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Abstract

Most of earth’s biodiversity is comprised of interactions among species, yet it is unclear

what causes variation in interaction diversity across space and time. We define interaction

diversity as the richness and relative abundance of interactions linking species together

at scales from localized, measurable webs to entire ecosystems. Large-scale patterns sug-

gest that two basic components of interaction diversity differ substantially and predictably

between different ecosystems: overall taxonomic diversity and host specificity of consum-

ers. Understanding how these factors influence interaction diversity, and quantifying the

causes and effects of variation in interaction diversity are important goals for community

ecology. While previous studies have examined the effects of sampling bias and consumer

specialization on determining patterns of ecological networks, these studies were restricted

to two trophic levels and did not incorporate realistic variation in species diversity and con-

sumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological

networks, and evaluated specific hypotheses about how the diversity of trophic interactions

and species diversity are related under different scenarios of species richness, taxonomic

abundance, and consumer diet breadth. We investigated the accumulation of species and

interactions and found that interactions accumulate more quickly; thus, the accumulation of

novel interactions may require less sampling effort than sampling species in order to get reli-

able estimates of either type of diversity. Mean consumer diet breadth influenced the corre-

lation between species and interaction diversity significantly more than variation in both

species richness and taxonomic abundance. However, this effect of diet breadth on interac-

tion diversity is conditional on the number of observed interactions included in the models.

The results presented here will help develop realistic predictions of the relationships

between consumer diet breadth, interaction diversity, and species diversity within multi-tro-

phic communities, which is critical for the conservation of biodiversity in this period of accel-

erated global change.
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Introduction

The devaluation of natural history and taxonomy has added to the failure of ecologists to docu-

ment biodiversity and subsequently to understand the magnitude and consequences of the

growing extinctions caused by global change [1]. Knowledge of basic natural history is espe-

cially important for quantifying biotic interaction diversity, which encompasses most of earth’s

diversity [2], and should be tightly linked to variables such as community stability and ecosys-

tem services [3,4]. The loss of interaction diversity is one of the least understood responses to

species extinctions, partly because it has not been consistently treated as a response variable in

theoretical or empirical studies of biodiversity and because getting good quantitative data on

interaction diversity often requires considerable fieldwork over time. Although network

approaches have provided more focus on the structure of species interactions within commu-

nities, few analyses are based on detailed natural history data that is linked with experimental

evidence of observed interactions actually occurring together (e.g., [5–7]). In contrast, using a

standardized sampling approach allows for a more rigorous and repeatable resolution of inter-

action networks at any appropriate scale [3], but it is not clear how much sampling is necessary

for accurate measurements nor how relevant small local interaction networks are to larger

scale network properties [8,9].

We define interaction diversity as a measure that combines the relative abundance and

richness of interactions linking species together into dynamic biotic communities at multiple

scales [3,10–13]. For this metric of diversity, the calculation of richness, diversity indices, and

rarefaction diversity is based on experimentally established links between interacting individu-

als rather than species alone, or alternatively, lists of observations of species found in the same

area to determine network nodes and edges. Trophic interactions, such as enemy-herbivore-

plant interactions, have large effects on all ecosystem attributes and are well studied [3,14,15],

thus tri-trophic webs are suitable systems for examining networks and interaction diversity.

Here we focus on this interaction diversity across multiple trophic levels.

Since most communities can never be completely sampled, and the true community values

of diversity and other network parameters are impossible to precisely quantify at community

scales larger than a hectare, careful sampling approaches are necessary for characterizing inter-

action diversity [16]. Here we simulate a standardized sampling effort that accumulates indi-

vidual interactions until each interaction has been accounted for. Utilizing this sampling

approach mimics existing systematic sampling protocols in the field, such as standardized

plots (e.g., [17]), and allows the comparison of interaction diversity across a broad range of

community types. Furthermore, our approach permits us to identify differences between the

actual community and a subsample of the community, as certain community characteristics

may be more sensitive to disparate sampling efforts than others [9,18,19].

Recently, Fründ et al. [9] investigated the effects of sampling bias on quantifying specializa-

tion in bipartite networks and found significant effects of sampling bias on selected properties,

while identifying network parameters that are robust to limited sampling. However, this inves-

tigation was restricted to two-trophic levels and the range of taxonomic richness and degree of

specialization of their simulated communities was narrow. To add to this existing work, we

simulated 1000 tri-trophic communities with representative combinations of species richness,

taxonomic abundance, and consumer diet-breadth, allowing for a comprehensive investiga-

tion into the determinants of interaction diversity across a wide-range of multitrophic com-

munities [3,13,20–25].

The focus of this study was to test specific hypotheses about the relationships between com-

munity species diversity, consumer diet breadth, interaction diversity, and network structure.

We addressed the following questions with simulation and statistical models:

Simulations of tri-trophic interaction diversity
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1. Does interaction diversity asymptote more quickly than species diversity from a discrete

sample size or area?

2. What are the interactive effects of consumer diet breadth and species diversity on interac-

tion diversity?

3. Are the combined effects of richness, abundance, and diet breadth on interaction diversity

modified by the number of interactions that are observed?

We sampled from simulated networks of interacting trophic levels; mimicking field sam-

pling methods outlined in Dyer et al. [3] and tested relevant paths from a specific structural

equation meta model (SEMM, sensu [26]) with hypothesized causal relationships between diet

breadth and interaction diversity.

Methods

Food web simulation

The goal of this model was to generate a random plant-herbivore-parasitoid tri-trophic food

web, with interactions only between adjacent trophic levels. Each community is generated to

represent the scale of a single study site and are based on several pre-specified properties as

inputs to investigate possible contributions to interaction diversity. Specifically, these inputs

are the number of species at each trophic level (i.e., richness; R1, R2, R3), the overall abundance

of each trophic level (i.e., abundance; A1, A2, A3), and a diet breadth parameter (α2, α3) for the

consumers that determines the diet breadth distribution for that trophic level according to a

truncated discrete Pareto distribution [17].

The abundance distribution for trophic level i was constructed by taking a random sample

of size Ri from a lognormal distribution with μ = 0 and σ = 1, scaled to sum to the prespecified

overall abundance Ai, and then rounded to the nearest integer [27]. We denoted the abun-

dance of species j in trophic level i as Aij, where Ai �
PRi

j¼ 1
Aij. Individual diet breadth values

(number of species each consumer has in their diet) were assigned to each species to get an

empirical distribution that represents the desired discrete truncated Pareto distribution of spe-

cialization within the consumer trophic levels. These values were obtained by calculating den-

sity values for a (continuous) Pareto I distribution (truncated at the number of species at the

lower trophic level) with survival function (aka complementary CDF) S(y) = (1/y)α.
The lists of resource species that each species potentially consumes were then sampled

(with replacement) uniformly from the list of species in the lower, adjacent trophic level. In

sampling real systems in the field, individual consumers are assumed to have been found by

sampling their resource (i.e., herbivores are detected by inspecting host plants, and parasitoids

are found by inspecting host herbivores). Therefore we assumed each individual parasitoid/

enemy is associated with an individual herbivore, and each individual herbivore with an indi-

vidual plant. In other words, there is never more than one individual consumer on an individ-

ual host, though there are several individuals within a species, so you can have multiple

interactions occurring between those two species. Interactions among individuals were there-

fore constructed as follows. Individual herbivores of species j (recall there are A2j such individ-

uals) were assigned a plant species by cycling through the list of species in their diet. Then each

individual plant is assigned an individual herbivore, based on these assignments, and we

assume only one herbivore individual per plant individual. This is repeated for each herbivore

species until no unoccupied plants remain. Individual herbivores that remained in the com-

munity from the original distributions were then removed from the community if all potential

host plants are occupied. This process was repeated for enemies, assigning them to herbivores

Simulations of tri-trophic interaction diversity
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under the same one-to-one assumption, and any unassociated parasitoids are removed from

the community. This often resulted in fewer individuals and species, compared to the initial

generated values of the communities.

Our randomly assembled food webs were generated by sampling Ri randomly from the set

of integers {3, 4,. . ., 120} and αi randomly over the interval [1,5]. Total abundances for each

trophic level Ai were randomly sampled from the integers {3, 4,. . ., 500}. These initial values

represent the potential values in the realized networks, but will not necessarily match following

the sampling procedure. The specific distributions for species richness, relative abundances,

and alpha parameters were based on food web data from sites across the Americas [24]. Using

this approach, we generated 1000 random food webs.

Food web sampling

The community was subsampled by randomly selecting individual plants and for each subsam-

ple, an individual plant had at most one herbivore and at most one enemy associated with that

herbivore. Randomly sampled rows from each local interaction food web were used to calcu-

late the cumulative interaction diversity for each sample. Sampled interaction diversity was cal-

culated using the inverse of the Simpson’s entropy (1/D) for each cumulative plant-herbivore,

herbivore-enemy, and plant-herbivore-enemy interaction. Sampling was completed once all

plant individuals within each local community were sampled. Each community differed in

the number of species, the numbers of individuals within each species, and the diet breadth

assigned to each consumer species. Sampling within the local community occurred without

replacement. In summary, the assumptions for the simulation were: 1) a lognormal distribu-

tion of species abundances for all trophic levels; 2) a truncated discrete Pareto distribution of

consumer diet breadths; 3) complete detection of all herbivores and parasitoids associated

with an individual plant; 4) only one individual of a consumer species per individual of a

resource species.

Total network analysis

We quantified network-level connectance to identify how species richness and specialization

influence the structure of entire networks; connectance is a commonly used network parame-

ter [18,19]. To accomplish this, we assembled three separate, but not mutually exclusive, net-

works within each individual local community described above. A plant-herbivore (PH),

herbivore-enemy (HE), and plant-herbivore-enemy (PHE) network were assembled separately

to quantify connectance and compare outcomes when examining two- or three-trophic-level

networks.

A weighted network was constructed from each local community by generating a bipartite

matrix with the abundance of interactions that occurred between individuals of each commu-

nity. PH and HE matrices were built based on each local community to calculate network-level

properties concerning two trophic levels. To investigate PHE networks, we generated a matrix

of producers (e.g. plants and herbivores) and consumers (e.g. herbivores and enemies) and

quantified network-level properties similarly to the previously mentioned bipartite networks.

For each distinct network (e.g., PH, HE, PHE), the R-package "bipartite" (version 2.05) was

utilized to quantify connectance [28]. In all subsequent network analyses, empty columns

and rows were deleted before calculating network-level metrics. These values were integrated

with other diversity measurements from our sampling scheme to investigate the desired

relationships.

Simulations of tri-trophic interaction diversity
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Rarefaction analyses

To compare the accumulation rates of species and interactions in a given local community, we

used rarefaction curves and the Chao1 estimator of richness [29]. We generated rarefaction

curves using the ‘vegan’ package (version 2.2–1) in R [30] and calculated the slope of each rare-

faction curve at the number of samples it took to sample half the total richness for each local

community. These values allowed us to compare the accumulation rates between species and

interactions across a wide range of local communities. We estimated the richness for interac-

tions and species using the Chao1 non-parametric estimator of richness [29]. Chao1 estimates

of richness were calculated for PH, HE, and PHE networks. Specifically, for the PHE networks,

only complete PHE interactions were used. Slopes and estimated Chao1 richness were com-

pared using Bayesian estimation for two groups in the R package “BEST” [31,32]. This method

provides an alternative to classic t-tests and creates posterior estimates for group means and

95% high-density intervals (HDI). Point estimates and 95% HDI were used to identify differ-

ences between sampled interactions and species for all 1000 local communities. The mean and

standard deviation of the observed differences between interactions and species networks

served as priors. Given the large sample size, the method provides robust posterior probabili-

ties identifying differences between sample means. Differences were considered significant if

the 95% HDI did not overlap. All web simulations and network analyses were performed using

program R (version 3.3.2) [33].

Statistical analysis

Linear regression and structural equation models were used to identify the relative effects of

taxonomic diversity and diet breadth on interaction diversity and other network structure

metrics. We assessed specific path models to test a previously hypothesized structure equation

meta-model. Path coefficients for direct effects were obtained from the structural equation

model, whereas indirect effects were calculated as the product of direct effects in any given

pathway. For our a priori specified structural equation model, we identified causal relation-

ships to formulate a simple set of paths with three exogenous variables (plant abundance, her-

bivore diet breadth, enemy diet breadth) predicting four endogenous variables (interaction

diversity, interaction density, species diversity, connectance); no latent variables were used.

Specifically, on the basis of literature, our own empirical data, and assumptions of the simula-

tions, all exogenous variables were predicted to increase interaction diversity, species diversity,

and connectance. In addition, these exogenous variables were expected to have positive effects

on connectance via interaction diversity and density. We tested the fit of this model using SAS

(PROC CALIS) and utilized the reticular action model (RAM—a covariance structure model)

to specify the models [34]. Starting values for the parameter estimates were determined by

using a combination of three methods: observed moments of variables, the McDonald method,

and two-stage least squares. The estimation method for the model was maximum likelihood,

and the Levenberg-Marquardt algorithm was used to iterate solutions for optimization. The χ2

for the absolute index was used to assess the fit of the model, with P > 0.05 (with 2 df) as an

indication of a good fit to the data. Residuals met assumptions for multiple regressions. This

approach was utilized for the full communities generated by our simulations as well as for ran-

dom samples from each community that started at 5 interactions sampled up to 500 interac-

tions sampled and path coefficients were compared from the identical models across these

sample sizes. Comparing coefficients across a range of sample sizes allowed us to investigate

how predicted relationships among variables changes as the number of observed interactions

increase, which is analogous to changing the size of the plot or local community.

Simulations of tri-trophic interaction diversity
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We also used simple linear regression to examine how consumer diet breadth and taxo-

nomic diversity influence the association between interaction and species diversity. Species

diversity was regressed against interaction diversity and the residuals from that model were

used as a dependent variable in subsequent linear models. Using residuals as a dependent vari-

able allowed us to identify whether relationships between species and interaction diversity dif-

fered under various community conditions, such as specialized or generalized consumers.

Linear regressions were performed to identify whether consumer diet breadth, taxonomic

abundance, and species richness significantly altered relationships between interaction and

species diversity using these residuals. This analysis was implemented for each distinct net-

work (e.g., PH, HE, PHE). The mean observed diet breadth for consumers was utilized as a

measure of specialization. Diet breadth was restricted to mean herbivore diet breadth for PH

networks, mean enemy diet breadth for HE networks, and the mean diet breadth among herbi-

vores and enemies for PHE networks. The sum of species richness and taxonomic abundance

across all trophic levels in the local network was used for measures of richness and abundance.

These analyses were performed using program R (version 3.3.2) [33].

Results

Interaction and species rarefaction curves

1000 different local communities were generated and cumulatively sampled (see Fig 1 for an

example network). Interaction and species rarefaction curves for all PH, HE, and PHE net-

works yielded variable rarefaction curves among the local communities, between interactions

and species, and among the three networks (e.g. PH, HE, PHE) (S1 Fig). Each step in the accu-

mulation curves is analogous to different levels of sampling due to differences in scales (e.g.,

plots recommended in [3]) or due to error or limited sampling.

The Bayesian estimation of two groups identified significant differences in the mean Chao1

estimator of richness between interactions and species in PH (HDIsp = 136–146, HDIint = 80–

91, HDIdiff = 48–63), HE (HDIsp = 129–140, HDIint = 72–82, HDIdiff = 49–65), and PHE net-

works (HDIsp = 198–213, HDIint = 89–103, HDIdiff = 99–118)(Fig 2A). The effect size was sim-

ilar in PH (Effect size = 0.95) and HE (Effect size = 0.94) networks and largest for the PHE

only network (Effect Size = 1.45). Mean Chao1 estimates of species richness were consistently

greater than interactions in all three networks.

Bayesian estimates of the mean slope at the number of samples it took to accumulate half of

the total richness (a value analogous to the Michaelis constant in Michaelis-Menton enzyme

dynamics) differed significantly among species and interaction rarefaction curves, and among

the three network types (Fig 2B)(i.e. PH, HE, PHE). Rarefaction slopes of PH (HDIsp = 0.38–

0.42, HDIint = 0.61–0.64, HDIdiff = 0.21–0.24), HE (HDIsp = 0.60–0.63, HDIint = 0.74–0.76,

HDIdiff = 0.12–0.15), and PHE (HDIsp = 0.40–0.43, HDIint = 0.81–0.83, HDIdiff = 0.39–0.43)

networks consistently higher than species. The estimated difference between species and inter-

actions was greatest in PHE networks. Effect size was smallest when investigating HE (Effect

Size = -0.73) networks, but greatest within the PHE networks (Effect Size = -2.73).

Relationships between species and interaction diversity

The correlation between species and interaction diversity was strongest among PH networks

(Pearson’s Corr. = 0.96, p< 0.001) and gradually decreased with HE (Pearson’s Corr. = 0.93,

p< 0.001) and PHE networks (Pearson’s Corr. = 0.35, p< 0.001). This pattern remained con-

sistent when the slope and coefficient of determination in linear models was examined (R2)

(Fig 3; S1 Table).
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Diet breadth, species richness, and species abundance all significantly influenced the associ-

ation between interaction and species diversity (partly due to the high power associated with

large sample sizes), but the strength of the effects differed among the networks being investi-

gated (Fig 3; S2 Table). Communities with greater mean consumer diet breadth (i.e. increased

generalization) resulted in more positive residuals between species and interaction diversity in

PH networks (β = 1.5, P<0.001) (Fig 3). Positive residuals in this case signify higher values of

interaction diversity then would be expected given the diversity of species. Similar, but larger

effects of diet breadth on relationships between species and interaction diversity were observed

in HE (β = 3.53, P< 0.001) and PHE (β = 10.6, P < 0.001) networks (Fig 3).

The effect of species richness on the relationships between species and interaction diversity

was significant for all three networks (Fig 3; S2 Table). Increased species richness was posi-

tively associated with the residual values of PH (β = 0.013, P = 0.007) and HE networks

(β = 0.039, P<0.001). Relationships to PHE network (β = 0.23, P<0.001) residuals displayed

the most pronounced, positive linear relationship with increased species richness. These

results revealed that local communities with higher values of species richness yielded more

Fig 1. A randomly selected tri-tropic network produced from one of the 1000 simulations. Each black bar is a node representing a unique species,

while the grey bars are edges connecting the black bars and represent observed interactions between those two species. Green sections within some of

the black bars represent individuals within that particular species that were present in the community, but not involved in trophic interactions (e.g.,

plants without herbivores). The width of each edge and node within the network denotes the abundance of sampled interactions or species. Only

species that were sampled are shown in this network. Numbers above each node denote the species identification number from that particular

simulation.

https://doi.org/10.1371/journal.pone.0193822.g001
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interactions than expected based on the number of species present in the community and that

effect is strongest when three trophic levels is considered. The variance explained within each

model improved in successively higher trophic levels and was greatest when all three trophic

levels were incorporated in the models (S2 Table).

Abundance revealed statistically significant linear relationships with residual values from

all three networks, but the strength of these associations were relatively weak compared to

diet breadth and species richness. Total abundance in PH (β = 0.0041, P<0.001) and HE

(β = 0.007, P<0.001) networks displayed the weakest association with residual values (S2

Table). Total abundance within PHE networks revealed the largest positive estimate, but the

slope was still noticeably small (β = 0.015, P<0.001). In two of three cases (e.g., richness and

abundance), variance explained was greatest when all three trophic levels were considered.

Changes in consumer diet breadth resulted in the largest estimate, but models that included

richness explained the most variance.

Path analysis and the effects of sampling

The best-fit path model, when using all samples, performed significantly better than all other

models (Fig 4; χ2 = 3.6, df = 4, P = 0.5; AIC = 36; delta AIC range = 60–70). Species diversity

showed the strongest positive effect on PHE interaction diversity and as predicted, all other

variables positively affected interaction diversity (Fig 4). Only total plant abundance within the

local community negatively affected, though indirectly, interaction diversity. Thus, communi-

ties with more plant individuals had lower values of interaction diversity, but that effect was

driven primarily through its strong negative effect on species diversity. The effects of consumer

Fig 2. Posterior probabilities of: A) mean Chao1 estimates of richness for species and interactions, and B) the mean slope of rarefaction curves for species

and interactions. Interactions are displayed in grey, while species are shown in white. The error bars represent the 95% High Density Intervals (HDI). Mean slopes

were acquired by calculating the slope of each rarefaction curve when half of the species or interactions were sampled. Chao1 estimates of richness were acquired

using the ‘estimateR’ function in the vegan package in R.

https://doi.org/10.1371/journal.pone.0193822.g002
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Fig 3. Summary plots of semi-partial correlations between the residuals of species diversity and interaction diversity (these residuals are on the y-axis) and

mean consumer diet breadth, species richness, and total abundance (these three parameters are on the x-axis). We investigated this relationship for all three

networks (e.g. PH, HE, PHE). The top three panels represent changes in mean diet breadth for each consumer trophic level; mean herbivore and enemy diet

breadth were used for the PH and HE networks respectively, while the mean diet breadth for all consumers (herbivores plus enemies) was used for PHE networks.

The middle three panels denote community richness for each respective network, which is the total number of species found in all trophic levels. The lower panel

displays semi-partial correlations with total community abundance, which equals the sum of all individuals within each trophic level. The solid black lines are least

squares regression lines.

https://doi.org/10.1371/journal.pone.0193822.g003

Simulations of tri-trophic interaction diversity
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diet breadth and connectance on interaction diversity were both negligible. While species

diversity had a strong positive effect on interaction diversity, more species-diverse communi-

ties had lower levels of connectance. Local plant abundance within communities had strong

negative effects on species diversity and connectance, but weak direct effects on interaction

diversity.

Fig 4. A path diagram summarizing the standardized path coefficients across all 1000 local communities (χ2 = 3.6, df = 4, P = 0.5; AIC = 36). Each path was

chosen based on a priori hypotheses, and compared to competing models using AIC and χ2. Lines ending with an arrow denote positive coefficients, while lines

ending with a circle denote negative coefficients. The width of the arrow indicates the relative size of the coefficient.

https://doi.org/10.1371/journal.pone.0193822.g004

Simulations of tri-trophic interaction diversity
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To understand the sensitivity of each path coefficient to the number of observations

included in the path analysis, path coefficients were derived from SEMs that used random

samples from each simulated community that started at 5 interactions and increased up to 500

interactions (Fig 5). Due to issues with generating balanced samples for SEM, connectance was

Fig 5. Scatterplots displaying the relationship between the strength of each path coefficient and the number of sampled interactions included in the path

analysis (Fig 5), with the exception of paths associated with connectance. The strength of the path coefficient is shown on the y-axis and number of observed

interactions included in the model is shown on the x-axis. The solid line represents outcome of linear or polynomial regressions. Path coefficients used in these

analyses were significant (P< 0.05).

https://doi.org/10.1371/journal.pone.0193822.g005
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not included in this model and therefore the structure of the path model differed from that

shown in Fig 4. We consider the random samples to be analogous either to actual sampling in

a biotic community or to smaller scale communities that are derived from a regional pool of

species and potential interactions.

As the number of observed interactions included in each SEM increased, the strength of

each path coefficient varied considerably (Fig 5). The degree to which each path coefficient

changed differed among the coefficients and all responded in a non-linear fashion. The direct

positive effect of species diversity on interaction diversity decreased significantly as more

observations were included in the path analysis (Fig 2A). Mean herbivore diet breadth main-

tained a positive effect on interaction diversity across all observed interactions, but its effect

was greatest at intermediate values and decreased as the number of observations exceeded 100

(Fig 2B). The direct effect of enemy diet breadth on interaction diversity was strongest at inter-

mediate (~200–300) numbers of observed interactions (Fig 2C), while the effect of local plant

abundance on species diversity increased consistently across sampled interactions (Fig 2D).

The effect of local plant abundance ultimately yielded a positive influence on species diversity,

and this difference from the model with full webs (Fig 4) was most likely due to the absence

of connectance from the path analysis. The effect of plant abundance on interaction diversity

also increased as the number of observations increased, but never resulted in a positive effect

(Fig 2E).

Discussion

The interest in interaction diversity as a metric of biodiversity has developed separately

from natural history studies that attempt to rigorously document interactions at local and

regional scales [25]. Interaction diversity and other network parameters, such as connec-

tance, have been gleaned from loosely constructed networks (e.g., from literature searches

or brief observational studies), and these parameters have been utilized as measures relevant

to network structure and resilience. But these networks are not realistic since local networks

do not include all possible edges among nodes that are present [8]. One reason to examine

how relationships among node and edge diversity and network parameters can change with

sampling effort or area sampled is to assess the relevance of network analyses based on these

putatively empirical regional networks [35]. Such scaling and sampling issues cannot be

ignored when this regional network view of interaction diversity is utilized to assess issues

associated with relationships between biodiversity, productivity, ecosystem function, and

extinction.

Our food web simulation generates hypotheses relevant to the power of sampling actual

interactions and calculating the diversity of interacting individuals across a variety of ecologi-

cal communities. The clearest patterns that emerged and are worth pursuing with empirical

data were: 1) randomly assembled networks produce accumulation curves for interaction

diversity that reach an apparent asymptote more quickly than species diversity, so interaction

diversity may be more practical to estimate than species diversity in real ecosystems—this is

especially true at intermediate sample sizes (or local community sizes [3]), where local species

diversity is the best predictor of local interaction diversity at multiple sampling scales; 3) con-

sumer diet breadth, defined by a truncated Pareto distribution, may disrupt the strong rela-

tionship between interaction and species diversity, as more generalized communities will have

higher interaction diversity; 4) species diversity and local plant abundance are also likely to

predict other tri-trophic network parameters, such as connectance; and 5) local network

parameters are likely to be quite different from the regional networks, and this relationship

changes as the networks grow in size.
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The interaction diversity model

Our approach to simulating tri-trophic networks provides randomly assembled quantitative

communities that can be separated into discrete bipartite networks nested within a randomly

assembled community. This provides an opportunity to investigate how the number and posi-

tion of trophic interactions influences network-level properties from a discrete sampling pro-

cedure [36]. Furthermore, the design of the simulation model provides generous flexibility

allowing researchers to modify foundational building blocks of ecological communities,

including distributions of consumer diet breadths. Finally, it provides insight into how sample

size or spatial scale can affect network properties. The addition of a third trophic level sepa-

rates our approach from previous simulated network data (e.g., [9,19,37,38], and for both

modeling and empirical approaches to ecological networks, expanding to more complex inter-

action networks should be a focus as it can provide additional information on network dynam-

ics and function. Our model showed that the number and position of trophic levels that are

being analyzed, especially when considering plant, herbivore, and natural enemy communities,

influence network-level properties. Samples from studies that incorporate higher trophic levels

are completely dependent on the successful sampling of associated hosts. This can have signifi-

cant impacts on the observed structure and diversity of a sampled network. As more trophic

levels are included in a network, the dependencies of sampled (or included) interactions

increase, which exacerbates problems with large regional networks that actually do not exist

locally.

The simulation of tri-trophic networks developed “complete” networks that were assembled

with only one assumption—networks consisted of consumers with restricted diets and

included realistic numbers of species and interactions (based on empirical interaction diversity

data). Our goal was to generate a network that is more consistent with standard neutral

assumptions (no assembly rules) combined with niche-based assumptions (specialization),

rather than following an abundance-based simulation null model [18]. In the future, the flexi-

bility of our simulation model, which allows the manipulation of richness, abundance, and

diet breadth for each trophic level included in the community, will incorporate other assump-

tions, such as assembly rules [39,40], or to omit the assumption of restricted consumer diet.

However, our utilization of a truncated Pareto distribution for host range is well supported in

plant-arthropod networks [17] and provides a realistic measure of host specialization in multi-

trophic networks that include plants, insect herbivores, and parasitoid natural enemies. The

manipulation of richness, abundance, and diet breadth and their distributions, allows for a

useful tool to compare observed data to simulated data from the model. This can help with

determining the importance of diet breadth distribution or degree of specialization versus

other factors in sampled networks when exploring relationships between diversity, network

processes, and network patterns [9,41,42]. Finally, the subsampling approach can generate

smaller networks that are a more realistic representation of interacting species in local food

webs [43].

Species and interaction rarefaction curves

Few studies have attempted to compare rarefaction curves for species and interactions across

a wide range of multitrophic communities (but see [44–46]. Rarefaction is used to easily

compare measures of richness between communities in which the sampling effort is different

and can be useful to help identify the completeness of sampling that has occurred in a com-

munity [47]. It is assumed, though never tested, that given the substantially more potential

interactions than species, interactions should accumulate much more slowly than species

when sampling from a discrete sample area. However, many interactions never occur
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(i.e. they are forbidden or never observed) and it is possible that interactions are character-

ized by a more kurtotic distribution than species, which should result in interactions obtain-

ing an apparent asymptote more quickly than species [3,48]. In other words, similar to

species distributions, interactions are typically dominated by a few, abundant connections,

with many singleton or rare interactions. Therefore, the shape of rarefaction curves may be

highly influenced by the abundance distributions, taxonomic richness, and host range of

consumers in multi-trophic communities.

The assumptions of our model and the focus on more specialized consumers clearly impose

some limits to the generality of our results. For example, the values of interaction richness

yielded by this simulation may be considerably lower than species richness due to our high lev-

els of host specialization. A truncated Pareto distribution involves few generalist and many

specialist species, and this increase in more limited trophic interactions reduces the number of

unique interactions that occur when there are no assembly rules or differences in densities for

consumers of different diet breadths. On the other hand, if specialists are always more abun-

dant than generalists, this distribution can increase the number of unique interactions locally.

Other networks (e.g., plant-pollinator) have revealed higher numbers of interactions than spe-

cies (e.g. plants and pollinators) [49–51], but these mutualistic communities are normally

characterized by more generalized interactions, have often been regional networks (i.e. large

scale), and the networks are almost always based on all visitors rather than true pollinators

[52–55]. Furthermore, these communities ignore more subtle factors that affect network

parameters and specialization, such as adaptive foraging [54]. The model’s generality may be

reduced in other ways, but using a truncated Pareto distribution of host specialization may be

the best approach to studying antagonistic interactions, especially those involving plants,

insects, and parasitoid natural enemies [24]. However, the simulation approach is adaptable

and any distribution of host utilization is possible, and modified assumptions would be neces-

sary for communities other than plant, insect herbivore, and parasitoid communities.

Associations between species diversity and interaction diversity

As expected, we observed a strong positive correlation between species and interaction diver-

sity, but this relationship was more stable than anticipated across the diverse range of commu-

nities, scales, and sample sizes. We hypothesized that consumer diet breadth and other

community parameters (e.g. richness and abundance) should have altered the correlation

between interaction and species diversity more than what we observed. Specifically, more spe-

cialized communities (higher α-parameters) result in lower positive correlation coefficients

(fewer links per node) due to the decrease of interactions that involve generalist species. Based

on our simulations, notable changes in the correlation coefficient or slope among species and

interaction diversity across a wide range of combinations of community parameters were

observed (Fig 3, S1 and S2 Tables), but the effects were weaker than expected. More specialized

communities displayed more negative residuals, which suggests that there are fewer interac-

tions than expected based on the number of species present in the community. Although this

effect was small, it supports the hypothesis that generalized interactions are rare, but have large

effects on interaction diversity locally [3]. Generally, community parameters (e.g., richness,

abundance, diet breadth) had little effect on the relationship between species and interaction

diversity, probably due to the lack of assembly rules and low numbers of generalists. The main

parameters that altered the associations between species and interaction diversity were the

number of trophic levels.

An important contribution of our simulation is that it included more than two trophic lev-

els in an effort to understand how the position and number of trophic levels in a community
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can drive relationships between species and interaction diversity. Many network studies have

been limited to plant-pollinator or plant-herbivore networks, yet communities are far more

complex, and patterns of interaction diversity and network topology from two-trophic-level

analyses are likely different from more realistic multi-trophic communities. Our results

revealed that when incorporating three trophic levels, the community parameters (e.g., diet,

richness, and abundance) all have stronger impacts on the relationship between species and

interaction diversity. This is likely due to the contingent nature of sampling partners at lower

trophic levels to acquire individuals at higher trophic levels. In other words, the likelihood of

sampling enemies is founded on the likelihood of sampling an herbivore, which results in a

propagation of effects, changing the probability density functions of interactions differently

from species density functions.

While this is an unavoidable sampling artifact, it is important to consider when drawing

conclusions about the observed structure of a multi-trophic ecological network. Thus, when

investigating more than two trophic levels, the impacts of consumer specialization and species

richness are magnified in driving food web patterns and decrease associations between species

and interaction diversity [56]. Utilizing interaction diversity, as a metric of biodiversity, to

help with conservation and management issues will be most useful when more than two

trophic levels are investigated. Otherwise, species diversity should be a reasonable proxy for

interaction diversity when a community is dominated by only plants and herbivores since dis-

parities between interaction and species diversity are lowest for two trophic levels.

Effects of primary productivity, diet breadth, species diversity, and number

of observed interactions on network structure

We observed considerable variance in interaction diversity in the assembly of 1000 tri-trophic

communities, with the only constraint on consumer diet-breadth distributions. This variance

was due to both random effects and partly due to the deterministic effects of the manipulated

parameters. By utilizing a path analysis framework we were able to identify direct and indirect

effects of multiple community parameters on interaction diversity. Under this framework, spe-

cies diversity, and to a lesser extent consumer diet breadth revealed the strongest direct effects

determining interaction diversity. As expected, species diversity had a strong positive effect on

interaction diversity. The effect of herbivore and enemy diet breadth were similarly positive

but not very strong. These results are not what we originally predicted given that we expected

interaction diversity to be an emergent consequence of distributions of consumer specializa-

tion and taxonomic richness [57]. As stated previously, this weak effect of diet breadth was

likely due to the highly skewed truncated Pareto distribution.

The relationship between connectance and interaction diversity was relatively weak and

shows dissimilar relationships with other variables in the path analysis. This result suggests

that connectance and interaction diversity are measuring different qualities of ecological com-

munities and are determined by different factors within a community. Further, if the goal is to

conserve biodiversity within a community, connectance does not appear to be a good predic-

tor of diversity of interactions and is negatively related to species diversity [57,58]. However,

connectance facilitated both the indirect effects of species diversity and local plant abundance

on interaction diversity.

Using a similar path analysis (i.e. without connectance), we found that the number of obser-

vations included in the model biases the strength of all path coefficients, and this could also be

viewed as a scaling issue—lower numbers of observations in our model are analogous to more

localized assemblages within a community. Studies investigating these sampling or scaling

effects on ecological network parameters are rare, but they are important because ecological
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networks are especially vulnerable to sampling effects as well as scale [9,18,59]. One of the

more interesting patterns was the sharp decline in the effect of species diversity on interaction

diversity as the number of observed interactions increased. This suggests that the effect of spe-

cies diversity on interaction diversity can be overestimated when the number of observations

is insufficient, and that when sufficient observations accumulate the relationship between spe-

cies and interaction diversity becomes weaker. Similar to what previous studies have found,

diet breadth of both herbivores and predators was sensitive to sampling bias [9]. However,

identifying the effects of consumer specialization on interaction diversity may be difficult

given the nonlinear relationship with the sample size or changes in scale.

Conclusions

While this model will be useful for developing basic hypotheses concerning the drivers of tro-

phic interaction diversity, there are details in our model that merit further work. We utilized

this simulation to test hypotheses about accumulation patterns of species and interactions,

but this modeling approach is also appropriate for investigating spatial scaling of interactions

and species. A great deal of progress has been made towards understanding species diversity,

but we lack even a rudimentary understanding of the determinants and spatial or temporal

dynamics of interaction diversity. Food web simulations may be particularly useful to investi-

gate more about the relationships between local and regional interaction diversity [60,61],

which will provide insight into the utility of the preponderance of large regional networks that

are used to address big issues in ecology and conservation.

In conclusion, we demonstrated that in highly specialized communities, trophic interac-

tions accumulate more quickly than species. We showed that diet breadth and taxonomic

richness both interact to influence relationships between species and interaction diversity.

Importantly, this model demonstrated that the position and number of trophic levels being

investigated strongly impacted correlations among species and interaction diversity, which

is critical for biodiversity research and conservation efforts. Interaction and species diversity

are most divergent when incorporating more than two trophic levels, so utilizing interaction

diversity as a metric of biodiversity will be useful for multi-trophic investigations for both

applied and basic research questions such as spatiotemporal dynamics, a biogeographical the-

ory of species interactions [8], and the effects of climate change on biological networks.
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