standards. The test organisms were swabbed evenly over 
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Mueller-Hinton agar and exposed to a concentration gradient of compounds diffused from the impregnated paper disc 
into the agar medium. The inoculated and incubated plates were measured to find the zone of inhibition using ampicillin 
as a reference after a 24-hour incubation period at 37°C.32,39

Minimum Inhibitory Concentration (MIC) Studies
The minimum inhibitory concentrations (MIC) of eight compounds were determined as shown in Table 3. The MIC, 
which signifies the lowest concentration of the microbial suspension that prevents visible growth of microorganisms, was 
determined by adding 106 CFU/mL to each well and then incubating the plates at 36°C for 24 h after preventing the 
visible growth of microorganisms.

Cytotoxic Activity
In a previous study, the cytotoxicity of the newly developed compounds (1–8) was evaluated. The details of the 
experimental procedure are explained in a different context.39

Statistical Analysis
All experiments were conducted in triplicate to ensure statistically validate the results. The data are represented as the 
mean standard deviation (S.D.) using the SPSS 25 version.

Molecular Docking Analysis
Molecular docking experiments were performed using Schrödinger Maestro 9.239 to investigate the interactions and 
connections between the components of compound 1 and kojic acid, which is part of the most efficient anthraquinone 
series, with the proteins.

Ligand Preparation
The compound structures (1–8) were designed using ChemDraw 12.0 and Chem3Dpro, which were subsequently 
employed in the creation of a Protein Data Bank (PDB) for docking studies.

Receptor Preparation
The structure of the mosquito odourant-binding protein, which included water and ligands, was obtained from a protein database. 
To remove these, Discovery Studio 2019 was used, leaving only the receptors. To lower the energy of the receptor, the SWISS 
PDB Viewer was utilised, followed by a molecular docking process at the receptor.40

Identification of the Binding Pocket
The co-crystallised ligand and Discovery Studio 2019 software were used to determine the presence of Asp 438, Asn 
323, and Asn 332 residues within the pocket of the target protein.

Molecular Dynamics Simulation
Molecular dynamics simulations were performed using Desmond from Schrodinger Biosuite to assess the stability of the 
docked complexes identified through IFD analysis.41

Results and Discussion
Chemistry
By employing the Mannich base approach, multicomponent derivatives of anthraquinone were synthesized (one-pot 
synthesis). It was achieved through solvent-free green chemistry, as indicated in Scheme 1. FT-IR, 1H, and 13C NMR 
spectroscopies were employed to chemically analyse the target compounds. The IR spectra revealed significant bands at 
2987–2665 cm−1, 3296–3168 cm−1, and 3296–3168 cm−1, which corresponded to the -Ar, -NH, and -CO groups, 
respectively. The aromatic rings, -Ar, -Ph, and –CH and -NH, were 8.29–6.80, 7.47–4.0, 4.77–4.58, and 7.17–4.64, 
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respectively, in the proton NMR spectra. In the 13C NMR spectra, peaks were observed at 206.0–54.5, 145.9–113.5, 
140.3–21.9, 78.7–54.2, and 21.3–54.8 ppm; corresponding to the -Ph ring, -CH, -Ar ring, -CH3, -C=O, and -O-CH 
carbon, respectively. The results of elemental analysis and mass spectral patterns of each compound synthesized were 
perfectly consistent. All the data are available in the Figures S1-S16 Supporting Information.

Tyrosinase Inhibitory Activity
The tyrosinase inhibitory activity of various compounds was assessed using L-dihydroxyphenylalanine (L-DOPA) as 
a substrate, and the resulting percentage of inhibition is shown in Figures 2–4. The test results of synthesized compounds 
were exactly opposite to those found for the inhibition of melanin formation.42,43 The tyrosinase inhibitory activity of all 
synthesised compounds was evaluated using L-DOPA as the substrate by modifying a method previously reported by our 
research team, with slight modifications. This was done to evaluate their tyrosinase inhibitory activity.44 Blocking the 
tyrosinase function requires a 4-hydroxyphenyl maollugin moiety with the correct species and placement of substituents 
in this series. Compound 2 showed an IC50: 13.45 μg/mL and was significantly more effective than kojic acid, having an 
IC50: 19.40 μg/mL, and these results are shown in Table 1.

Inhibitory Mechanism
The oxidation of l-dihydroxyphenylalanine (l-DOPA) by mushroom tyrosinase at various concentrations in relation to 
compounds 1 and 2 was examined (see Figures S1-S16 Supporting Information for complete details).

Scheme 1 The synthesis of anthraquinone- cyclopentanone derivatives (1–8).
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Figure 2 Percentage of Tyrosinase Inhibitory activities of synthesized compounds (1–8) at concentration 100 µg/mL.

Figure 3 LineweavereBurk plot for the inhibition of tyrosinase activity by compound 1. Concentrations 0 µM, 21.17 µM, 52.94 µM, 105.89 µM and 211.79 µM were used for 
analysis compound 1.
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Antioxidant Activity
Polyphenolic compounds are known to possess antioxidant properties. The radical-scavenging ability of the synthesised 
compounds was measured at 517 nm using a Perkin Lambda 35 UV/VIS Spectrometer, which detects phenolic hydroxyl 
groups. The 1.1-diphenylpicrylhyrazyl (DPPH) method was used to assess the free radical scavenging ability of the 
samples, with BHT serving as the reference compound and the samples were tested at concentrations of 25, 50, and 100 
µg/mL.32 Additionally, the synthesised anthraquinone-cyclopentanone derivatives (1–8) were analysed for their ability to 
directly scavenge harmful nitrogen and oxygen-containing molecules, including 1.1-diphenylpicrylhyrazyl (DPPH). The 
results of the free radical scavenging activities are presented in Table 2, which displays the IC50 values and percentage 
inhibition for each synthetic substance. It was observed that all the synthesised compounds exhibited fair to excellent 

Figure 4 Lineweavere Burk plot for the inhibition of tyrosinase activity by compound 2. Concentrations 0 µM, 21.11 µM, 21.17 µM, 52.94 µM and 105.89 µM were used for 
analysis compound 2.

Table 1 Tyrosinase from Mushrooms Inhibitory Functions of Substances (1–8) and Standard 
Kojic Acid

Compound No. Concentration (µg/mL)a IC50 (µg/mL)

25 50 100

1 13.72 ± 0.02 49.30 ± 1.06 51.23 ± 0.23 77.62 ± 1.20

2 62.12 ± 0.12 70.00 ± 1.09 86.21 ± 1.52 13.45 ± 0.24

3 21.20 ± 0.23 28.11 ± 0.23 51.61 ± 1.06 87.31 ± 1.84
4 28.75 ± 0.21 61.87 ± 1.32 75.00 ± 1.36 42.65 ± 1.04

5 43.23 ± 0.15 55.21 ± 0.26 64.30 ± 1.52 63.22 ± 0.19

6 20.20 ± 0.11 28.12 ± 0.80 45.60 ± 0.26 >100
7 33.16 ± 1.0 41.95 ± 0.46 50.60 ± 1.08 99.98 ± 0.01

8 10.62 ± 0.52 16.25 ± 0.23 66.25 ± 0.81 80.16 ± 1.36

Kojic acid 56.23 ± 1.12 67.21 ± 1.12 84.65 ± 1.62 19.40 ± 0.74

Note: aThe IC50 values represent means ± SE of three different experiments.
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performance in 1.1-diphenylpicrylhyrazyl (DPPH) assays, demonstrating their potentials. The compound 6 has the lowest 
activity (36.91 μg/mL), while compound 1 has the highest (58.11 μg/mL), compared to standard BHT (IC50 = 83.45 μg/mL 
the results are shown in Table 2.

Antibacterial Studies
The antibacterial test results revealed that all compounds from (1–8) produced various degrees of inhibition ranging from 8 to 
12 mm in diameter. The activity was relatively higher for the reference drug ampicillin, 23 and 17 mm. A negative control test 
using dimethyl sulfoxide (DMSO) demonstrated no inhibitory activity, proving that the solvent had no impact on bacterial 
growth (Table 3).45

Table 2 Antioxidant Activity of Compounds (1–8)

Compound No. Percentage of Activity (%)

/mL

1 58.11

2 39.08
3 47.98

4 40.33

5 40.84
6 36.91

7 37.53

8 52.74
BHT 83.45

Table 3 Antibacterial Activities of Synthesized Compounds (1–8)

Compound No. (μg/mL) Diameter of Growth Inhibition Zone (mm)a  

(Minimal Inhibitory Concentration (MIC, µg/mL)b

Gram-Positive Bacteria Gram-Negative Bacteria

S. aureus E. coli

1 10(64) – (>100)

2 10(64) 8 (>100)

3 8(>100) – (>100)

4 8(>100) – (>100)

5 12(64) 10(64)

6 12(64) 8(>100)

7 11(64) 8(>100)

8 11(64) 8(>100)

Ampicillin 23(0.5) 17 (1)

DMSO – –

Note: aData are shown as mean ± SD of three independent experiments. 
Abbreviation: bMIC, minimal inhibitory concentration.
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Cytotoxic Activity
The synthesised compounds (1–8) were assessed for their cytotoxic effects against both MCF-7 and Vero cell lines, with all of them 
demonstrating low activity when compared to the standard drug doxorubicin (LC50:0.74 ± 0.01 μg/mL) as indicated in Table 4 (see 
Figures S1-S16 Supporting Information for comprehensive details). The Vero cell line was selected based on previous studies.44,46

Docking
Molecular docking was conducted on compound 2 and kojic acid with 2Y9X, a protein that binds mosquito 
odourants.47 Schrodinger Maestro 9.2 was used to study the interactions (Figures 5 and 6). The Pymol and 

Table 4 Cytotoxic Activities of Compounds (1–8)

Compounds MCF-7 Normal Vero Cell Line SIb

GI50 (µM) TGI (µM) LC50 (µM) LC50(µg/mL)a

1 34.60 ± 0. 65 60.1± 0.09 87.0± 0.16 93.01± 0.05 1.06

2 45.90± 0.43 67.4 ± 0.06 82.34± 0.16 91.03 ± 0.05 1.10

3 22.96 ± 0.03 45.28± 0.12 63.06± 0.02 68.12± 0.03 1.08

4 35.80± 0.07 45.34±0.09 55.34± 0.05 80.30 ± 0.01 1.45

5 18.50± 0.04 24.6 ± 0.04 52.67± 0.02 78.33± 0.02 1.48

6 45.20±0.03 67.23±0.19 >100 87.16 ± 0.05 0.86

7 10.3 ± 0.12 18.04 ± 0.16 26.05 ± 0.85 65.60± 0.03 2.51

8 11.62 ± 0.19 22.01 ± 0.08 46.40 ± 0.05 54.96 ± 0.08 1.18

Doxorubicin 0.02 ± 0. 00 0.21± 0. 01 0.74± 0. 01 19.85± 0.02 26.82

Notes: aEach value represents the mean ± standard deviation of three experiments. IC50 value normal cell / IC50 value cancer cell. 
Abbreviation: bSI, Selectivity Index.

Figure 5 Molecular docking studies on (A) compound 1 (3D Structure), (B) compound 1 (2D Structure) compound 1 docked with 2Y9X protein.

https://doi.org/10.2147/DDDT.S439633                                                                                                                                                                                                                               

DovePress                                                                                                                                     

Drug Design, Development and Therapy 2024:18 606

Mullaivendhan et al                                                                                                                                                  Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=439633.pdf
https://www.dovepress.com
https://www.dovepress.com


Discovery Studio tools, which received a score of 8 for thoroughness, were used to evaluate the interactions. 
Two-dimensional molecular depictions were docked with compound 2 andkojic acid. The docking scores are 
listed in Table 5. (See Figures S1-S16 Supporting Information for full details)

Molecular Dynamics Simulation
Molecular dynamics simulations were performed by Desmond and Schrödinger to dock the complex structures of ligand 
compound 2 with 2Y9X proteins.48 In previous studies, we compared the molecular dynamics simulations to examine the 
interactions and stability of compounds with native ligands and kojic acid.49 The stability and simulation of the 
complexes were analysed and are depicted in Figures 7–10 (See Figures S1-S16 Supporting Information for full details).

Structure-Activity Relationships
SAR studies of the anthraquinone ring structure offer valuable information into the essential structural features with 
predominant biological effects.50 SAR studies have enabled the identification of groups that enhance the pharmacoki-
netics of the synthesised molecules and substituents that are resistant to enzymatic degradation. Some of the observations 
related to structure-activity relationships are discussed below Table 6. (See Figures S1-S16 Supporting Information for 
full details)

Figure 6 Molecular docking studies on (A) Kojic acid (3D Structure), (B) Kojic acid (2D Structure) standard Kojic acid docked with 2Y9X protein.

Table 5 Docked Result of Compound 2 and Drug with 2Y9X Using XP Method

S. No Compound/Drug Dock Score Interacting Residues Bond Length

1. 2 −8.6 Asp 438 2.52
2. Kojic acid −4.7 Asn 323, Asn 332 1.70, 1.78
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Conclusion
This study reports the synthesis of anthraquinone-cyclopentanone derivatives (1–8) and the evaluation of their 1.1-diphenyl- 
2-picryl hydroxyl free radical scavenging, tyrosinase inhibitory, antibacterial and cytotoxic activities. Accordingly, compound 

Figure 7 RMSD plot of 2Y9X with compound 2.

Figure 8 RMSF plot of 2Y9Xwith Compound 2.
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2 showed significant activity due to the presence of a hydroxyl moiety, which influenced the inhibitory effect on tyrosinase. In 
the DPPH free radical scavenging test, the anthraquinone compounds demonstrated a moderate level of activity. However, 
most of the anthraquinone analogues compound (1–8) showed weaker activity than butylatedhydroxytoluene. The anthraqui-
none analogues showed a moderate level of antibacterial activity compared with that of the reference antibiotic. All 
compounds (1–8) were significantly less active than the other compounds, and the standard doxorubicin (LC50:0.74± 

Figure 9 Histogram of protein-ligand contacts of 2Y9X with compound 2.

Figure 10 Timeline representation of protein-ligand contacts of 2Y9X with compound 2. #The Number of conducts.
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0.01μg/mL). Compound 2 showed docking scores of (−8.6 kcal/mol) for the 2Y9X protein and (−4.7 kcal/mol) for kojic acid. 
Compound 2 is better for launching molecular dynamics simulations to validate the molecular docking study and to confirm 
the stability of the obtained compounds. Compound 2 was developed based on the concept of a “one drug-multiple targets” 
strategy, which sought to target multiple disease pathways simultaneously to create a novel therapeutic agent. Further research 
into the mechanisms involved may increase the likelihood of their development as promising skin-whitening agents.
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